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Resumo
Este trabalho aborda a análise de três problemas de evolução com amortecimento do tipo derivada
fracionária, investigando a existência, unicidade e comportamento assintótico das soluções.
O primeiro problema consiste em um modelo linear e autônomo unidimensional de uma ponte
suspensa, cujo deck é modelado pela Teoria de Vigas de Timoshenko. O sistema incorpora amor-
tecimentos internos fracionários em cada uma de suas equações. Para este modelo, aplicou-se a
Teoria de Semigrupos de Operadores Lineares Limitados para demonstrar a existência e unicidade
de solução global. A análise assintótica revelou que o decaimento da energia do sistema não é
exponencial, mas sim polinomial.
O segundo problema trata de um modelo abstrato não linear e autônomo em dimensão N para
uma ponte suspensa, onde o deck é regido pela teoria de vigas de Kirchhoff e o amortecimento
fracionário é novamente aplicado. A prova da existência de solução local foi obtida através da Teoria
Clássica de Semigrupos. A demonstração de que esta solução é global (ou seja, não explode em
tempo finito) foi realizada por meio de estimativas de energia para os termos da norma das soluções.
A análise do comportamento de longo prazo foi conduzida via Teoria de Semigrupos de Operadores
Contínuos (sistemas dinâmicos), onde se provou a existência de um conjunto compacto atrator que
atrai todas as soluções do sistema.
Por fim, o terceiro problema analisa ummodelo não linear e não autônomo de equação de onda com
condição de fronteira acústica, sujeito a um amortecimento interno não linear e um amortecimento
do tipo derivada fracionária na fronteira. A existência de solução local foi estabelecida combinando
a Teoria de Semigrupos com a Teoria dos Sistemas CD (de Cauchy-Duhamel) de Kato. A prova
de que estas soluções são globais novamente decorreu de estimativas de energia. Para o estudo
assintótico, utilizou-se a Teoria de Processos Evolutivos, que generaliza a noção de semigrupos para
o contexto não autônomo. Por meio desta teoria, demonstrou-se que as soluções admitem uma
família tempo-dependente de conjuntos compactos (um atrator pullback) que atrai as trajetórias
no sentido pullback, isto é, quando as soluções evoluem a partir de condições iniciais tomadas em
tempos cada vez mais remotos no passado.
Palavras-chave: Equações de Evolução, Derivada Fracionária, Semigrupos, Processos Evolutivos,
Comportamento Assintótico, Atratores, Problemas Não-Autônomos.





Abstract
This work addresses the analysis of three evolution problems with fractional derivative-type damping,
investigating the existence, uniqueness, and asymptotic behavior of solutions.
The first problem consists of a one-dimensional linear and autonomous model of a suspension bridge,
whose deck is modeled by Timoshenko Beam Theory. The system incorporates fractional damping
terms in each of its equations. For this model, the Theory of Semigroups of Bounded Linear Operators
was applied to demonstrate the existence and uniqueness of global solution. The asymptotic analysis
revealed that the energy decay of the system is not exponential but rather polynomial.
The second problem addresses an abstract, nonlinear, autonomous N-dimensional model for a
suspension bridge, governed by Kirchhoff plate theory for the deck and again subject to fractional
damping. The proof of local solution existence was achieved using Classical Semigroup Theory. The
demonstration that this solution is global (i.e., does not blow up in finite time) was carried out via
energy estimates for the solution norms. The long-term behavior analysis was conducted using the
Theory of Nonlinear Semigroups of continuous operators (dynamical systems), which established
the existence of a compact global attractor that attracts all system trajectories.
Finally, the third problem analyzes a nonlinear and non-autonomous wave equation model with an
acoustic boundary condition, subject to a nonlinear internal damping and a fractional derivative-type
damping on the boundary. The existence of a local solution was established by combining Semigroup
Theory with Kato’s Cauchy-Duhamel (CD) Systems Theory. The proof that these solutions are global
again followed from energy estimates. For the asymptotic study, the Theory of Evolutionary Processes,
which generalizes the notion of semigroups to the non-autonomous context, was used. Through this
theory, it was demonstrated that the solutions admit a time-dependent family of compact sets (a
pullback attractor) that attracts the trajectories in the pullback sense, i.e., when solutions evolve
from initial conditions taken at times increasingly remote in the past.
Keywords: Evolution Equations, Fractional Derivative, Semigroups, Evolutionary Processes, Asymp-
totic Behavior, Attractors, Non-Autonomous Problems.
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Introdução

A teoria das Equações Diferenciais Parciais (EDPs) ocupa um papel central na matemática mo-
derna, funcionando como um ponto de convergência entre diversas áreas, como análise funcional,
teoria da medida, geometria diferencial, ciência da computação, mecânica dos fluidos, biologia e
matemática financeira. As EDPs são ferramentas fundamentais para modelar fenômenos complexos,
como a propagação de ondas, a difusão de calor, o comportamento de fluidos e a dinâmica popula-
cional. Contudo, a natureza intrinsecamente singular de muitas dessas equações frequentemente
exige a ampliação das noções clássicas de derivadas e funções.

Nesse contexto, os conceitos de derivada fraca e distribuições tornam-se essenciais. Sergei
Sobolev introduziu a noção de derivada fraca, permitindo o tratamento de funções integráveis que,
embora não possuam derivadas no sentido clássico, admitem-nas no sentido fraco. Esse avanço
deu origem aos espaços de Sobolev, que constituem o ambiente natural para estudar a existência, a
unicidade e a regularidade das soluções de muitos problemas envolvendo EDPs. Posteriormente,
Laurent Schwartz expandiu essa ideia ao desenvolver a teoria das distribuições, que estende a noção
de derivada para objetos mais gerais, como funções com singularidades pontuais, oferecendo uma
base sólida para problemas nos quais as soluções clássicas são inadequadas.

Embora a teoria dos espaços de Sobolev e das distribuições tenha consolidado um arcabouço
conceitual importante para problemas estacionários e evolutivos, a análise rigorosa da dinâmica
temporal das EDPs exige ferramentas matemáticas mais avançadas. Nesse cenário, a teoria de semi-
grupos de operadores emerge como uma abordagem unificadora e poderosa para tratar problemas
de evolução. Seu principal mérito está em padronizar a técnica de resolução de uma ampla classe de
EDPs, formulando-as como problemas de valor inicial de Cauchy em espaços funcionais apropriados,
como os espaços de Sobolev. Ao imitar a estratégia utilizada no estudo de Equações Diferenciais
Ordinárias (EDOs), a teoria de semigrupos fornece uma estrutura sistemática para estudar a evolução
temporal das soluções, abstraindo as particularidades das equações individuais.

Para problemas autônomos lineares, onde as propriedades do sistema não variam no tempo,
a teoria de semigrupos de operadores lineares limitados oferece ferramentas fundamentais para
garantir a existência e unicidade das soluções, além de investigar seu comportamento assintótico. A
estabilidade desses semigrupos permite caracterizar a dissipação de energia e o comportamento de
longo prazo de fenômenos como a difusão de calor ou a propagação de ondas.



2 Introdução

A relevância da teoria, no entanto, não se restringe ao caso linear. Sua extensão para semigrupos
de operadores contínuos em espaços métricos proporciona uma abordagem robusta para problemas
autônomos não lineares, nos quais métodos clássicos falham. Nesse contexto, o conceito de atrator
global desempenha um papel crucial ao descrever a dinâmica assintótica das soluções em sistemas
dissipativos. O atrator global é um conjunto compacto e invariante que atrai todas as trajetórias
provenientes de conjuntos limitados, fornecendo uma descrição abrangente da dinâmica de longo
prazo.

Quando o foco recai sobre problemas não autônomos, cuja dinâmica varia explicitamente no
tempo, a teoria de processos evolutivos torna-se a ferramenta mais adequada. Essa teoria generaliza
a de semigrupos ao lidar com operadores dependentes do tempo, permitindo uma análise detalhada
de sistemas afetados por variações externas, como mudanças ambientais, dinâmicas sazonais ou
perturbações. Nesse cenário, surgem diferentes noções de atratores, sendo os mais amplamente
utilizados o atrator pullback e o atrator uniforme. O atrator pullback descreve comoo comportamento
das soluções é atraído a partir do passado, considerando explicitamente a dependência temporal do
sistema. Já o atrator uniforme fornece uma visão global do comportamento assintótico, abstraindo
as variações temporais específicas.

Portanto, a força da teoria de semigrupos e de processos evolutivos está em sua capacidade de
unificar e padronizar técnicas para o estudo de EDPs. Essas teorias oferecem ferramentas versáteis
para a análise de existência, unicidade e comportamento temporal das soluções, abrangendo tanto
problemas lineares quanto não lineares, autônomos e não autônomos. Além disso, proporcionam
uma compreensão detalhada da dinâmica assintótica das soluções, seja pela estabilidade de semigru-
pos lineares, pelo estudo de atratores globais em semigrupos contínuos ou pelas diferentes noções
de atratores, como o pullback e o uniforme, nos processos evolutivos.

O presente trabalho tem como objetivo principal estudar sistemas de equações diferenciais
parciais de evolução dissipativas, nos quais a dissipação é oriunda de amortecimentos do tipo
derivada de ordem fracionária. Para atingir esse objetivo, faz-se uso das teorias padronizadas dos
semigrupos de operadores lineares limitados (para problemas lineares), de semigrupos de operadores
contínuos (para problemas não lineares) e da teoria de processos evolutivos (para problemas não
autônomos).

Além disso, pretende-se que o texto seja autossuficiente. Para tanto, inicialmente é apre-
sentada, de forma sucinta e completa, a teoria das distribuições e dos espaços de Sobolev, que
constituem o ambiente natural para as soluções das equações estudadas. Em seguida, são desenvol-
vidas as três teorias unificadoras mencionadas. O texto também contém um apêndice com resultados
matemáticos auxiliares utilizados na resolução dos problemas.

Essas teorias serão aplicadas nos três últimos capítulos desta tese, cada um empregando uma
delas para estudar um problema de natureza diferente. Os problemas estudados serão, respecti-
vamente: um problema linear e autônomo; um problema não linear e autônomo; e, por fim, um
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problema não linear e não autônomo. Além da boa colocação dos problemas, utilizam-se as teorias
de semigrupos e de processos evolutivos para estudar o comportamento assintótico das soluções do
problema linear autônomo, a existência de atrator global para o problema não linear e autônomo e
a existência de atrator pullback para o problema não linear e não autônomo.

No Capítulo 1, são apresentados os espaços funcionais que constituem o ambiente das soluções
das EDPs estudadas, a saber: as Distribuições e os espaços de Sobolev. As principais referências
utilizadas neste capítulo foram (RUDIN, 1991), (CAVALCANTI; CAVALCANTI, 2009) e (MEDEIROS;
MIRANDA, 2000).

No Capítulo 2, apresentamos a teoria de semigrupos de operadores lineares limitados. Por
meio dessa teoria, obtemos resultados de existência e unicidade de soluções para o problema
abstrato de Cauchy linear autônomo, os quais serão aplicados ao problema (4.1)–(4.3), tratado no
Capítulo 4. Além disso, a teoria fornece resultados sobre estabilidade de semigrupos, que serão
utilizados para garantir o decaimento da energia associada ao mesmo problema. Essa estrutura
teórica também permitirá estudar a boa colocação dos problemas (5.3)–(5.6) e (6.2)–(6.6), abordados
nos Capítulos 5 e 6, respectivamente. Tais estudos serão realizados por meio de resultados de
existência e unicidade para casos particulares de problemas abstratos de Cauchy não lineares ou
não autônomos. Para o desenvolvimento deste capítulo, foram consultadas as seguintes referências:
os livros (PAZY, 1983), (LIU; ZHENGZ, 2011) e (AMMARI; SHEL, 2002), bem como os artigos (ARENDT;
BATTY, 1988), (BORICHEV; TOMILOV, 2010) e (GEARHART, 1978). Para o estudo de soluções de
problemas não lineares ou não autônomos, utilizamos também (PAZY, 1983) e (KATO, 1985).

No Capítulo 3, apresentamos a teoria de semigrupos de operadores contínuos sobre um
espaço métrico para problemas não lineares, e a teoria de processos evolutivos para problemas não
autônomos. O foco dessas teorias recai sobre o estudo da dinâmica (comportamento assintótico)
das soluções. Elas serão aplicadas na análise da existência de atrator global e da existência de
atrator pullback para os respectivos problemas (5.3)–(5.6) e (6.2)–(6.6), tratados nos Capítulos 5 e
6. Para a teoria de semigrupos de operadores contínuos e o estudo da existência de atrator global,
utilizamos as referências (ROBINSON, 2011), (ROBINSON, 2001), (CARVALHO; LANGA; ROBINSON,
2013), (CHUESHOV; LASIECKA, 2008) e (CHUESHOV; LASIECKA, 2010). Já para o estudo da teoria de
processos evolutivos em problemas não autônomos e da existência de atrator pullback, utilizamos
(CARVALHO; LANGA; ROBINSON, 2013).

No Capítulo 4, estudamos a boa colocação e o comportamento assintótico de um sistema
linear e autônomo de ponte suspensa, cujo deck é modelado pela teoria de vigas de Timoshenko,
sob a influência de dissipações internas do tipo derivada fracionária. Para isso, utilizamos a teoria
de semigrupos de operadores lineares limitados, apresentada de forma sucinta na primeira seção
do Capítulo 2. A existência e unicidade de solução são estabelecidas por meio do Teorema de
Lumer-Phillips, a partir de um operador que gera o semigrupo associado ao sistema em estudo.
Em seguida, exploramos as propriedades espectrais desse operador, essenciais para a aplicação do
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Teorema de Borichev-Tomilov, a fim de obter uma taxa polinomial de decaimento das soluções. Além
disso, utilizamos o Teorema de Gearhart para mostrar que as soluções não apresentam decaimento
exponencial.

No Capítulo 5, estudamos um modelo abstrato (N -dimensional), não linear e autônomo, de
ponte suspensa cujo deck é modelado pela teoria de vigas de Kirchhoff, sob o efeito de dissipações
internas do tipo derivada fracionária. Utilizamos a teoria de semigrupos de operadores contínuos
para tratar a parte linear do problema, aplicando o Teorema de Lumer-Phillips para mostrar que essa
parte linear gera um C0–semigrupo de contrações. Mostramos também que a parte não linear do
problema define um operador localmente Lipschitz, o que garante a existência e unicidade de solução
local. A solução global é obtida a partir de estimativas de energia, que asseguram que as soluções
não explodem em tempo finito e, portanto, estão definidas globalmente. Em seguida, empregamos
a teoria não linear de operadores contínuos, apresentada na primeira seção do Capítulo 3, para
analisar a dinâmica do problema. Com isso, provamos a existência de atrator global. Além disso,
mostramos que esse atrator possui dimensão fractal finita e, a partir desse estudo, conseguimos
obter maior regularidade para as soluções.

Por fim, no Capítulo 6, estudamos um modelo abstrato, não linear e não autônomo, de
equação de onda com fronteira acústica, sob a ação de um amortecimento não linear interno e de
um amortecimento do tipo derivada fracionária na fronteira. Para mostrar a existência de solução
local, provamos que o operador da parte linear do problema gera um processo de evolução especial,
denominado sistema CD de Kato, e que a parte não linear é localmente Lipschitz na variável espacial
U e Lipschitz contínua na variável temporal em conjuntos limitados de U . A solução global foi
estabelecida a partir de estimativas de energia, garantindo que as soluções não explodem em tempo
finito e, assim, permanecem definidas globalmente. Finalmente, utilizamos a teoria de processos
evolutivos, apresentada na segunda seção do Capítulo 3, para estudar a dinâmica pullback do
problema. Com isso, provamos a existência de um atrator pullback em um universo de atração mais
geral D.
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Capítulo 1

Distribuições e Espaços de Sobolev

Neste capítulo, exploraremos os aspectos fundamentais da teoria das Distribuições de Schwartz
e dos Espaços de Sobolev, áreas essenciais na análise matemática e em aplicações a Equações
Diferenciais Parciais (EDPs). O ponto de partida para essas teorias pode ser encontrado na identidade
clássica: ∫

Rn
u(x)ϕ′(x)d x =−

∫
Rn

u′(x)ϕ(x)d x,

onde u é uma função integrável e ϕ é diferenciável com suporte compacto.
Essa identidademotivou omatemático russo Sergei Sobolev a introduzir o conceito de derivada

fraca, permitindo a análise de classes de funções integráveis cujas derivadas, no sentido tradicional,
podem não existir, mas que possuem derivadas fracas até certa ordem. Paralelamente, Laurent
Schwartz desenvolveu a teoria das distribuições, ampliando significativamente a noção de derivada
proposta por Sobolev e fornecendo uma estrutura matemática robusta para tratar problemas onde
as derivadas clássicas não se aplicam.

O capítulo está organizado em três seções principais, de forma a apresentar de maneira gradual
e consistente os conceitos e ferramentas teóricas. Na primeira seção, construiremos uma topologia
especial no espaço das funções infinitamente diferenciáveis com suporte compacto. Com base
nessa topologia, introduziremos o conceito de distribuições, assim como os principais resultados
associados a elas.

Na segunda seção, reuniremos os conceitos e propriedades mais relevantes dos espaços de
Sobolev, que são fundamentais para a análise de EDPs e outras áreas da matemática aplicada. Estes
espaços estendem as ideias de Sobolev sobre derivadas fracas e formam um cenário adequado para
as soluções dos problemas que abordaremos nesse trabalho.

Por fim, na terceira seção, introduziremos o conceito de Distribuições Temperadas, o que nos
permitirá definir os espaços de Sobolev de ordem fracionária. Esses espaços fornecem o ambiente
ideal para a análise do operador traço, que generaliza a ideia de avaliar uma função no bordo de seu
domínio. O operador traço desempenha um papel crucial na formulação e resolução de problemas
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em EDPs, especialmente aqueles que envolvem condições de contorno.
Com essa organização, esperamos fornecer uma visão clara e estruturada das ferramentas

teóricas que fundamentam a análise moderna, bem como preparar o terreno para os problemas que
abordaremos nos capítulos finais desta tese.

1.1 O Espaço das Funções Testes e as Distribuições

Nesta seção, analisaremos uma topologia específica que será atribuída ao conjunto C∞
0 (Ω)

das funções infinitamente diferenciáveis com suporte compacto. Essa topologia é essencial para
definir a derivada no sentido distribucional. Nosso objetivo é investigar as principais propriedades
dessa topologia, além de analisar os funcionais lineares definidos em C∞

0 (Ω) que são contínuos em
relação a essa estrutura topológica.

Inicialmente, introduziremos terminologias utilizadas na teoria das distribuições. Ao longo do
texto, o símbolo Ω representará um aberto no espaço euclidiano Rn . Denomina-se multi-índice uma
n-upla ordenada de inteiros não negativos. Para cada multi-índice α= (α1, · · · ,αn) associa-se um
operador diferencial

Dα = ∂|α|

∂x1
α1 · · ·∂xn

αn
,

onde |α| =α1 +·· ·+αn .
Quando |α| = 0, isto éα= (0, · · · ,0),Dα é operador identidade. Alémdisso, define-se a potência

xα = xα1
1 · · ·xαn

n , com x = (x1, · · · , xn).

1.1.1 Funções Testes

Para cada compacto K ⊂ Rn , defina DK = { f ∈ C∞(Rn); supp( f ) ⊂ K }. Quando K ⊂Ω, DK

pode ser identificado com um subconjunto de C∞(Ω). Neste caso denotamos DK :=DK (Ω).
Introduziremos uma topologia em C∞(Ω) que o transforma em um espaço de Fréchet, ga-

rantindo que DK (Ω) seja um subconjunto fechado de C∞(Ω) nessa topologia, sempre que K ⊂Ω.
É possível construir uma sequência (K j ) j∈N de conjuntos compactos, tal que K j ⊂ i nt(K j+1) e
Ω=

∞⋃
j=1

K j . sobre C∞(Ω), define-se uma sequência de semi-normas p j dada por
p j ( f ) = max{|Dα f (x)|; x ∈ K j e |α| ≤ j }, para cada j ∈N. (1.1)

A sequência de seminormas definida acima gera uma topologia L0 em C∞(Ω), a qual é
localmente convexa e metrizável. Além disso, para cada x ∈Ω, o funcional

δx : C∞(Ω) −→ R

f 7−→ f (x)
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é contínuo na topologia L0.
Observe que, DK (Ω) pode ser descrito como a interseção dos núcleos dos funcionais δx , com

x variando no complementar de K , ou seja
DK (Ω) = ⋂

x∈Ω/K
ker (δx).

Logo, DK (Ω) é um subconjunto fechado de C∞(Ω) na topologia L0.
Por outro lado, podemos definir uma base local para L0 considerando a seguinte sequência

de conjuntos:
B j =

{
f ∈C∞(Ω); p j ( f ) < 1

j

}
, ∀ j ∈N.

Afirmamos que C∞(Ω), equipado com a topologia L0 é um espaço métrico completo. De fato,
seja ( f j ) j∈N é uma sequência de Cauchy em C∞(Ω). Fixando l ∈N, temos f j − fl ∈ βm para j e l

suficientemente grandes. Assim,
|Dα f j −Dα fl | <

1

m
, para x ∈ Km e |α| < m.

Logo, (Dα f j ) j∈N converge uniformemente em cada compacto deΩ para uma função gα. Em particu-
lar, D0 f j = f j → g0. Assim, g0 ∈C∞(Ω), gα = Dαg0 e f j → g0 em L0. Portanto (C∞(Ω),L0) é um
espaço de Fréchet, no qual cada DK (Ω), para K ⊂Ω é um subconjunto fechado.

Equiparemos C∞
0 (Ω) com uma topologia especial que o torna um espaço vetorial topoló-

gico localmente convexo. Essa topologia, embora não métrica, apresenta boas propriedades de
convergência e continuidade.

Inicialmente, note que⋃
K⊂Ω

DK (Ω) =C∞
0 (Ω) = { f ∈C∞(Ω); supp( f ) é um conjunto compacto de Ω}.

Para C∞
0 (Ω) definimos a sequência de normas

∥ϕ∥ j = max{|Dαϕ(x)|; x ∈Ω e |α| ≤ j }, ∀ j ∈N. (1.2)
Ao restringirmos essas normas aDK (Ω) para um compacto fixoK , a topologia induzida coincide

com aquela gerada pelas seminormas p j definidas em (1.1). De fato, dado K ⊂ K j , existe j0 ∈N, tal
que, para algum j > j0, temos que ∥ϕ∥ j = p j (ϕ) para ϕ ∈DK (Ω). Como

∥ϕ∥ j ≤ ∥ϕ∥ j+1 e p j (ϕ) ≤ p j+1(ϕ), sempre que j > j0,

as topologias induzidas por qualquer sequência de semi-normas mantém-se inalteradas se consi-
deremos iniciando-se do índice i0. Estas duas topologias de DK (Ω) coincidem. Portanto, temos a
seguinte base local

B ′
j =

{
ϕ ∈DK ; ∥ϕ∥ < 1

j

}
.
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Denotamos esta topologia por τK .
As normas definidas em (1.2) permitem construir uma topologia métrica localmente convexa

sobre C∞
0 (Ω). No entanto, esta topologia apresenta a desvantagem de não ser completa. Para

superar essa limitação, definimos uma nova topologia localmente convexa em C∞
0 (Ω), chamada

topologia do limite indutivo e denotada por L .
A topologia L é definida como a coleção de todas as uniões de conjuntos da forma ϕ+W =

{ϕ+ψ, ψ ∈W }, com ϕ ∈C∞
0 (Ω) e W ∈β, onde

β= {W ⊂C∞
0 (Ω), W é convexo balanceado e DK ∩W ∈ τK para todo compacto K ⊂Ω}.

Teorema 1.1
A topologia L torna C∞

0 (Ω) um espaço vetorial topológico localmente convexo, sendo β uma base
local para L .
Demonstração. Ver ((RUDIN, 1991), p. 152).
Definição 1.2
O espaço das funções testes é definido como C∞

0 (Ω) munido da topologia do limite indutivo L . Esse
espaço é comumente denotado por D(Ω) = (C∞

0 (Ω),L ).
Teorema 1.3
No espaço D(Ω) das funções testes, valem as seguintes propriedades:
(a) Um conjunto convexo e balanceadoU ∈D(Ω) é aberto se, e somente se,U ∈β.
(b) A topologia τK coincide com a topologia de subespaço que DK (Ω) induz sobre D(Ω).
(c) Se E ⊂ D(Ω) é limitado, então E ⊂ DK (Ω) para algum K ⊂ Ω, e existem constantes reais

M j <∞ tais que:
∥ϕ∥ j ≤ M j ∀ϕ ∈ E e ∀ j ∈N

(d) Se (ϕ j ) j∈N é uma sequência de Cauchy emD(Ω), então (ϕ j ) j∈N ⊂DK (Ω) para algum compacto
K ⊂Ω, e

lim
j ,l→∞

∥ϕ j −ϕl∥m = 0, ∀m ∈N.

(e) Se ϕ j → 0 em D(Ω), então existe um compacto K ⊂Ω tal que, supp(ϕ j ) ⊂ K e a sequência
(Dαϕ j ) j∈N converge uniformemente para zero sobre K , qualquer que seja j ∈N e o multi-
índice α.

(f) Toda sequência de Cauchy em D(Ω) é convergente.
Demonstração. Ver ((RUDIN, 1991), p. 153).
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Teorema 1.4
Sejam Y um espaço vetorial localmente convexo e T : D(Ω) → Y uma aplicação linear. As seguintes
condições são equivalentes
(a) T é contínuo;
(b) T é limitado;
(c) Se ϕ j → 0 em D(Ω) então, T (ϕ j ) → 0 em Y ;
(b) Para cada compacto K ⊂Ω, a restrição T|DK (Ω) é contínua.

Demonstração. Ver ((RUDIN, 1991), p. 155).

1.1.2 Distribuições

Definição 1.5
Denomina-se distribuição qualquer funcional linear contínuo T : D(Ω) →C. O conjunto de todas as
distribuições é denotado por D′(Ω).

Se T é um funcional linear, é comum representar a avaliação de T em um ponto x de seu
domínio por 〈T, x〉 em vez de T (x).
Teorema 1.6
Seja T : D(Ω) →C um funcional linear. As seguintes condições são equivalentes
(a) T é uma distriuição ( isto é T ∈D′(Ω));
(b) Para cada compacto K ⊂Ω existe um inteiro não negativo i e uma constante C > 0 tais que

|〈T,ϕ〉| ≤C∥ϕ∥ j para cada ϕ ∈DK (Ω).

Demonstração. Ver ((RUDIN, 1991), p. 156).
Exemplo 1.7
Seja u ∈ L1

l oc (Ω). Então,
Tu : D(Ω) −→ C

ϕ 7−→
∫
Ω

u(x)ϕ(x)d x

é uma distribuição.
De fato. Sejam ϕ1,ϕ2 ∈D(Ω) e λ ∈C. Então

〈Tu ,ϕ1 +λϕ2〉 =
∫
Ω

u(x)(ϕ1 +λϕ2)d x =
∫
Ω

u(x)ϕ1(x)d x +λ
∫
Ω

u(x)ϕ2(x)d x

= 〈Tu ,ϕ1〉+λ〈Tu ,ϕ2〉,
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o que prova a linearidade.
Para mostrar a continuidade, usaremos à caracterização do Teorema 1.6. Sejam K ⊂Ω um

compacto e ϕ ∈DK . Então:
|〈Tu ,ϕ〉| =

∣∣∣∣∫
Ω

u(x)ϕ(x)d x

∣∣∣∣≤ ∫
Ω
|u(x)| · |ϕ(x)|d x =

∫
K
|u(x)| · |ϕ(x)|d x.

Como o suporte de ϕ está contido em K , temos:∫
K
|u(x)| · |ϕ(x)|d x ≤ max{|ϕ(x)|; x ∈Ω} ·

(∫
K
|u(x)|d x

)
=

(∫
K
|u(x)|d x

)
· ∥ϕ∥0.

Portanto pela caracterização do Teorema 1.6 segue que Tu é uma distribuição.
Munindo o espaço vetorial D′(Ω) das distribuições com a topologia fraca*, obtemos a seguinte

imersão contínua L1
loc (Ω) ,→D′(Ω). De fato, defina

T : L1
loc (Ω) −→ D′(Ω)

u 7−→ Tu .

Segue do Exemplo 1.7 que T está bem definida e é linear. Além disso, T é injetiva. Com efeito,
sejam u, v ∈ L1

loc (Ω) tais que Tu = Tv . Então para cada ϕ ∈D(Ω) temos:∫
Ω

u(x)ϕ(x)d x =
∫
Ω

v(x)ϕ(x)d x.

Logo ∫
Ω

[u(x)− v(x)]ϕ(x)d x = 0, ∀ϕ ∈D(Ω).

Pelo Lema de Du Bois Raymond (Teorema A.1), segue que u = v em quase todo ponto de Ω. Assim,
u = v em L1

loc (Ω).
Por esta razão, identifica-se a função u ∈ L1

l oc (Ω) com a distribuição Tu por ela definida, e
diz-se a distribuição u ao invés de Tu . Uma vez feita essa identificação, temos L1

l oc (Ω) ⊂D′(Ω).
Agora mostramos que a imersão é contínua. Sejam (ui )i∈N ⊂ L1

loc (Ω) e u ∈ L1
loc (Ω) tais que

ui → u em L1
loc (Ω). Para cada compacto K ⊂Ω e ε> 0 dado, existe i0 ∈N tal que:∫

Ω
|ui (x)−u(x)|d x < ε, sempre que i ≥ i0.

Então, dada função teste ϕ ∈DK (Ω), tem-se
|〈Tui −Tu ,ϕ〉| =

∣∣∣∣∫
Ω

[ui (x)−u(x)]ϕ(x)d x

∣∣∣∣≤ ∫
Ω
|ui (x)−u(x)| · |ϕ(x)|d x

Como ϕ tem suporte contido em K , segue que:∫
Ω
|ui (x)−u(x)| · |ϕ(x)|d x ≤ max

x∈K
|ϕ(x)|

∫
K
|ui (x)−u(x)|d x.
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Portanto
|〈Tui −Tu ,ϕ〉| < max

x∈K
|ϕ(x)| ·ε.

Logo Tui → Tu em D′(Ω).
Existem distribuições que não são definidas por funções localmente integráveis. Para ilustrar,

considere, para cada x0 ∈Ω, a aplicação
δx0 : D(Ω) −→ C

ϕ 7−→ ϕ(x0).

Inicialmente mostramos que δx0 é uma distribuição. De fato, sejam ϕ1,ϕ2 ∈D(Ω) e λ ∈C. Temos:
〈δx0 ,ϕ1 +λϕ2〉 = (ϕ1 +λϕ2)(x0) =ϕ1(x0)+λϕ2(x0) = 〈δx0 ,ϕ1〉+λ〈δx0 ,ϕ2〉.

Isso prova a linearidade.
Para mostrar a continuidade usamos o Teorema 1.6. Para cada função teste ϕ, temos:

|〈δx0 ,ϕ〉| = |ϕ(x0)| ≤ max
x∈Ω

|ϕ(x)| = ∥ϕ∥0.

Portanto δx0 é contínua em D(Ω).
A distribuição δx0 é chamada delta de Dirac concentrada no ponto x0.
Mostraremos, agora, que δx0 não é definida por uma função localmente integrável, isto é, que

não existe u ∈ L1
loc (Ω) tal que,∫

Ω
u(x)ϕ(x)d x =ϕ(x0), ∀ϕ ∈D(Ω). (1.3)

Suponha, por absurdo que tal u exista. Seja φ ∈D(Ω) uma função teste arbitrária, e considere
a função ϕ ∈D(Ω) definida por ϕ(x) = ∥x −x0∥φ(x). Pela hipótese de absurdo (1.3), temos:∫

Ω
u(x)∥x −x0∥φ(x)d x = 0, ∀φ ∈D(Ω).

Pelo Lema de du Bois Raymond (Teorema A.1), concluímos que
∥x −x0∥u(x) = 0, em quase todo ponto x ∈Ω.

Como ∥x − x0∥ > 0 para x ̸= 0, segue que u(x) = 0 em quase todo ponto x ∈ Ω. Logo u ≡ 0 em
L1

loc (Ω).
Substituindo u = 0 em (1.3), obtém-se ϕ(x0) = 0 para toda função teste ϕ ∈D(Ω), o que é um

absurdo. Portanto L1
loc (Ω)⊊D′(Ω).

Existem também sequências de funções localmente integráveis que convergem para uma
distribuição T ∈D′(Ω), cujo limite não pode ser representado por uma função localmente integrável.
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Um exemplo clássico é dado sequência (
φ j

)
j∈N, onde φ j ∈C∞

0 (Rn) é definida por:

φ j (x) =


C j n exp

(
1

∥ j x∥2 −1

)
, se ∥x∥ < 1

j

0, se ∥x∥ ≥ 1

j
,

com C =
(∫
Rn
φ(x)d x

)−1, sendo φ :Rn −→C a função definida por

φ(x) =

 exp

(
1

∥x∥2 −1

)
, se ∥x∥ < 1

0, se ∥x∥ ≥ 1.

Observe que:
supp(φ j ) = B1/ j (0) := {x ∈Rn ; ∥x∥ ≤ 1/ j } e ∫

Rn
φ j (x)d x = 1 (1.4)

A sequência (ϕ j ) converge, no sentido das distribuições, para a delta de Dirac δ0 concentrada
na origem. Isto é, para todo ϕ ∈D(Rn), tem-se

lim
j→∞

〈φ j ,ϕ〉 = 〈δ0,ϕ〉.

De fato, de (1.4), segue que∣∣∣∣∫
Rn
φ j (x)ϕ(x)d x −ϕ(0)

∣∣∣∣ =
∣∣∣∣∫
Rn
φ j (x)ϕ(x)d x −

∫
Rn
φ j (x)ϕ(0)d x

∣∣∣∣
≤

∫
B1/ j (0)

φ j (x)|ϕ(x)−ϕ(0)|d x

Comoϕ ∈D(Rn), ela é uniformemente contínua. Assim, dado ε> 0, existeδ> 0 tal que |ϕ(x)−ϕ(0)| ≤
ε, sempre que ∥x∥ < δ.

Escolhendo j0 ≥ 1/δ, para j > j0, temos:∣∣∣∣∫
Rn
φ j (x)ϕ(x)d x −ϕ(0)

∣∣∣∣≤ ∫
B1/ j (0)

φ j (x)|ϕ(x)−ϕ(0)|d x ≤ ε,

Portanto
lim
j→∞

〈φ j ,ϕ〉 =ϕ(0) = 〈δ0,ϕ〉,

o que prova que ϕ j → δ0 em D′(Rn).
Assim, concluímos que

φ j ∈ L1
loc (Ω), ∀ j ∈N, mas φ j → δ0 em D′(Rn).

Mais geralmente, para 1 ≤ p ≤∞ temos a seguinte cadeia de imersões contínuas:
D(Ω) ,→ Lp

loc (Ω) ,→D′(Ω),

sendo cada inclusão densa na seguinte.
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Definição 1.8
Sejam T ∈D′(Ω) uma distribuição e α um multi-índice arbitrário. A derivada DαT de ordem α de T

é definida como
〈DαT,ϕ〉 = (−1)|α|〈T,Dαϕ〉, ∀ϕ ∈D(Ω).

Inicialmente, sem nos preocuparmos em provar que a derivada distribucional de uma dis-
tribuição é de fato uma distribuição, podemos observar, que para uma distribuição T ∈ D′(Ω) e
multi-índices α e β, vale a seguinte relação

DαDβT = Dα+βT = DβDαT

O próximo resultado garante que essa definição é bem fundamentada.
Proposição 1.9
A derivada de uma distribuição é uma distribuição.
Demonstração. Sejam T ∈D′(Ω) e α um multi-índice. Definimos

DαT : D(Ω) −→ C

ϕ 7−→ (−1)|α|〈T,Dαϕ〉.

Primeiro, operador diferencial Dα mapeia continuamente D(Ω) em D(Ω), e portanto DαT

está bem definida. A linearidade do operador DαT segue diretamente da linearidade da derivada
para funções infinitamente diferenciáveis e da linearidade do funcional T .

Para provar a continuidade, consideremos que, por ser T ∈D′(Ω), para cada compacto K ⊂Ω
existe um número inteiro não negativo j0 e uma constante real C tal que |〈T,ϕ〉| ≤C∥ϕ∥ j0 qualquer
que seja ϕ ∈DK (Ω). Logo, para todo ϕ ∈DK (Ω), temos:

|〈DαT,ϕ〉| = |(−1)|α|〈T,Dαϕ〉| = |〈T,Dαϕ〉| ≤C∥Dαϕ∥ j0 ≤C∥ϕ∥ j0+|α|.

Aqui utilizamos o fato de que, para todo multi-índice β:
∥Dαϕ∥ j0 = max

x∈Ω
{|Dβ(Dαϕ(x))|; |β| ≤ j0} = max

x∈Ω
{|Dβ+αϕ(x)|; |β| ≤ j0}

≤ max
x∈Ω

{|Dβ+αϕ(x)|; |β+α| ≤ j0 +|α|}.

Portanto, DαT é contínuo, concluindo que DαT é uma distribuição.
A derivada de uma distribuição definida por uma função localmente integrável não é necessa-

riamente identificada com uma função localmente integrável. Este fato será ilustrado no exemplo
abaixo e motivará a introdução de uma classe relevante de espaços de Banach.
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Exemplo 1.10
Considere a função de Heaviside u, definida como

u(x) =
{

1, se x > 0

0, se x ≤ 0
.

A função u é localmente integrável, mas a sua derivada u′ no sentido das distribuições não é
localmente integrável. Com efeito, para cada ϕ ∈D(R), temos

〈u′,ϕ〉 =−1〈u,ϕ′〉 =−
∫
R

u(x)ϕ′(x)d x =−
∫ ∞

0
ϕ′(x)d x =− lim

t→∞

∫ t

0
ϕ′(x)d x

como ϕ tem suporte compacto, do Teorema Fundamental do Cálculo, obtém-se
〈u′,ϕ〉 =− lim

t→∞[ϕ(t )−ϕ(0)] =ϕ(0) = 〈δ0,ϕ〉; ∀ϕ ∈D(R)

Logo u′ = δ0. Concluímos, assim, que u′ não é definida por uma função localmente integrável.
Um observação final é oportuna. Se u ∈C m(Rn), para cada multi-índice α≤ |m|, a derivada

Dαu no sentido das distribuições coincide com a derivada de u no sentido clássico. Em termos de
distribuições, isso equivale a afirmar que DαTu = TDαu . De fato, para qualquer multi-índice |α| ≤ m

e ϕ ∈D(Ω), integrando por partes, Obtemos:
〈TDαu ,ϕ〉 =

∫
Rn

Dαu(x)ϕ(x)d x = (−1)|α|
∫
Rn

u(x)Dαϕ(x)d x = (−1)|α|〈Tu ,Dαϕ〉
= 〈DαTu ,ϕ〉,

Isso demonstra a igualdade DαTu = TDαu , como afirmado.

1.2 Os Espaços de Sobolev

O matemático russo Sergei Lvovich Sobolev, definiu uma noção de derivada para funções
integráveis da seguinte maneira:

Uma função u ∈ Lp (Ω) possui derivada fraca se, e somente se, existem funções g1, · · · , gn ∈
Lp (Ω) tais que ∫

Ω
u(x)

∂ϕ(x)

∂x j
=−

∫
Ω

g j (x)ϕ(x)d x, ∀ϕ ∈C∞
0 (Ω).

Essa noção de derivada coincide com a apresentada na Definição 1.8, quando aplicada à funções
localmente integráveis.

Na seção anterior, vimos que uma função localmente integrável possui derivadas de todas
as ordens no sentido das distribuições, embora essas derivadas nem sempre pertençam a L1

loc (Ω).
Consequentemente, funções em Lp (Ω) podem não admitir derivadas fracas, no sentido de Sobolev,
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de determinadas ordens. Esse fato levou Sobolev a introduzir uma importante classe de espaços
de Banach, denominadas espaços de Sobolev, que serão formalizadas nesta seção. Também apre-
sentaremos o espaço dual de um subconjunto dos espaços de Sobolev, o qual impõe restrições
aos seus elementos e é continuamente imerso no espaço das distribuições. Esses conceitos são
fundamentais para a análise de condições de contorno em problemas modelados por Equações
Diferenciais Parciais.

1.2.1 Espaços de Sobolev

Definição 1.11
Sejamm um inteiro não negativo e p umnúmero real estendido, com 1 ≤ p ≤∞. O espaço de Sobolev
W m,p (Ω) é definido como o espaço vetorial das funções u ∈ Lp (Ω) cujas derivadas distribucionais
Dαu pertence a Lp (Ω), para cada multi-índice |α| ≤ m. Formalmente,

W m,p (Ω) = {
u ∈ Lp (Ω); Dαu ∈ Lp (Ω), e |α| ≤ m

}
.

Os espaços de Sobolev W m,p (Ω) são espaços normados. Para 1 ≤ p <∞, a norma associada é
dada por:

∥ ·∥W m,p (Ω) : W m,p (Ω) −→ R

u 7−→ ∥u∥W m,p (Ω) =
( ∑
|α|≤m

∥Dαu∥p
Lp (Ω)

) 1
p

.

Quando p =∞, a norma é definida como:
∥ ·∥W m,∞(Ω) : W m,∞(Ω) −→ R

u 7−→ ∥u∥W m,∞(Ω) = max
|α|≤m

∥Dαu∥L∞(Ω)

A seguir provamos que essa norma é completa.
Proposição 1.12
O espaço de Sobolev W m,p (Ω), munido da norma acima, é um espaço de Banach.
Demonstração. Consideremos o caso em que 1 ≤ p < ∞. O caso p = ∞ segue por argumentos
similares e será omitido. Seja (u j ) j∈N uma sequência de Cauchy em W m,p (Ω). Provaremos que
(u j ) j∈N converge para uma função u ∈W m,p (Ω).

Como (u j ) j∈N é Cauchy, dado ε> 0, existe j0 ∈N tal que
∥u j −ul∥p

W m,p (Ω) < ε, sempre que j , l > j0.

Logo, para cada multi-índice |α| ≤ m, temos:
∥Dαu j −Dαul∥p

Lp (Ω) ≤
∑

|α|≤m
∥Dαu j −Dαul∥p

Lp (Ω) = ∥u j −ul∥p
W m,p (Ω) < ε,
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sempre que j , l > j0.
Portanto, (Dαu j ) j∈N é uma sequência de Cauchy em Lp (Ω). Como Lp (Ω) é completo, para

cada |α| ≤ m, existe uma função uα ∈ Lp (Ω) tal que Dαu j → uα em Lp (Ω).
Agora, seja u a função correspondente a u(0,··· ,0). Mostraremos que Dαu = uα para cada

multi-índice |α| ≤ m. Sabemos que Dαu j → uα em Lp (Ω) ⊂D′(Ω). Em particular, u j := D0u j → u

em D′(Ω). Como o operador derivada é contínuo em D′(Ω), temos que Dαu j → Dαu em D′(Ω).
Portanto, da unicidade do limite em D′(Ω), segue que Dαu = uα.

Finalmente, provamos que u j → u em W m,p (Ω). Dado ε> 0, para cada |α| ≤ m, existe jα ∈N
tal que

∥Dαu j −Dαu∥p
Lp (Ω) <

ε∑
|α|≤m

1
, sempre que j > jα.

Assim, para j > max{ jα; |α| ≤ m}, temos:
∥u j −u∥p

W m,p (Ω) =
∑

|α|≤m
∥Dαu j −Dαu∥p

Lp (Ω) < ε.

Logo, u j → u em W m,p (Ω), e portanto W m,p (Ω) é um espaço de Banach.

No caso particular em que m = 0, o espaço W 0,p (Ω) coincide com Lp (Ω). Já quando p = 2, o
espaço de Sobolev W m,2(Ω) é comumente denotado por H m(Ω). Este espaço, quando munido do
produto interno

〈u, v〉H m (Ω) =
∑

|α|≤m
〈Dαu,Dαv〉L2(Ω), ∀u, v ∈ H m(Ω).

possui uma estrutura de espaço de Hilbert.
Um aspecto relevante da estrutura topológica de W m,p é sua compatibilidade com as funções

teste, o que se traduz na validade da imersão contínua D(Ω) ,→W m,p (Ω). Isso equivale a dizer que
o operador inclusão

T : D(Ω) −→ W m,p (Ω)

ϕ 7−→ ϕ.

é contínuo.
Para verificar esta propriedade, considere uma sequência (ϕ j ) j∈N de funções em C∞

0 (Ω) tal
que ϕ j → 0 em D(Ω). Nesse contexto, existe um compacto K ⊂Ω tal que supp(ϕ j ) ⊂ K e para
qualquer multi-índice α, temos Dαϕ j → 0 uniformemente em K . Isso implica que, dado ε> 0, existe
um jα ∈N tal que, para todo x ∈ K , temos

|Dαϕ j (x)| < ε, sempre que j > jα.
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Com isso, para 1 ≤ p <∞ e m ∈N, temos
∥ϕ j∥W m,p (Ω) =

( ∑
|α|≤m

∥Dαϕ j∥p
Lp (Ω)

) 1
p

=
( ∑
|α|≤m

∫
K
|Dαϕ j (x)|p

) 1
p

<
( ∑
|α|≤m

(ε ·med(K ))p

) 1
p

,

sempre que j > max{ jα; α≤ m}

Portanto T (ϕ j ) =ϕ j → 0 em W m,p (Ω). Assim, do Teorema 1.4, segue que a imersão D(Ω) ,→
W m,p (Ω) é de fato contínua.

Quando p =∞, o resultado segue de maneira análoga.
No curso de Teoria da Medida, sabe-se que, para 1 ≤ p <∞, o espaço C∞

0 (Ω) munido de sua
topologia natural dada pela norma da convergência uniforme, é denso em Lp (Ω). Por outro lado o
espaço C∞

0 (Ω) é denso em L∞(Ω) com respeito a topologia fraca σ(
L∞,L1

). Assim, a partir do que
foi discutido anteriormente, concluímos que D(Ω) é denso em Lp (Ω). Como ∥u∥Lp (Ω) ≤ ∥u∥W m,p (Ω),
temos W m,p (Ω) ,→ Lp (Ω). Contudo, o espaço C∞

0 (Ω) não denso em W m,p (Ω). Este último fato
motiva a definição apresentada a seguir.
Definição 1.13
Seja m um inteiro não negativo e sejam p e q numeros reais estendidos tais que 1 ≤ p ≤∞, q > 1 e
1
p + 1

q = 1. Define-se
W m,p

0 (Ω) =C∞
0 (Ω)

W m,p (Ω)
,

onde o fecho é tomado na norma de W m,p
0 (Ω).

Quando p = 2, utiliza-se a notação H m
0 (Ω) :=W m,2

0 (Ω).
Além disso, define-se W −m,q (Ω) como o dual topológico forte [

W m,p
0

]′ de W m,p
0 (Ω). De

maneira análoga, o dual topológico de H m
0 (Ω) é representado por H−m(Ω).

Proposição 1.14
Seja (ϕ j ) j∈N uma sequência de funções testes tal que ϕ j → 0 em D(Ω). Então ϕ j → 0 em W m,p

0 (Ω).
Demonstração. Comoϕ j → 0 emD(Ω), existe um compacto K ⊂Ω tal que supp(ϕ j ) ⊂ K para todo
j ∈N. Além disso, Dαϕ j → 0 uniformemente em K quaisquer que seja o multi-índice α. Assim,

∥ϕ j∥p
W m,p (Ω) =

∑
|α|≤m

∥Dαϕ j (x)∥p
Lp (Ω) =

∑
|α|≤m

∫
Ω
|Dαϕ j (x)|p d x = ∑

|α|≤m

∫
K
|Dαϕ j (x)|p d x

Utilizando a uniformidade no compacto K , temos:
∥ϕ j∥p

W m,p (Ω) =
∑

|α|≤m

∫
K
|Dαϕ j (x)|p d x ≤ ∑

|α|≤m
sup
x∈K

|Dαϕ j (x)|p ·med(K ).

Como para cada j ∈N e cada multi-índice α, Dαϕ j → 0 uniformemente em K , segue que∑
|α|≤m

sup
x∈K

|Dαϕ j (x)|p → 0.

Logo ∥ϕ j∥p
W m,p (Ω) → 0. Isto é, ϕ j → 0 em W m,p (Ω).
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Corolário 1.15
Se T ∈W −m,q (Ω), então T|D(u) : D(Ω) −→C é uma distribuição.
Demonstração. Seja (ϕ j ) j∈N uma sequência em D(Ω) tal que ϕ j → 0 em D(Ω). Da Proposição 1.14,
segue que ϕ j → 0 em W m,p

0 (Ω). Assim, 〈T,ϕ j 〉 → 0. Portanto, pelo Teorema 1.4, conclui-se que
T|D(Ω) ∈D′(Ω).
Proposição 1.16
A aplicação linear

T : W −m,q (Ω) −→ D′(Ω)

T 7−→ T|D(Ω)

é injetora e contínua.
Demonstração. Sejam T1,T2 ∈W −m,q (Ω) tal queT (T1) =T (T2), isto é, (T1)|D(Ω) = (T2)|D(Ω). Como
W m,p

0 (Ω) é denso em W m,p (Ω), dado u ∈W m,p
0 (Ω), existe uma sequência (ϕ j ) j∈N ⊂D(Ω) tal que

ϕ j → u em W m,p (Ω), e, pelo fato de 〈T1,ϕ j 〉 = 〈T2,ϕ j 〉, tem-se
〈T1,u〉 = lim〈T1,ϕ j 〉 = lim〈T2,ϕ j 〉 = 〈T2,u〉.

Logo, T1 = T2, o que prova a injetividade da T .
Resta mostrar a continuidade. Considere uma sequência (T j ) j∈N ⊂W −m,q (Ω) uma sequência

tal que T j → 0 em W −m,q (Ω). Assim, para cada j ∈N, tem-se
∥T j∥W −m,q (Ω) = sup

u∈W
m,p
0 (Ω)/{0}

|〈T j ,u〉|
∥u∥W m,p (Ω)

→ 0.

Portanto, 〈T j ,u〉→ 0 para todo u ∈W m,p
0 (Ω). Em particular, 〈T j ,ϕ〉→ 0 para cada ϕ ∈D(Ω), o que

garante que T j → 0 em D′(Ω). Assim, T é contínua.
Devido a Proposição 1.16, temos a seguinte inclusão contínua:

W −m,q (Ω)|D(Ω) ,→D′(Ω),

onde W −m,q (Ω)|D(Ω) := {T|D(Ω) ; T ∈W −m,q (Ω)}.
Sempre que mencionarmos uma distribuição T ∈W −m,q (Ω), consideraremos implicitamente

sua restrição T|D(Ω) .
Apresentamos agora uma série de resultados fundamentais para a obtenção das estimativas

necessárias à abordagem dos problemas que serão tratados nos capítulos finais deste trabalho. Esses
resultados fornecem maneiras de definir normas em W m,p

0 (Ω) que são equivalentes à norma usual
de W m,p (Ω) quando restrita ao subespaço W m,p

0 (Ω).
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Teorema 1.17 (Desigualdade de Poincaré)
Seja Ω⊂Rn um aberto limitado em alguma direção xi e seja pri (Ω) ⊂ (a,b) a sua projeção nessa
direção. Então para todo u ∈ H 1

0 (Ω), tem-se∫
Ω
|u|2d x ≤ (b −a)2

∫
Ω

∣∣∣∣ ∂u

∂xi

∣∣∣∣2

d x

Demonstração. Ver ((MEDEIROS; MIRANDA, 2000), p. 36).
Se Ω⊂Rn é um aberto limitado, a Desigualdade de Poincaré pode ser aplicada em todas as

direções x1, · · · , xn . Assim, obtemos:
∥u∥L2(Ω) ≤C

(
n∑

i=1

∫
Ω

∣∣∣∣ ∂u

∂xi

∣∣∣∣2

d x

)1/2

,

para alguma contante C > 0 que depende da limitação de Ω em cada direção do espaço Rn . Essa
desigualdade define uma norma para espaço H 1

0 (Ω), equivalente à norma usual de H 1(Ω) restrita a
H 1

0 (Ω).
Corolário 1.18
Sejam Ω⊂Rn um aberto limitado e m ∈N. A função

∥ ·∥H m
0 (Ω) : H m

0 (Ω) −→ R

u 7−→ ∥u∥H m
0 (Ω) =

( ∑
|α|=m

∫
Ω
|Dαu|2d x

) 1
2

.

define uma norma no espaço H m
0 (Ω), equivalente a norma usual de H m(Ω) restrita aos elementos

de H m
0 (Ω).

Demonstração. Ver ((MEDEIROS; MIRANDA, 2000), p. 37).
Mais geralmente:

Proposição 1.19
Sejam Ω⊂Rn um aberto limitado, 1 ≤ p <∞ e m ∈N. A função

∥ ·∥W
m,p
0 (Ω) : W m,p

0 (Ω) −→ R

u 7−→ ∥u∥W
m,p
0 (Ω) =

( ∑
|α|=m

∥Dαu∥p
Lp (Ω)d x

) 1
p

.

define uma norma no espaço W m,p
0 (Ω), equivalente a norma usual do espaço W m,p (Ω) restrita a

W m,p
0 (Ω).

Demonstração. Ver ((MEDEIROS; MIRANDA, 2000), p. 36-38).
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Proposição 1.20
Seja u ∈ H 2

0 (Ω), onde Ω⊂Rn é um aberto limitado. Então existe C0 > que depende da limitação Ω
tal que:

∥u∥L2(Ω) ≤C0∥∆u∥L2(Ω).

Demonstração. Note que:
∥∆u∥2

L2(Ω) =
∫
Ω

(
n∑

i=1

∂2u

∂x2
i

)2

d x =
n∑

i=1

∫
Ω

(
∂2u

∂x2
i

)2

d x +2
∑
i< j

∫
Ω

∂2u

∂x2
i

∂2u

∂x2
j

d x. (1.5)
Como u ∈ H 1

0 (Ω), da Fórmula de Green, segue que:∫
Ω

∂2u

∂x2
i

∂2u

∂2x2
j

d x =−
∫
Ω

∂u

∂xi

∂3u

∂xi∂x2
j

d x =
∫
Ω

(
∂2u

∂xi x j

)2

d x. (1.6)
Assim, de (1.5) e (1.6), segue que:

∥∆u∥2
L2(Ω) =

n∑
i , j=1

∫
Ω

(
∂2u

∂xi x j

)2

. (1.7)

Como H 2
0 (Ω), temos que u,

∂u

∂xi
∈ H 1

0 (Ω). Então da desigualdade de Poincaré, existem constan-
tes C ,C̃ > 0 tais que:

∥u∥2
L2(Ω) ≤C 2∥∇u∥2

L2(Ω) e
∥∥∥∥ ∂u

∂xi

∥∥∥∥2

L2(Ω)
≤ C̃ 2

∥∥∥∥∇(
∂u

∂xi

)∥∥∥∥2

L2(Ω)
. (1.8)

Portanto, das desigualdades (1.7) e (1.8), segue que:
∥u∥2

L2(Ω) ≤C 2
0

n∑
i , j=1

∫
Ω

(
∂2u

∂xi x j

)2

=C 2
0∥∆u∥2

L2(Ω),

onde C0 =CC̃ .
Corolário 1.21
Sejam Ω⊂Rn um aberto limitado. A função

∥ ·∥H 2
0 (Ω) : H 2

0 (Ω) −→ R

u 7−→ ∥∆u∥L2(Ω).

define uma norma no espaço H 2
0 (Ω), equivalente a norma usual de H 2(Ω) restrita aos elementos de

H 2
0 (Ω).

Teorema 1.22 (Desigualdade de Poicaré-Wirtinger)
Seja Ω⊂Rn um aberto limitado regular de classe C 1. Então existe uma constante C > 0, tal que∥∥∥∥u − 1

med(Ω)

∫
Ω

u(x) d x

∥∥∥∥
Lp (Ω)

≤C

(
n∑

i=1

∫
Ω

∣∣∣∣ ∂u

∂xi

∣∣∣∣p

d x

)1/p

.

No caso Ω= (a,b) ⊂R, tem-se C = 2(b −a)

Demonstração. ver ((ATTOUCH; BUTTAZZO; MICHAILLE, 20O6); p. 173).
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1.2.2 Imersões de Sobolev

A fim de introduzir as imersões do tipo Sobolev em um aberto limitado Ω⊂Rn , definiremos,
no restante desta seção, uma condição de compatibilidade para o aberto Ω. Essa condição permitirá
construir um operador de prolongamento, que tem como objetivo transferir as imersões contínuas
existentes nos espaços W m,p (Rn) (ver ((CAVALCANTI; CAVALCANTI, 2009), p. 146, 152, 166)) para os
espaços W m,p (Ω).
Definição 1.23
Diremos que um conjunto aberto limitado Ω⊂Rn é regular (de classe C k ), se sua fronteira Γ= ∂Ω
for uma variedade de classe C k de dimensão n −1, estando Ω inteiramente de um lado de Γ. Isto
significa que, para cada ponto x0 ∈ Γ existe um número real r > 0 e uma função ϕx0 :Rn−1 −→C, de
classe C k , tais que:

Ω∩Br (x0) = {(x1, · · · , xn) ∈ Br (x0); xn >ϕx0 (x1, · · · , xn−1)}.

Sejam Ω⊂Rn um aberto limitado regular e Q o retângulo aberto:
Q = {(y1, · · · , yn) ∈Rn ; 0 < y j < 1 para j = 1, · · · ,n −1, e −1 < yn < 1}.

Definimos os subconjuntos abertos Q+ e Q−, e a hipersuperfície Σ, como
Q+ =Q ∩ {yn > 0}, Q− =Q ∩ {yn < 0}, Σ=Q ∩ {yn = 0}

Se considerarmos um ponto x ∈ Γ, então existem uma vizinhança limitadaUx ⊂Rn de x e uma
aplicação ϕx : Ux −→Q tais que:
(a) ϕx é uma bijeção deUx sobre Q.
(b) ϕx e ϕ−1

x possuem derivadas parciais contínuas até a ordem k.
(c) ϕx(Ux ∩Ω) =Q+, ϕx(Ux ∩Rn/Ω) =Q−, ϕx(Ux ∩Γ) =Σ.

As condições (a) e (b) garantem que ϕx : Ux −→Q é um difeomorfismo de classe C k . Além disso,
exigimos a seguinte condição de compatibilidade:
(d) Se (U1,ϕ1) e (U2,ϕ2) são pares que satisfazem as condições (a), (b) e (c), com U1 ∩U2 ̸= ;,

então existe um homeomorfismo diferenciável J12 de ϕ1(U1 ∩U2) sobre ϕ2(U1 ∩U2), com
jacobiano positivo, tal que:

ϕ2(x) = J1,2(ϕ1(x)), ∀x ∈U1 ∩U2.

Seja Ω⊂Rn um conjunto aberto limitado regular. A fronteira Γ= ∂Ω é um compacto de Rn .
Consequentemente, existe um sistema finito de cartas locais {(U j ,ϕ j )}1≤ j≤m para Γ. Com essas
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cartas locais, é possível construir uma partição da unidade C k subordinada à cobertura {U j }0≤ j≤m ,
ondeU0 =Ω. Essa cobertura é tal que:(

m⋃
j=0

U j

)
=

[
Ω∪

(
m⋃

j=1
U j

)]
⊃Ω.

Denotamos as funções dessa partição por θ0,θ1, · · · ,θm . Assim, essas funções satisfazem as
seguintes propriedades:

θ j ∈C k
0 , ∀ j = 0,1, · · ·m.

supp(θ0) ⊂Ω, supp(θ j ) ⊂U j , ∀ j = 1, · · · ,m.

0 ≤ θ j ≤ 1, ∀ j = 0, · · · ,m.
m∑

j=0
θ j (x) = 1, ∀x ∈Ω.

Figura 1 – Aberto regular
Referência:(CAVALCANTI; CAVALCANTI, 2009)

Teorema 1.24
Seja Ω um aberto limitado regular. Existe um operador linear e contínuo

P : W m,p (Ω) −→W m,p (Rn),

Chamado operador de prolongamento, tal que, para todo u ∈W m,p (Ω) temos P (u) = u, em quase
todo ponto de Ω.

O Teorema anterior permite herdar certos resultados de imersões já conhecidos para os espaços
de Sobolev W m,p (Rn), como veremos a seguir.
Teorema 1.25
Seja Ω um aberto limitado regular do espaço Rn . Para n ≥ 2 temos:
(a) W m,p (Ω) ,→ Lq (Ω), quando mp < n e 1

q = 1
p − m

n .
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(b) W m,p (Ω) ,→ Lq (Ω), quando mp = n e p ≤ q <∞.
(c) W m,p (Ω) ,→C K ,λ(Ω), quando mp > n, com k ∈N tal que k < m − n

p ≤ k +1, e:
• 0 <λm −k − n

p , se m −k − n
p < 1,

• 0 <λ< 1, caso m −k − n
p = 1.

Demonstração. ver ((CAVALCANTI; CAVALCANTI, 2009), p. 208).
Corolário 1.26
Se 1 ≤ p <∞, mp < n e p ≤ q ≤ np

n −mp
, então W m,p (Ω) ,→ Lq (Ω).

Demonstração. ver ((MEDEIROS; MIRANDA, 2000), p. 46).
Teorema 1.27
Seja I um intervalo aberto limitado de R. Então:
(a) W m,p (I ) ,→C m−1,λ(I ), com 0 <λ≤ 1− 1

p e 1 < p <∞.
(b) W m,1(I ) ,→C m−1,1(I ).

Demonstração. ver ((CAVALCANTI; CAVALCANTI, 2009), p. 209).
Os resultados de imersão apresentados anteriormente, aliados à estrutura de aberto limitado

regular, permitem obter os seguintes resultados de compacidade:
Teorema 1.28 (Rellich-Kondrachov)
Sejam Ω um aberto limitado regular do espaço Rn . Para n ≥ 2 e 1 ≤ p ≤∞, temos:
(a) W 1,p (Ω)

comp
,→ Lq (Ω), sempre que p < n e 1 ≤ q < np

n−p .
(b) W 1,p (Ω)

comp
,→ Lq (Ω), sempre que p = n e 1 ≤ q <∞.

(c) W 1,p (Ω)
comp
,→ C 0(Ω), sempre que p > n.

Demonstração. ver ((MEDEIROS; MIRANDA, 2000), p. 79).
Corolário 1.29
Sejam Ω um aberto limitado regular de classe C m do espaço Rn , n ≥ 2 e 1 ≤ p ≤∞. Então
(a) W m+1,p (Ω)

comp
,→ W m,q (Ω), sempre que p < n e 1 ≤ q < np

n−p .
(b) W m+1,p (Ω)

comp
,→ W m,q (Ω), sempre que p = n e 1 ≤ q <∞.

(c) W m+1,p (Ω)
comp
,→ C m(Ω), sempre que p > n.
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Demonstração. ver ((MEDEIROS; MIRANDA, 2000), p. 84)
Teorema 1.30
Seja I um intervalo aberto limitado de R. Então:
(a) W 1,p (I )

comp
,→ C 0(I ), onde 1 < p ≤∞.

(b) W 1,1(I )
comp
,→ Lq (I ), onde 1 < q ≤∞.

Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 221).

1.2.3 Distribuições Veoriais e Espaços de Sobolev Vetoriais

Nesta subseção, definiremos a importante noção de distribuição vetorial. Estudaremos uma
relevante classe de funções vetoriais, a saber, o espaço Lp (τ,T ; X ). O mesmo é ambiente natural
das funções utilizadas no problemas de evolução, onde consideramos funções u, com duas variáveis
(tempo, t e posição, x) tais que, a função t −→ ∥u(t)∥ (onde, [u(t)](x) = u(x, t)) seja integrável.
Além disso, veremos que as funções em Lp (τ,T ; X ), definem distribuições vetoriais e enunciaremos
resultados sobre esses espaços, que serão usados nos problemas apresentados nesta tese.

Existe uma noção de integral para funções definidas em Y e tomando valores em X . Esta
integral é chamada integral de Bochner. Para uma exposição completa deste assunto ver ((YOSIDA,
1965), capítulo 5). Nos limitaremos a estudar o caso em que Y = [τ,T ]. Isto é, funções do tipo
f : [τ,T ] −→ X , onde τ< T são números reais e X é um espaço de Banach.
Teorema 1.31 (Teorema de Bochner)
Uma função fortemente mensurável f : [τ,T ] −→ X é integrável se, e somente se, a aplicação
t 7−→ ∥ f (t )∥ é somável. Neste caso,∥∥∥∥∫ T

τ
f (t )d t

∥∥∥∥≤
∫ T

τ
∥ f (t )∥d t .

Além disso, para cadaΨ ∈ X ′, tem-se〈
Ψ,

∫ T

τ
f (t )d t

〉
=

∫ T

τ
〈Ψ, f (t )〉d t .

Demonstração. Ver ((EVANS, 2010), p. 650).
Definição 1.32
Sejam X um espaço de Banach e 1 ≤ p ≤∞. Denota-se por Lp (τ,T ; X ) o espaço vetorial das (classes
de) funções f : (τ,T ) −→ X fortemente mensuráveis, tais que a função, t 7−→ ∥u(t )∥ ∈ Lp ((τ,T )).

Munimos o espaço vetorial Lp (τ,T ; X ) com a norma definida por
∥ f ∥Lp (τ,T ;X ) =

(∫ T

τ
∥ f (t )∥p

X d t∥X d t

) 1
p

, ∀ f ∈ Lp (τ,T ; X ) se 1 ≤ p <∞,
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∥ f ∥L∞(τ,T ;X ) = ess sup
τ≤t≤T

∥ f (t )∥X , f ∈ L∞(τ,T ; X ).

O espaço vetorial Lp (τ,T ; X ) é um espaço de Banach. Em particular, o espaço L2(τ,T ; X ) é um
espaço de Hilbert quando munido do produto interno definido por:

〈 f , g 〉L2(τ,T ;X ) =
∫ T

τ
〈 f (t ), g (t )〉X d t , ∀ f , g ∈ L2(τ,T ; X ).

Definição 1.33
Seja f ∈ L1(τ,T ; X ). Dizemos que uma função g ∈ L1(τ,T ; X ) é a derivada fraca de f , e escrevemos
g = f ′ quando ∫ T

τ
ϕ′(t ) f (t )d t =−

∫ T

τ
ϕ(t )g (t )d t ,

para todo função teste ϕ ∈D((0,T )).
Definição 1.34
Sejam X um espaço de Banach e 1 ≤ p ≤∞. Definimos o espaço de Sobolev vetorial W 1,p (τ,T ; X )

da seguinte forma:
W 1,p (τ,T ; X ) = { f ∈ Lp (τ,T ; X ); f ′ existe e f ′ ∈ Lp (τ,T ; X )},

munido da norma definida por
∥ f ∥W 1,p (τ,T ;X ) =

(∫ T

τ
∥ f (t )∥p

X +∥ f ′(t )∥p
X d t

) 1
p

, ∀ f ∈W 1,p (τ,T ; X ) se 1 ≤ p <∞,

∥ f ∥W 1,∞(τ,T ;X ) = ess sup
τ≤t≤T

(∥ f (t )∥X +∥ f ′(t )∥X ), f ∈W 1,∞(τ,T ; X ).

Os espaços W m,p (0,T ; X ) são Banach. Em particular, o espaço H 1(0,T ; X ) :=W 1,2(0,T ; X ) é
um espaço de Hilbert.

A seguir apresentaremos um resultado de compacidade, de suma importância no estudo de
Equações Diferenciais Parciais não lineares.
Teorema 1.35 (Teorema de Aubin-Lions)
Sejam X,Y e Z espaços de Banach tais que:
(a) Y e Z são reflexivos.
(b) Y

comp
,→ X e X ,→ Z .

Sejam p0 e p1 números reais tais que 1 < po ≤∞ e 1 ≤ p1 <∞. Então
W =W p0,p1 (0,T ;Y ; Z ) := { f ∈ Lp0 (τ,T ;Y ); f ′ ∈ Lp1 (τ,T ; Z )}

munido da norma definida por
∥ f ∥W = ∥ f ∥Lp0 (τ,T ;Y ) +∥ f ′∥Lp1 (τ,T ;Z ) ∀ f ∈W

é um espaço de Banach e W
comp
,→ Lp0 (τ,T ; X ).



26 Capítulo 1. Distribuições e Espaços de Sobolev

Demonstração. Ver ( (LIONS; ROBERT; DAUTRAY, 2000)).
Definição 1.36
Sejam X uma espaço de Banach. Definimos o espaço das distribuições vetoriais sobre (τ,T ) com
valores em X por

D′(τ,T ; X ) = {T : D((τ,T )) → X ; T é linear e contínua}

Fixe f ∈ Lp (τ,T ; X ) e defina,
Ψ f : D((τ,T )) −→ X

ϕ 7−→
∫ T

τ
f (t )ϕ(t )d t .

A aplicação f 7−→Ψ f é linear, contínua e injetiva. Assim, temos a seguinte imersão: Lp (τ,T ; X ) ,→
D′(τ,T ; X ).
Definição 1.37
Seja Ψ ∈ D′(τ,T ; X ) uma distribuição. A derivada d nΨ

d t n de ordem n de Ψ é definida pela seguinte
expressão 〈

d nΨ

d t n
,ϕ

〉
= (−1)n

〈
Ψ,

d nϕ

d t n

〉
, ∀ϕ ∈D((τ,T )).

Proposição 1.38
Seja H um espaço de Hilbert. Se uma função f ∈ L2(τ,T, H) e sua derivada fraca f ′ ∈ L2(τ,T ; H ′),
então existe uma função g : (τ,T ) −→ H contínua tal que f (t) = g (t), q.t .p em (τ,T ). Além disso,
no sentido das distribuições em (τ,T ), obtemos

d

d t
| f (t )|2H = 2〈 f ′(t ), f (t )〉H em D′(τ,T ; H).

A igualdade acima está bem definida, desde que as funções
t 7−→ ∥ f (t )∥H e t 7−→ 〈 f ′(t ), f (t )〉

sejam ambas integráveis em (τ,T ).
Demonstração. Ver (Temam (TEMAM, 1974), página 261).

1.3 Distribuições Temperadas e Espaços de Sobolev Fracionário

Nesta seção, apresentaremos o espaço de Schwartz, as noções de distribuição temperada e a
transformada de Fourier, conceitos fundamentais para a definição de uma nova classe de espaços
de Hilbert: os espaços H s(Ω), onde s ≥ 0 é um número real. Além disso, com o objetivo de analisar
o comportamento de funções submetidas a condições de contorno, definiremos formalmente os
espaços ambientes para funções definidas na fronteira ∂Ω de uma aberto regular Ω.
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1.3.1 Distribuições Temperadas

Definição 1.39
O espaço de Schwartz, também conhecido como espaço das funções rapidamente decrescentes e
denotado por S(Rn), é o subespaço vetorial formado pelas funções ϕ ∈C∞(Rn) tais que:

lim
∥x∥→∞

∥x∥ j Dαϕ(x) = 0,

para todo inteiro não negativo j e todo multi-índice α.
O conjunto das funções infinitamente diferenciáveis de suporte compacto, C∞

0 (Rn), é um
subconjunto do espaço de Schwartz S(Rn). Com efeito, seja ϕ ∈C∞

0 (Rn). Existe um compacto K ⊂Rn

tal que supp(ϕ) ⊂ K . Considere uma constante r > 0 tal qual K ⊂ Br (0). Assim, para qualquer ε> 0,
inteiro não negativo j e multi-índice α dados, temos:

∥x∥ j |Dαϕ(x)| = 0 < ε, sempre que ∥x∥ > r.

Portanto,
lim

∥x∥→∞
∥x∥ j Dαϕ(x) = 0.

Isto é, ϕ ∈ S(Rn).
Prova-se que o produto de funções em S(Rn) pertençe a S(Rn). Além disso, Dαϕ ∈ S(Rn)

quaisquer que sejam a funçãoϕ ∈ S(Rn) e omulti-índiceα. Para estabelecer uma estrutura topológica
em S(Rn) que o torna um espaço de Fréchet. introduzimos a família de semi-normas

pm, j (ϕ) = max
|α|≤m

sup
x∈Rn

(1+∥x∥2) j |Dαϕ(x)|,

onde j e m são inteiros não negativos.
Essa família enumerável de semi-normas, confere ao espaço uma topologia metrizável, local-

mente convexa e completa, tornando-o um espaço de Fréchet (ver ((RUDIN, 1991), p. 184)).
Sempre que mencionarmos o espaço de Schwartz S(Rn), consideraremos implicitamente essa

topologia, conforme descrito.
Proposição 1.40
Se 1 ≤ p ≤∞, então a imersão S(Rn) ,→ Lp (Rn) é contínua. Além disso, para 1 ≤ p <∞, o espaço
S(Rn) é denso em Lp (Rn). Consequentemente, o espaço das funções testes D(Rn), é denso em
S(Rn).
Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 55 e p. 56).
Definição 1.41
Uma distribuição temperada é um funcional linear e contínuo T : S(Rn) −→ C definido sobre o
espaço de Schwartz. O conjunto de todas as distribuições temperadas, munido da topologia fraca*,
é denotado por S′(Rn).
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Exemplo 1.42
Qualquer função u ∈ Lp (Rn) onde, 1 ≤ p ≤∞, define uma distribuição temperada. De fato, considere

Tu : S(Rn) −→ C

ϕ 7−→
∫
Rn

u(x)ϕ(x)d x.

A linearidade de Tu é imediata pela definição da integral. A continuidade é analisada em três
casos.

Caso 1 < p <∞, seja q um número real tal que 1
p + 1

q = 1. Então, para cada j > n
2q , temos

(1+∥x∥2)− j ∈ Lq (Rn).

Usando a desigualdade de Hölder, segue que
|〈Tu ,ϕ〉| ≤

∫
Rn

(1+∥x∥2) j |ϕ(x)| · |u(x)| · (1+∥x∥2)− j d x

≤ sup
x∈Rn

|(1+∥x∥2) j ·ϕ(x)| · ∥u∥Lp (Rn ) · ∥(1+∥x∥2)− j∥Lq (Rn ).

Se caso p = 1, temos
|〈Tu ,ϕ〉| ≤ ∥ϕ∥L∞(Rn ) · ∥u∥L1(Rn ),

Finalmente, no caso em que p =∞, para j > n
2 temos,

|〈Tu ,ϕ〉| ≤ sup
x∈Rn

|(1+∥x∥2) j ·ϕ(x)| · ∥u∥L∞(Rn ) · ∥(1+∥x∥2)− j∥L1(Rn ).

Assim, em qualquer caso, dada uma sequência (ϕl )l∈N ⊂ S(Rn), com ϕl → 0 em S(Rn), tem-se
〈Tu ,ϕl 〉→ 0. Portanto Tu é contínua.

Além disso, a aplicação
T : Lp (Rn) −→ S′(Rn)

u 7−→ Tu

é linear, contínua e injetora.
Da Proposição 1.40 e do exposto acima, temos

S(Rn) ,→ Lp (Rn) ,→ S′(Rn), para 1 ≤ p ≤∞.

Apresentaremos agora a transformada de Fourier de uma função pertencente ao espaço L1(Rn)

e sua extensão para o espaço L2(Rn). Essa generalização permitirá definir a transformada de Fourier
para distribuições temperadas e, por meio de caracterizações apropriadas, estender a norma do
espaço H m(Rn) para valores de m não inteiros, atribuindo sentido a esses espaços com expoentes
fracionários.
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Definição 1.43
Seja u ∈ L1(Rn). A transformada de Fourier de u é definida pela função

û :Rn −→ C

y 7−→
∫
Rn

e−2πi 〈x,y〉u(x)d x,

onde i 2 =−1 e 〈x, y〉 =
n∑

j=1
x j y j é o produto interno usual em Rn .

A transformada de Fourier está bem definida para qualquer u ∈ L1(Rn), pois
|û(y)| =

∣∣∣∣∫
Rn

e−2πi 〈x,y〉u(x)d x

∣∣∣∣≤ ∫
Rn

|e−2πi 〈x,y〉| · |u(x)|d x =
∫
Rn

|u(x)|d x = ∥u∥L1(Rn ) <∞.

Portanto, a transformada de Fourier é uma ferramenta bem fundamentada em L1(Rn).
A seguir, apresentaremos propriedades fundamentais da Transformada de Fourier, as quais

permitem sua extensão aos espaços L2(Rn) e às distribuições temperadas
Proposição 1.44
Se ϕ ∈ S(Rn), então ϕ̂ ∈ S(Rn). Além disso, o operador

Ψ : S(Rn) −→ S(Rn)

ϕ 7−→ ϕ̂

é um isomorfismo topológico, cuja a inversa é o operador
Ψ−1 : S(Rn) −→ S(Rn)

ϕ 7−→ ϕ̌

dado pela transformação de Fourier inversa que é definida por:
ϕ̌(y) = ϕ̂(−y) =

∫
Rn

e2πi 〈x,y〉ϕ(x)d x.

Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 64).
Teorema 1.45 (Plancherel)
Existe uma única bijeção isométrica

P : L2(Rn) −→ L2(Rn)

tal que P (ϕ) = ϕ̂, para todo ϕ ∈ S(Rn).
Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 68).
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Observe que, dado u ∈ L1(Rn)∩L2(Rn), temos û ∈ L2(Rn). Além disso, de Plancherel (Teorema
1.45), decorre que ∥û∥L2(Ω) = ∥u∥L2(Ω). Por outro lado, se u ∈ L2(Rn), existe uma sequência de
funções testes (ul )l∈N ⊂D(Rn) ⊂ L1(Rn)∩L2(Rn) tal que ∥u −ul∥L2(Rn ) → 0. Logo, (ul )l∈N é Cauchy
em L2(Rn), e portanto (ûl )ν∈N é Cauchy em L2(Rn). Assim, podemos definir a transformada de
Fourier de uma função u ∈ L2(Rn), pondo û := lim ûl em L2(Rn).
Definição 1.46
Seja T ∈ S′(Rn) uma distribuição temperada. A transformada de Fourier T̂ da distribuição T é definida
por:

〈T̂ ,ϕ〉 = 〈T,ϕ̂〉, ∀ϕ ∈ S(Rn).

Da Proposição 1.44, segue que a aplicação
Ψ∗ : S′(Rn) −→ S′(Rn)

T 7−→ T̂

é um isomorfismo topológico cuja a inversa é operador
(Ψ∗)−1 : S′(Rn) −→ S′(Rn)

T 7−→ Ť ,

onde Ť : S →R é a transformada de Fourier inversa da distribuição T definida por
〈Ť ,ϕ〉 = 〈T,ϕ̌〉; ∀ϕ ∈ S(Rn).

Um último comentário sobre transformadas de Fourier é oportuno. Como S(Rn) ⊂ L2(Rn) ⊂
S′(Rn), há duas possíveis definições de transformada de Fourier em S(Rn): uma proveniente de
L2(Rn) e outra de S′(Rn). Na verdade, essas duas noções coincidem. Mais precisamente, tem-se
T̂ϕ = Tϕ̂. A demonstração detalhada pode ser encontrada em ((CAVALCANTI; CAVALCANTI, 2009), p.
73-75).

1.3.2 Espaços de Sobolev Fracionários

A seguir, definiremos uma classe importante de espaços de Hilbert, os espaços de Sobolev
fracionários H s(Rn).
Teorema 1.47
Para cada m ∈N temos:

H m(Rn) = {u ∈ S′(Rn); (1+∥x∥2)û ∈ L2(Rn)}.

Além disso, a função 〈·, ·〉m : H m(Rn)×H m(Rn) −→C definida por
〈u, v〉m =

〈
(1+∥x∥2)

m
2 û, (1+∥x∥2)

m
2 v̂

〉
L2(Rn )

=
∫
Rn

(1+∥x∥2)mû(x)v̂(x)d x, ∀u, v ∈ H m(Rn)
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é umproduto interno sobre H m(Rn) tal que a norma por ele induzida é equivalente a norma ∥·∥H m (Rn )

usual do espaço H m(Rn).
Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 242).

Motivados pelo resultado anterior, definimos os espaços a seguir.
Definição 1.48
Para s ∈R, com s ≥ 0 define-se

H s(Rn) = {u ∈ S′(Rn); (1+∥x∥2)
s
2 û ∈ L2(Rn)}.

Proposição 1.49
O espaço H s(Rn) munido do produto interno definido por,

〈u, v〉H s (Rn ) =
∫
Rn

(1+∥x∥2)sû(x)v̂(x)d x, ∀u, v ∈ H s(Rn)

é um espaço de Hilbert.
Além disso, tem-se H s(Rn) ,→ L2(Rn)

Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 245).
Proposição 1.50
Sejam s ≥ 0 e α um multi-índice tal que |α| ≤ s. A aplicação

Dα : H s(Rn) −→ H s−|α|(Rn)

u 7−→ Dαu

é linear e contínua.
Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 252).
Definição 1.51
Seja s ≥ 0 um número real. O dual topológico de H s(Rn) é denotado por:

H−s(Rn) = [H s(Rn)]′.

A seguir, apresentamos os resultados necessários para definir os espaços de Hilbert H s(Ω),
onde Ω é um aberto regular e s um número real não-negativo.
Teorema 1.52
Seja Ω⊂Rn um aberto limitado regular com fronteira Γ= ∂Ω. Considere a aplicação:

rΩ : L2(Rn) −→ L2(Ω)

u 7−→ u|Ω .
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A aplicação rΩ é linear e contínua.
Além disso, para cara m ∈N

H m(Ω) = {rΩ(u); u ∈ H m(Rn)},

e para cada multi-índice α, tem-se Dα(rΩ(u)) = rΩ(Dαu) no sentido das distribuições.
Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 265).

Motivados pelo teorema anterior, definimos o seguinte.
Definição 1.53
Sejam Ω⊂Rn um aberto regular e s ≥ 0. Define-se

H s(Ω) = {v|Ω ; v ∈ H s(Rn)}.

Observe que, se u ∈ H s(Ω) então u = v|Ω para algum, v ∈ H s(Rn) ⊂ L2(Rn), o que implica
u = v|Ω ∈ L2(Ω). Assim, H s(Ω) ⊂ L2(Ω). Portanto a aplicação:

rΩ : H s(Rn) −→ H s(Ω)

u 7−→ u|Ω .

está bem definida.
Alémdisso, a aplicação rΩ : H s(Rn) −→ H s(Ω) é linear, sobrejetora, e o ker (rΩ) é um subespaço

fechado de H s(Rn) (ver ((CAVALCANTI; CAVALCANTI, 2009), p. 266)).
Finalmente definimos uma topologia em H s(Ω) que coincide com a topologia métrica usual

dos espaços H m(Ω) quando s = m ∈N. Para isso, consideramos o espaço quociente:
H s(Rn)/ker (rΩ) = {[v]; v ∈ H s(Rn)} := {v +ker (rΩ); v ∈ H s(Rn)}.

A aplicação ∥ ·∥ : H s(Rn)/ker (rΩ) −→R definida por:
∥[v]∥ = inf{∥ω∥H s (Rn ); w ∈ [v]}, ∀[v] ∈ H s(Rn)/ker (rΩ).

define uma norma no espaço H s(Rn)/ker (rΩ) que o torna um espaço de Banach.
Por outro lado, para cada vetor v ∈ H s(Rn), temos

{w ∈ H s(Rn); w ∈ v +ker (rΩ)} = {w ∈ H s(Rn); rΩ(w) = rΩ(v)},

pois
w ∈ v +ker (rΩ) ⇔ w − v ∈ ker (rΩ) ⇔ rΩ(w − v) = 0 ⇔ rΩ(w) = rΩ(v).
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Assim, a norma de um elemento [v] ∈ H s(Rn)/ker (rΩ) pode ser reescrita como
∥[v]∥ = inf{∥ω∥H s (Rn ); rΩ(w) = rΩ(v)}.

Temos o seguinte diagrama:

H s(Rn)
rΩ //

π
��

H s(Ω)

H s(Rn)/ker (rΩ)

[rΩ]
77

onde, [rΩ] : H s(Rn)/ker (rΩ) −→ H s(Ω) é definida por [rΩ]([v]) := rΩ(v), ∀[v] ∈ H s(Rn)/ker (rΩ).
Teorema 1.54
A aplicação [rΩ] definida anteriormente é um isomorfismo isométrico.
Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 269).
Teorema 1.55
Seja m ∈N. A norma definida por

∥u∥m := inf{∥w∥H m (Rn ); rΩ(w) = u},

é equivalente à norma ∥ ·∥H m (Ω), usual do espaço H m(Ω).
Demonstração. Seja u ∈ H m(Ω). Então, rΩ(v) = u, para algum v ∈ H s(Rn). Assim,

∥u∥2
H m (Ω) = ∥rΩ∥2

H m (Ω) =
∑

|α|≤m
∥Dα(rΩ(v))∥2

L2(Ω).

Usando que rΩ (Dαv) = Dα (rΩv), segue:
∥u∥2

H m (Ω) =
∑

|α|≤m
∥rΩ(Dαv)∥2

L2(Ω) ≤
∑

|α|≤m
∥Dαv∥2

L2(Rn ) = ∥v∥2
H m (Rn ).

Portanto, ∥u∥H m (Ω) é uma cota inferior do conjunto {∥w∥H m (Rn ); rΩ(w) = u} e, por definição de
ínfimo, obtemos ∥u∥H m (Ω) ≤ ∥u∥m .

Reciprocamente, como u ∈ H m(Ω), temos P (u) ∈ H m(Rn) e rΩ(P (u)) = u, onde P é o operador
prolongamento, definido no Teorema 1.24. Como P é contínuo, segue que

∥u∥m ≤ ∥P (u)∥H m (Rn ) ≤C∥u∥H m (Ω),

onde C > 0 é uma constante associada à continuidade de P .
Teorema 1.56
Da sobrejetividade da aplicação rΩ, segue que, para cada u ∈ H s(Ω), existe um v ∈ H s(Rn) tal que
u = rΩ(v). Assim, aplicação definida por

∥u∥H s (Ω) = ∥rΩ(v)∥H s (Ω) = ∥[v]∥; ∀u ∈ H s(Ω)

define uma norma no espaço H s(Ω), onde s é um número real não negativo eΩ é um aberto limitado
regular do Rn . Além disso, o espaço H s(Ω) munido desta norma é um espaço de Hilbert.
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Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 271).
Proposição 1.57
D(Ω) é denso em H s(Ω) para cada s ≥ 0.
Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 272).
Proposição 1.58
H s1 (Ω) ,→ H s2 (Ω), sempre que 0 ≤ s2 ≤ s1.
Demonstração. Ver ((MEDEIROS; MIRANDA, 2000), p. 96).
Definição 1.59
Seja Ω um aberto limitado regular. Definimos:

H s
0(Ω) =D(Ω)

H s (Ω) e H−s(Ω) = (H s
0(Ω))′.

Existem outras maneiras de definir os espaço H s(Ω), como através da teoria de interpolação
em espaços de Hilbert, conforme apresentado por Lions e Magenes em (LIONS; MAGENES, 1968),
capítulo 9.

No que segue, definiremos os espaços H s(Γ), onde Γ= ∂Ω.
SejaΩumaberto limitado regular doRn com fronteiraΓ= ∂Ω. Considere {(U1,ϕ1), · · · , (Um ,ϕm)}

um sistema de cartas locais para Γ. A cobertura aberta {Ω,U1, · · · ,Um} deΩ determina uma partição
da unidade θ1, · · · ,θm ∈C k

0 (Rn), C k da subordinada à mesma (Ver Figura 1) .
Seja u : Γ −→ R uma função integrável. Então u =

m∑
j=1

(θ j u), q.t .p. em Γ. Assim, para cada
j ∈ {1, · · · ,m}, a função definida por

ũ j (y) =
{

u j (y) := (θ j u)(ϕ−1
j (y)), se y ∈Σ= (0,1)n−1

0, se y ∈Rn/Σ

é integrável.
Além disso,
supp(u j ) ⊂ {x ∈Σ; u j (x) ̸= 0} ⊂Σ e ∫

Γ
udΓ=

m∑
j=1

∫
Γ

uθ j dΓ=
m∑

j=1

∫
Rn

ũ(y) J̃ (y)d y,

onde dΓ é a medida superficial de Γ induzida pela medida de Lebesgue, e J̃ é a extensão nula fora
de Γ j =U j ∩Γ, de um operador diferenciável J j determinado pela relação:∫

Rn
ũ j (y)d y =

∫
Γ j

uθ j J j dΓ.

Considere o espaço Lp (Γ) com respeito amedida superficial Γ. Utilizando a partição da unidade
θ1, · · · ,θm ∈C k

0 (Rn), temos
Lp (Γ) = {u : Γ−→R; ãf θ j ◦ϕ−1

j = ũ j ∈ Lp (Rn−1) e j = 1, · · · ,m},
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onde ũ j = ãuθ j ◦ϕ−1
j é a extensão de u j = uθ j ◦ϕ−1

j à Rn−1 zero fora de Σ= (0,1)n−1.
Além disso,

∥u∥Lp (Γ) =
(

m∑
j=1

∥ũ j∥p
Lp (Rn−1)

) 1
p

, ∀u ∈ Lp (Γ) e 1 ≤ p <∞.

De maneira análoga obtém-se as seguintes caracterizações:
C m(Γ) = {v : Γ−→R; ãvθ j ◦ϕ−1

j = ũ j ∈C m(Rn−1) e j = {1, · · · ,m},

D(Γ) = {v : Γ−→R; ãvθ j ◦ϕ−1
j = ũ j ∈C∞(Rn−1) e j = {1, · · · ,m}.

Definição 1.60
Para s > 0, define-se

H s(Γ) = {u; φ j (u) ∈ H s(Rn−1) e j = 1, · · · ,m}, onde

φ j : D(Γ) −→ D(Rn−1)

u 7−→ ũ j = ãuθ j ◦ϕ−1
j

Teorema 1.61
O conjunto H s(Γ) munido da norma definida por:

∥u∥H s (Γ) =
(

m∑
j=1

∥φ j (u)∥2
H s (Rn−1)

) 1
2

é um espaço de Hilbert. Além disso, D(Γ) é denso em H s(Γ).
Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 281).
Definição 1.62
Seja s > 0 um número real. Definamos o espaço dual forte, H−s(Γ) := [H s(Γ)]′.

1.3.3 O Teorema do Traço

Para finalizar a seção apresentaremos o Teorema do traço. Ele estende e formaliza a ideia
intuitiva de avaliar funções no bordo de um domínio Ω⊂Rn , proporcionando uma maneira rigorosa
de lidar com problemas de fronteira em espaços funcionais. Enquanto funções suaves podem ser
diretamente avaliadas em ∂Ω, o Teorema do Traço garante que funções pertencentes a espaços de
Sobolev, que podem não ser suaves, também admitam restrições bem definidas à fronteira, desde
que satisfaçam certos critérios de regularidade.



36 Capítulo 1. Distribuições e Espaços de Sobolev

Teorema 1.63 (Teorema do Traço)
Para cada m ∈N, existe uma única aplicação linear, contínua e sobrejetiva:

γ : H m(Ω) −→
m−1∏
j=0

H m− j− 1
2 (Γ)

u 7−→ (γ0(u),γ1(u), · · · ,γm−1(u)),

tal que
(γ0(u),γ1(u), · · · ,γm−1(u)) =

(
u|Γ ,

∂u

∂ν

∣∣∣
Γ

, ...,
∂m−1u

∂νm−1

∣∣∣
Γ

)
, ∀u ∈D(Ω),

onde ∂ j u

∂ν j
é a j -ésima derivada normal de u.

O espaço n∏
j=0

H m− j−1/2(Γ) é munido da topologia induzida pela norma:

∥w∥ n∏
j=0

H m− j−1/2(Γ)
=

m−1∑
j=0

∥w j∥H m− j−1/2(Γ), ∀w = (w0, w1, · · · , wm−1) ∈
n∏

j=0
H m− j−1/2(Γ).

Além disso,
(i) ker (γ) = H m

0 (Ω).
(ii) A inversa à direita de γ é uma aplicação linear e contínua.

Demonstração. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 387).
A aplicação γ definida no Teorema 1.63 é denominada aplicação traço em H m(Ω).

Teorema 1.64 (Fórmula de Green Generalizada)
Sejam u ∈ H 2(Ω) e v ∈ H 1(Ω), onde Ω⊂Rn é um aberto regular com fronteira Γ= ∂Ω. Então:

〈∆u, v〉L2(Ω) =−〈∇u,∇v〉L2(Ω) +〈γ1(u),γ0(v)〉L2(Γ),

onde γ1(u),γ0(v) ∈ H
1
2 (Γ).

Demonstração. ver ((CAVALCANTI; CAVALCANTI, 2009), p. 413).



37

Capítulo 2

A Teoria de Semigrupos de Operadores Lineares
Limitados e o Problema Abstrato de Cauchy

A jornada pela resolução de problemas físicos e matemáticos complexos frequentemente nos
conduz ao território das Equações Diferenciais Parciais (EDPs). No entanto, a mera apresentação
de uma EDP é insuficiente para caracterizar um problema bem posto, é a imposição de condições
complementares, as condições iniciais e de contorno, que transforma uma equação em um modelo
que realmente representa um fenômeno real ou a ele se aproxima. Este capítulo tem como objetivo
principal fornecer as ferramentas teóricas robustas e unificadas necessárias para a resolução dos
problemas que serão propostos nos capítulos subsequentes. Mais do que um conjunto de técnicas
avulsas, apresentaremos uma estrutura conceitual poderosa para o estudo de EDPs quando estas
são formuladas como um Problema de Valor Inicial de Cauchy em espaços funcionais adequados.
A escolha estratégica desses espaços, é crucial, pois é ela que supre ou, de maneira equivalente,
incorpora as condições de contorno do problema, internalizando-as na própria estrutura do espaço
onde a solução será buscada.

Em nosso percurso inicial pelo estudo de Equações Diferenciais Ordinárias (EDOs) em espaços
vetoriais de dimensão finita, aprendemos que a função exponencial e t A emerge como a solução
natural e elegante para um problema de valor inicial linear autônomo. A solução flui de maneira
suave a partir da condição inicial, "transportada"pela ação do operador exponencial. A grande
questão que orienta este capítulo é: como estender essa noção intuitiva e poderosa de exponencial,
e, portanto, de solução, para um problema de valor inicial de Cauchy linear autônomo definido em
espaços vetoriais de dimensão infinita?

Veremos que, para a classe restrita de operadores lineares limitados (contínuos), essa extensão
é direta e natural, podendo ser definida por meio de uma série de potências análoga à série da
exponencial clássica. No entanto, a realidade dos problemas mais interessantes da física matemática
nos confronta com uma dificuldade fundamental: pense no operador Laplaciano na equação do calor
ou na equação de onda, os operadores que os definem são ilimitados. Esta quebra de continuidade
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representa um obstáculo profundo, pois a série de potências deixa de convergir, e a definição simples
de exponencial colapsa.

É precisamente diante dessa dificuldade que surge uma das teorias mais belas e frutíferas da
análise funcional: a Teoria de Semigrupos de Operadores Lineares Limitados. Um semigrupo pode
ser entendido como a generalização adequada da função exponencial definida por um operador
ilimitado. Esta teoria, que abordaremos com detalhes na primeira seção deste capítulo, não apenas
resolve o problema da existência e unicidade de soluções por meio de teoremas de geração de
semigrupos, como o célebre Teorema de Hille-Yosida, mas também permite uma análise refinada
da estabilidade e do comportamento assintótico das soluções, investigando, por exemplo, se elas
decaem exponencialmente ou apresentam crescimento controlado ao longo do tempo.

2.1 Teoria de Semigrupos de Operadores Lineares Limitados

Nesta seção, desenvolveremos a teoria de semigrupos de operadores lineares limitados, com o
objetivo de estabelecer os fundamentos necessários para demonstrar a boa colocação (existência e
unicidade de solução) dos problemas que serão abordados nos três últimos capítulos desta tese. Essa
fundamentação será alcançada mediante a combinação dos Teoremas de Geração de Semigrupos
Lineares com os resultados clássicos de existência e unicidade para o problema abstrato de Cauchy,
conforme apresentado na obra de referência (PAZY, 1983).

A Teoria de Semigrupos foi desenvolvida como uma abordagem unificada para reformular
equações diferenciais parciais na forma de problemas de valor inicial de Cauchy emespaços funcionais
abstratos, particularmente em espaços de Banach. Essa reformulação proporciona um tratamento
sistemático e padronizado para EDPs, facilitando tanto a análise teórica quanto a resolução de
problemas em contextos gerais e abstratos.

O objetivo fundamental dessa teoria consiste em generalizar o conceito de função exponencial,
que representa a solução natural para equações diferenciais ordinárias lineares em dimensões finitas,
para cenários mais amplos envolvendo operadores em espaços de dimensão infinita. A teoria se
fundamenta nas propriedades essenciais da exponencial, adaptando esses conceitos ao contexto de
operadores lineares em espaços funcionais.

Na contemporaneidade, a Teoria de Semigrupos consolida-se como um conjunto de ferra-
mentas matemáticas robustas e versáteis para estudar a evolução temporal de sistemas dinâmicos
lineares. Sua estrutura abrangente permite abordar uma extensa variedade de problemas, ampliando
significativamente o alcance dos métodos clássicos aplicados ao estudo qualitativo e quantitativo de
equações diferenciais parciais lineares.
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2.1.1 A Função Exponencial

A função u : [0,+∞) →R, definida por u(t ) = x0eat é uma solução globalmente definida para
a seguinte problema de valor inicial:

{
u′(t ) = au(t ); t > 0,

u(0) = x0,

onde a e x0 são contantes reais dadas.
Utilizando a expansão em Fórmula de Taylor, é possível estender a noção de exponencial de

um número para exponencial de uma matriz quadrada A, definindo:
e t A :=

∞∑
j=0

(t A) j

j !
= I + t A+ t 2

2
A2 + t 3

6
A3 +·· ·+ t j

j !
A j +·· · , (2.1)

onde I é a matriz identidade.
Assim, se A é uma matriz quadrada de ordem n e u0 ∈Rn , a curva u0 : [0,+∞) →Rn , definida

por u(t ) = e t Au0 é solução da equação diferencial ordinária matricial:{
u′(t ) = Au(t ); t > 0,

u(0) = u0,
(2.2)

onde u(t ) é visto como matriz coluna.
A função exponencial matricial S(t ) = e t A é caracterizada por três propriedades fundamentais:

• S(0) = I ;
• S(t + s) = S(t )S(s);
• lim

t→0+
S(t ) = I .

Essas propriedades permitem estender o conceito de exponencial para operadores lineares
limitados em espaços de Banach. Suponha que X seja um espaço de Banach e A : X → X é um
operador linear limitado. A série definida pela expressão (2.1) é absolutamente convergente no
espaço L (X ) dos operadores lineares limitados sobre X , devido a sua estrutura natural de espaço
normado dada pela norma ∥ ·∥L (X ) : L (X ) →R, definida por:

||A|| = inf{C ∈R; ∥Ax∥X ≤C∥x∥X , ∀x ∈ X } = sup
x∈X , x ̸=0

||Ax||X
||x||X

= sup
||x||x=1

||Ax||X .

Especificamente, para cada t > 0, temos
∞∑

n=0

∥(t A)n∥
n!

≤
∞∑

n=0

t n∥A∥n

n!
.

Assim, definindo S(t ) = e t A :=
∞∑

n=0

(t A)n

n!
, as seguintes propriedades são satisfeitas:
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• S(0) = I : X → X é o operador identidade,
• S(t + s) = S(t )S(s), ∀ t , s ≥ 0,
• lim

t→0+
∥S(t )− I∥L (X ) = 0.

Além disso, a curva u : [0,+∞) → X , definida por u(t) = S(t)u0 é solução do problema (2.2),
com A ∈L (X ) e u0 ∈ X . De fato, como

S(t ) = e t A := I + t A+ t 2 A2

2!
+ t 3 A3

3!
+ t 4 A4

4!
+·· ·

segue que
d

d t

+
S(t ) = d

d t

+
e t A := A+ t A2 + t 2 A3

2!
+ t 3 A4

3!
+·· · .

Logo
d

d t

+
S(t ) = d

d t

+
e t A := A

[
I + t A+ t 2 A2

2!
+ t 3 A2

3!
+·· ·

]
= Ae t A.

Portanto
d

d t

+
S(t ) = AS(t ).

Note que [
d

d t

+
S(t )

]
t=0

= AS(0) = AI = A.

Em razão desta propriedade, dizemos que A =
[

d

dt

+
S(t )

]
t=0

é o gerador infinitesimal da coleção de
operadores lineares limitados {S(t )}t≥0.

Finalmente, definindo u(t ) = S(t )u0 =
∞∑

n=0

(t A)n

n!
u0, temos:

u′(t ) = d

d t

+
S(t )u0 = AS(t )u0 = Au(t ),

com u(0) = S(0)u0 = Iu0 = u0.
Observe que, se o operador linear A não é limitado, não dispomos de uma norma para ele, e,

consequentemente a expressão (2.1) perde o significado. No entanto, para verificar se u(t ) = S(t )u0

é solução do problema de Cauchy (2.2), não utilizamos explicitamente a expressão analítica de S(t ),
mas apenas as suas propriedades características fundamentais.

Por esta razão, no caso em que o operador linear A : X → X é não limitado, torna-se natural
estudar coleções de operadores lineares {S(t )}t≥0 que satisfaçam as propriedades fundamentais da
exponencial, com a condição adicional: [

d

d t

+
S(t )

]
t=0

= A. (2.3)
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2.1.2 Semigrupo Uniformemente Contínuo e Semigrupo Fortemente Contínuo

Definição 2.1
Seja L (X ) a álgebra dos operadores lineares limitados em um espaço de Banach X . Dizemos que
uma aplicação S : [0,+∞) →L (X ) é um semigrupo de operadores lineares limitados sobre X , quando
as seguintes condições são satisfeitas:

(i) S(0) = I , onde I é o operador identidade.
(ii) S(t + s) = S(t )S(s), para todo t , s ≥ 0.

Dizemos que o semigrupo S é uniformemente contínuo se satisfaz
(iii) lim

t→0+
∥S(t )− I∥L (X ) = 0.

No que segue, chamaremos frequentemente de semigrupo simplesmente a coleção {S(t )}t≥0,
para nos referirmos a um semigrupo de operadores lineares S : [0,∞) →L (X ). Quando o semigrupo
{S(t)}s≥0 é uniformemente contínuo o operador A definido pela expressão (2.3) é chamado de
gerador infinitesimal do semigrupo S.
Exemplo 2.2
Seja A ∈L (X ) um operador linear limitado sobre o espaço de Banach X . Então, a coleção {S(t )}t≥0,
onde S(t ) = e t A é um semigrupo de operadores lineares uniformemente contínuo, com A como o
seu gerador infinitesimal. De fato, seja A : X → X um operador linear limitado sobre um espaço de
Banach X . Defina S(t ) = e t A. Assim, para cada número real t ≥ 0 e x ∈ X , tem-se

S(t )x = e t A x = x + t Ax + t 2

2
A2x + t 3

6
A3x · · ·+ t n

n!
An x +·· ·

Então
∥S(t )x −x∥X =

∥∥∥∥t Ax + t 2

2
A2x + t 3

6
A3x +·· ·+ t n

n!
An x +·· ·

∥∥∥∥
X

≤ t∥A∥L (X )||x||X + t 2

2
∥A∥2

L (X )∥x∥X + t 3

6
∥A∥3

L (X )∥x∥X +·· ·+ t n

n!
∥A∥n

L (X )∥x∥X +·· ·

= t∥A∥L (X )∥x∥X

[
1+ t

2
∥A∥L (X ) + t 2

6
∥A∥2

L (X ) · · ·+
t n−1

n!
∥A∥n−1

L (X ) +·· ·
]

≤ t∥A∥L (X )∥x∥X

[
1+ t∥A∥L (X ) +

t 2∥A∥2
L (X )

2
· · ·+

∥A∥n−1
L (X )t n−1

(n −1)!
+·· ·

]
= te t∥A∥L (X )∥A∥L (X )∥x∥X .

Assim
∥S(t )x −x∥X

∥x∥X
≤ te t∥A∥L (X )∥A∥L (x)

Portanto ∥S(t )− I∥L (X ) → 0 quando t → 0+.
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Além disso,
d

d t

+
S(t ) = A+ t A2 + t 2

2
A3 +·· ·+ t n−1

(n −1)
An +·· ·

= A

[
1+ t A+ t 2

2
A2 +·· ·+ t n−1

(n −1)| An−1 +·· ·
]

= Ae t A.

Portanto
[

d

d t

+
S(t )

]
t=0

= A.
A recíproca do resultado apresentado no exemplo anterior também é verdadeira (ver (PAZY,

1983), p. 2–4). Em suma, {S(t)}t≥0 é um semigrupo uniformemente contínuo, se e somente se
S(t) = e t A, onde seu gerador infinitesimal A é um operador linear limitado. Observe que a propo-
sição anterior implica que um operador não limitado A não pode ser gerador de um semigrupo
uniformemente contínuo. Com base nisso, introduzimos a seguinte definição:
Definição 2.3
Seja S : [0,+∞) →L (X ) um semigrupo de operadores lineares limitados sobre um espaço de Banach
X . Dizemos que S é um C0–semigrupo ou simplesmente um semigrupo fortemente contínuo se
satisfaz
(iv) lim

t→0+
∥S(t )x −x∥X = 0; ∀x ∈ X .

Um gerador infinitesimal de um C0–semigrupo que não é uniformemente contínuo deve ser,
necessariamente, um operador linear não limitado. Como operadores lineares não limitados em
espaços de Banach possuem domínio de definição em um subespaço D(A) ⊂ X , temos o seguinte
conceito de gerador infinitesimal:
Definição 2.4
Seja S : [0,+∞) →L (X ) um C0–semigrupo sobre um espaço de Banach X . Dizemos que o operador
A : D(A) ⊂ X → X é o gerador infinitesimal do semigrupo S quando:

Ax :=
[

d

d t

+
S(t )x

]
t=0

= lim
t→0+

S(t )x −x

t
; ∀x ∈ D(A), (2.4)

onde
D(A) = {x ∈ X ; Ax ∈ X } .

Proposição 2.5
Seja {S(t )}t≥0 um C0–semigrupo sobre um espaço de Banach X . Existem constantes ω≥ 0 e M ≥ 1

tais que
∥S(t )∥L (X ) ≤ Meωt ; ∀t ≥ 0.

Demonstração. Ver ((PAZY, 1983), p. 4).
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Na Proposição acima, quando ω= 0, {S(t)}t≥0 é chamado de limitado. Se além disso, M = 1,
dizemos {S(t )}t≥0 é um C0–semigrupo de contrações.
Proposição 2.6
Seja A o gerador infinitesimal de um C0–semigrupo {S(t )}t≥0 sobre um espaço de Banach X . Então
D(A) é um subespaço denso em X e A é um operador linear fechado
Demonstração. Ver ((PAZY, 1983), p. 5-6).
Exemplo 2.7
Considere a aplicação S : [0,+∞) → L (L2(R)) definida por [S(t) f ](x) = f (x + t). Afirmamos que
{S(t )}t≥0 é um C0–semigrupo de contrações, mas não é uniformemente contínuo. Com efeito

(i) Dado f ∈ L2(R), temos [S(0) f ](x) = f (x); ∀x ∈R. Logo S(0) f = f .
(ii) Dados t , s ≥ 0 e f ∈ L2(R), segue que:

[S(t + s) f ](x) = f (t + s +x) = [S(t ) f ](s +x) = [S(t )S(s) f ](x); ∀x ∈R.

(iv) Dado f ∈ L2(R), do Teorema da Convergência Dominada (Teorema A.2):
lim

t→0+
∥S(t ) f − f ∥2

L2(Ω) = lim
t→0+

∫
R
| f (x + t )− f (x)∥2d x = 0.

{S(t )}t≥0 é um C0–semigrupo de contrações, pois como
∥S(t ) f ∥2

L2(R) =
∫
R
| f (x + t )|2d x =

∫
R
| f (x)|2d x = ∥S(t ) f ∥2

L2(R); ∀ f ∈ L2(R),

tem-se ∥S(t )∥L (L2(R)) = 1; ∀t ≥ 0.
Além disso, note que:[

d

d t
[S(t ) f ](x)

]
t=0

= lim
t→0+

f (x + t )− f (x)

t
= f ′(x).

Assim, o gerador infinitesimal do semigrupo {S(t )}t≥0 é o operador ∂x : H 1(R) ⊂ L2(R) → L2(R),
definido por (∂x f ) = f ′]; ∀ f ∈ H 1(R).

Como ∂x não é um operador linear não limitado, tem-se que o semigrupo {S(t)}t≥0 gerado
por ele não é uniformemente contínuo (isto é, não satisfaz a condição (iii)). De fato. Tomando a
sequência ( fn)n∈N de funções em L2(R) definida por:

fn(x) =
{

xn , se 0 ≤ x ≤ 1

0, caso contrário .

Note que
∥ fn∥2

L2(R) =
∫ 1

0
x2nd x = 1

2n +1
→ 0,
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e, portanto ( fn)n∈N é uma sequência limitada. Contudo
∥∂x fn∥2

L2(R) =
∫ 1

0
n2x2(n−1)d x = n2

2n −1
→+∞.

Logo, (∂x fn)n∈N não é uma sequência limitada. Portanto ∂x não é um operador linear limitado, e,
consequentemente, o semigrupo {S(t )}t≥0 não é uniformemente contínuo.

O próximo resultado demostra que, de fato, um C0–semigrupo se comporta de maneira
análoga à exponencial. Por essa razão, é comum adotar a notação S(t ) = e t A, para representar um
C0-semigrupo {S(t )}t≥0 gerado pelo operador linear não limitado A.
Teorema 2.8
Sejam A : D(A) ⊂ X → X o gerador infinitesimal de um C0–semigrupo {S(t)}t≥0 sobre um espaço
de Banach X e u0 ∈ X . Defina u : [0,+∞) → X por u(t ) = S(t )u0 := e t Au0. Então u ∈C 0 ([0,+∞); X )

satisfaz
u(t ) = A

(∫ t

0
S(s)u0 d s

)
+u0 = A

(∫ t

0
u(s) d s

)
+u0; ∀t ≥ 0. (2.5)

Além disso, se u0 ∈ D(A) então
u ∈C 0 ([0,+∞);D(A))∩C 1 ((0,+∞); X ) ,

e é a única solução do problema de Cauchy linear e homogêneo:{
u′(t )− Au(t ) = 0; t > 0,

u(0) = u0,
(2.6)

Demonstração. Seja {S(t)}t≥0 um C0–semigrupo sobre X , A : D(A) ⊂ X → X o seu gerador infini-
tesimal e u0 ∈ X . Dados t ≥ 0 e h ≥ 0 pequeno de modo que t −h ≥ 0, da Proposição 2.5, segue
que

∥u(t +h)u0 −u(t )u0∥X = ∥S(t +h)u0 −S(t )u0∥X = ∥S(t )S(h)u0 −S(t )u0∥X

≤ ∥S(t )∥L (X )∥S(h)u0 −u0∥X

≤ Mew t∥S(h)u0 −u0∥X

e
∥u(t −h)u0 −u(t )u0∥X = ∥S(t −h)u0 −S(t )u0∥X = ∥S(t −h)u0 −S(t −h +h)u0∥X

≤ ∥s(t −h)∥L (X )∥u0 −S(h)u0∥X

≤ Mew t∥u0 −S(h)u0∥X .

Portanto u ∈C 0([0,+∞); X ).
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Além disso, como
S(t )− I

h

∫ t

0
S(s)u0 d s = 1

h

∫ t

0
(S(s +h)u0 −S(s)u0)d s

= 1

h

∫ t+h

t
S(s)u0 d s − 1

h

∫ h

0
S(s)u0 d s

= 1

h

∫ t+h

t
u(s)d s − 1

h

∫ h

0
u(s)d s,

segue que
A

(∫ t

0
u(s)d s

)
= lim

h→0+
S(t )− I

h

∫ t

0
S(s)u0 d s

= lim
h→0+

1

h

∫ t+h

t
u(s)d s − lim

h→0+
1

h

∫ h

0
u(s)d s

= u(t )−u0,

o que prova (2.5).
Agora, suponha que u0 ∈ D(A). Então

Au0 = lim
h→0+

S(h)u0 −u0

h
∈ X . (2.7)

Seja t > 0 e h > 0 pequeno, de modo que t −h > 0. Como
u(t +h)−u(t )

h
= S(t +h)u0 −S(t )u0

h
= S(t )

S(h)u0 −u0

h

e
u(t +h)−u(t )

h
= S(h + t )u0 −S(t )u0

h
= S(h)[S(t )u0]−S(t )u0

h

temos que
d

d t

+
u(t ) = S(t ) lim

h→0+
S(h)u0 −u0

h
= S(t )Au0 ∈ X .

e
d

d t

+
u(t ) = lim

h→0+
S(h)[S(t )u0 −S(t )u0

h
= AS(t )u0 ∈ X .

Portanto S(t )u0 ∈ D(A), e da unicidade do limite, segue que
d

d t

+
u(t ) = Au(t ) = S(t )Au0. (2.8)

Por outro lado,
u(t )−u(t −h)

h
−S(t )Au0 = S(t −h)

[
S(h)u0 −u0

h
− Au0

]
+ [S(t −h)Au0 −S(t )Au0] .

Assim, de (2.7) e da continuidade da curva t 7→ S(t )x (x ∈ X ), temos respectivamente:
lim

h→0+
S(t −h)

[
S(h)u0 −u0

h
− Au0

]
= 0 e lim

h→0+
[S(t −h)Au0 −S(t )Au0] = 0.

Logo
d

d t

−
u(t ) = lim

h→0+
u(t )−u(t −h)

h
= S(t )Au0. (2.9)
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Portanto, de (2.8) e (2.9), temos que u ∈C 1([0,+∞); X ) e tal que
u′(t ) = d

d t
u(t ) = Au(t );∀t ≥ 0.

Além disso u(0) = S(0)u0 = Iu0 = u0.
Considere o subespaço D(A) com a norma do gráfico definida por:

∥x∥D(A) = ∥x∥X +∥Ax∥X .

Da Proposição 2.6, segue que A é fechado, e portanto D(A) é completo.
Agora, se u0 ∈ D(A), em (2.8), vimos que: AS(t )u0 = S(t )u0; ∀t ≥ 0. Assim, se t0 ≥ 0, tem-se

lim
t→t0

ut (t ) = lim
t→t0

AS(t )u0 = lim
t→t0

S(t )Au0 = S(t0)Au0 = AT (t0)u0 = ut (t0).

Portanto u ∈C 0([0,+∞);D(A)).
Para provar a unicidade, suponha que exista outra solução v(t ) : [0,+∞) → X para o problema

(2.6). Agora defina w = u − v . Note que w(0) = u(0)− v(0) = u0 −u0 = 0, e
w ′(t ) = (u − v)′(t ) = u′(t )− v ′(t ) = Au(t )− Av(t ) = A(u − v)(t ) = Aw(t ); ∀t > 0.

Logo, w é solução do problema (2.6) para o valor inicial u0 = 0. Então, pelo que visto acima, para
cada t ≥ 0, tem-se w(t ) = S(t )0 = 0. Portanto, w ≡ 0, isto é, u = v .
Definição 2.9
Seja X um espaço de Banach.

(i) Uma função u ∈C 0 ([0,+∞); X ) satisfazendo (2.5) é chamada de solução branda (mild solution)
para o problema de Cauchy linear e homogêneo (2.6).

(ii) Uma função u ∈C 0 ([0,+∞); X )∩C 1 ((0,+∞); X ) satisfazendo o problema pontual de Cauchy
(2.6) é chamada de solução regular (clássica)

2.2 O Problema abstrato de Cauchy

Na seção anterior, estabelecemos, por meio do Teorema 2.8, que, se um operador linear
ilimitado A : D(A) ⊂ X → X é o gerador infinitesimal de umC0–semigrupo {S(t )}t≥0 em um espaço de
Banach X , então a função u(t ) = S(t )u0 apresenta propriedades análogas às da função exponencial.
Essa analogia fundamental garante que u(t ) = S(t )u0 seja a solução do problema de Cauchy linear
homogêneo (2.6) associado ao operador A, fornecendo assim a base para a análise de sistemas
dinâmicos lineares autônomos. Esse resultado será utilizado para provar a boa colocação do problema
linear (4.1)–(4.3), estudado no Capítulo 4.
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Nesta seção, nosso objetivo é completar o estudo da boa colocação (existência e unicidade
de soluções) do problema abstrato de Cauchy, estendendo a análise para dois casos importantes:
o caso não homogêneo e o caso não autônomo. Primeiramente, abordaremos o problema não
homogêneo, que pode ser linear ou conter uma não linearidade separável da parte linear descrita
pelo gerador de um C0–semigrupo. Em seguida, apresentaremos resultados de boa colocação para o
problema de Cauchy linear não autônomo, concentrando-nos no caso particular em que, para cada
t ≥ 0, os operadores lineares A(t ) possuem o mesmo domínio fixo e são geradores de uma família
de C0–semigrupos.

A extensão para o caso não homogêneo, representado pela equação u′(t)− Au(t) = f (t),
introduz uma fonte externa f (t ), enriquecendo a modelagem de fenômenos físicos. Mostraremos
que, sob condições apropriadas sobre f , a solução pode ser representada pela conhecida fórmula
da variação das constantes:

u(t ) = S(t )u0 +
∫ t

0
S(t − s) f (s) d s,

onde S(t )t≥0 é oC0–semigrupo gerado pelo operador linear A. Além disso, discutiremos os conceitos
de solução branda, solução forte e solução clássica, esclarecendo as condições necessárias para que
uma solução branda se torne uma solução clássica ou forte.

Ademais, a teoria será generalizada para o contexto de problemas não lineares autônomos
da forma u′(t)− Au(t) = f (t ,u(t)), em que a não linearidade f é separada do operador linear A.
Para tal, utilizaremos técnicas de ponto fixo, assumindo que f satisfaz condições de Lipschitz ou de
Lipschitz local. Isso nos permitirá estabelecer existência e unicidade de soluções, seja globalmente
no tempo ou localmente (com possibilidade de explosão em tempo finito). Esses resultados serão
fundamentais para demonstrar a boa colocação do problema não linear (5.3)–(5.6), que será tratado
no Capítulo 5.

Finalmente, esta seção avança de forma significativa ao tratar do cenário não autônomo, no
qual o operador A depende explicitamente do tempo, isto é, A = A(t ). Esse caso é consideravelmente
mais complexo, pois a teoria de semigrupos padrão, baseada em operadores constantes no tempo,
não pode ser aplicada diretamente. Contudo, para uma classe particular de problemas, aqueles em
que os operadores lineares A(t ) possuemumdomínio comum independente do tempo e formamuma
família estável de geradores de semigrupos, é possível desenvolver uma teoria consistente. Nesse
contexto, apresentaremos os fundamentos dos sistemas CD de Kato, que estabelecem as condições
sob as quais é possível construir um processo de evolução linear {P (s, t )}t≥s , o qual generaliza a noção
de semigrupo. Esse aparato teórico será essencial para demonstrar a boa colocação do problema
não autônomo (6.2)–(6.6), que será analisado no Capítulo 6.
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2.2.1 Problema abstrato de Cauchy não homogêneo

Consideremos agora o problema de Cauchy linear não homogêneo:{
u′(t )− Au(t ) = f (t ); t > 0

u(0) = u0

, (2.10)
onde f : [0,+∞) → X e X é um espaço de Banach.
Definição 2.10
Uma função u : [0,+∞) → X é uma solução (clássica) do problema linear não-homogêneo (2.10), se
u ∈C 0 ([0,+∞); X )∩C 1 ((0,+∞; X ), u(t ) ∈ D(A), para t > 0 e (2.10) é satifeito.

Seja S(t ) = e t A o C0-semigrupo de contrações gerado pelo operador A, e seja u : [0,+∞) → X

uma solução para o problema não-homogêneo (2.10). Para, t > 0, defina g t : [0, t) → X , por g (s) =
S(t − s)u(s). Note que g é diferenciável para 0 < s < t , e usando (2.8), obtemos:

d

d s
g (s) = −AS(t − s)u(s)+S(t − s)u′(s)

= −AS(t − s)u(s)+S(t − s)Au(s)+S(t − s) f (s)

= S(t − s) f (s). (2.11)
Se f ∈ L1(0,+∞; X ), podemos integrar (2.11) de 0 a t e obter:

u(t ) = S(t )u0 +
∫ t

0
S(t − s) f (s) d s; ∀t > 0. (2.12)

A função u ∈C 0 ([0,+∞); X ) definida por (2.12) satisfaz:
u(t ) = A

(∫ t

0
u(s) d s

)
+

∫ t

0
f (s)d s +u0; ∀t ≥ 0. (2.13)

Definição 2.11
Seja X um espaço de Banach.

(i) Uma funçãou ∈C 0 ([0,+∞); X ) satisfazendo (2.13)é chamada de solução branda (mild solution)
para o problema de Cauchy linear não-homogêneo (2.10).

(ii) Uma função u ∈C 0 ([0,+∞); X )∩C 1 ((0,+∞); X ) satisfazendo o problema pontual de Cauchy
(2.10) é chamada de solução (clássica).
Observe que a continuidade da função f , em geral, não é suficiente para garantir a existência

de soluções de (2.10), mesmo quando u0 ∈ D(A). Para ilustrar isso, considere um elemento x ∈ X tal
que S(t ) = e t A x ∉ D(A) para nenhum t ≥ 0. Defina f (t ) = e t A x. Note que f é contínua. Contudo, a
única solução branda (mild solution), do problema (2.10) para u0 = 0 ∈ D(A) e f (t) = e t A x é dada
por u(t ) = te t A x, que não é diferenciável para t > 0.
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Teorema 2.12
Seja A o gerador infinitesimal de um C0–semigrupo {S(t )}t≥0 sobre o espaço de Banach X . Então

(i) Se f ∈ L1 (0,+∞; X ), então para cada u0 ∈ X , o problema linear não-homogêneo (2.10) tem
uma única solução branda (mild solution) definida por (2.12).

(ii) Se f ∈C 1 ((0,+∞); X ), então para cada u0 ∈ D(A), a solução u definida por (2.12) é um solução
(clássica).

Demonstração. Ver ((PAZY, 1983), p. 106-107).
Definição 2.13
Seja X um espaço de Banach. Uma função u : [0,+∞) → X é uma solução forte do problema (2.10)
se:

(i) u ∈W 1,1(0,+∞; X );
(ii) u(0) = u0 e u′(t ) = Au(t )+ f (t ) em quase todo ponto t > 0.

Teorema 2.14
Seja A o gerador infinitesimal de umC0–semigrupo sobre o espaço deBanach X . Se f ∈W 1,1 (0,+∞; X ),
então, para todo u0 ∈ D(A), a função u definida (2.12) é a única solução forte do problema linear
não-homogêneo (2.10).
Demonstração. Ver ((PAZY, 1983), p. 109).
Corolário 2.15
Seja X um espaço de Banach reflexivo e seja A o gerador de um C0–semigrupo {S(t)}t≥0 sobre X .
Se f é Lipschitziana, então para u0 ∈ D(A), o problema não-homogêneo (2.10) admite uma única
solução (clássica) dada por (2.12).
Demonstração. Ver ((PAZY, 1983), p. 109-110).

Embora a Teoria de Semigrupos de Operadores Lineares tenha sido desenvolvida primordial-
mente para o estudo de problemas lineares autônomos, seu alcance pode ser estendido mediante a
incorporação de propriedades e técnicas adicionais. Esta extensão permite demonstrar a boa coloca-
ção de problemas não lineares autônomos específicos nos quais é possível separar a parte linear
da componente não linear do problema. De forma ainda mais notável, essa abordagem mostra-se
aplicável, ainda que em contextos particulares de natureza simplificada, a certos problemas não
autônomos.

Neste contexto, com o objetivo de estabelecer a boa colocação do problema não linear (5.3)–
(5.6) formulado no Capítulo 5, utilizaremos resultados de existência e unicidade de soluções para o
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problema de Cauchy não linear, conforme apresentado em (PAZY, 1983). Considere o problema:{
u′(t )− Au(t ) = f (t ,u(t )); t > 0

u(0) = u0

, (2.14)
onde f : [0,+∞)×X → X e X é um espaço de Banach.

Suponhamos que A é gerador infinitesimal deC0–semigrupo sobre X e que f : [0,+∞)×X → X

é contínua sobre a variável t ∈ [0,+∞) e satisfaz a condição de Lipschitz sobre a variável u ∈ X .
O problema de valor inicial (2.14) não admite necessariamente uma solução (de qualquer tipo).

Entretanto, se ele tiver uma solução clássica ou forte, o argumento apresentado para o modelo linear
garante que essa solução u satisfaz a seguinte equação integral:

u(t ) = S(t )u0 +
∫ t

0
S(t − s) f (s,u(s)) d s;∀t > 0. (2.15)

Definição 2.16
Umsoluçãou ∈C 0 ([0,+∞); X ) da equação integral (2.15)é chamada de solução branda (mild solution)
do problema não-linear (2.14).
Definição 2.17
Seja X um espaço de Banach. Uma função u : [0,+∞) → X é uma solução forte do problema (2.14)
se:

(i) u′ ∈W 1,1(0,+∞; X );
(ii) u(0) = u0 e u′(t ) = Au(t )+ f (t ,u(t )) em quase todo ponto t > 0.

Definição 2.18
Seja X um espaço de Banach. Uma função u ∈ C 0 ([0,+∞); X ) ∩C 1 ((0,+∞); X ) satisfazendo o
problema pontual de Cauchy (2.14) é chamada de solução (clássica)
Teorema 2.19
Seja f : [0,+∞)×X → X uma função contínua na variável t ∈ [0,∞) e Lipschitziana sobre a variável
u ∈ X . Se A é gerador infinitesimal de umC0–semigrupo sobre o espaço de Banach X , então para cada
u0 ∈ X o problema de Cauchy não-linear (2.14) adimite uma única solução branda u ∈C ([0,+∞); X ).
Além disso, a aplicação

X −→ C ([0,+∞); X )

u0 7−→ u

é Lipschitziana.
Demonstração. Ver ((PAZY, 1983), p. 184).
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A condição uniforme de Lipschitz da função f no terema anterior garante a existência e
unicidade de solução global, isto é de solução definida para todo t > 0. Contudo, essa condição
restringe muito os termos não lineares do problema. No próximo resultado, enfraquecemos essa
condição, mas garantimos apenas a existência de solução local.
Teorema 2.20
Seja f : [0,+∞)× X → X uma função contínua na variável t ≥ 0 e localmente Lipschitz sobre a
variável u ∈ X , uniformemente em t sobre intervalos limitados. Se A é gerador infinitesimal de um
C0–semigrupo sobre o espaço de Banach X , então para cada u0 ∈ X , existe um 0 < tmax ≤+∞, tal
que o problema de Cauchy não-linear (2.14) adimite uma única solução branda u ∈C ([0,+∞); X )

sobre [0,+tmax). Além disso, se tmax <+∞, então
lim

t→t−max
∥u(t )∥ =∞

Demonstração. Ver ((PAZY, 1983), p. 185-186).
Teorema 2.21
Seja A o gerador infinitesimal de um C0–semigrupo {S(t)}t≥0 sobre o espaço de Banach X . Se
f ∈C 1 ([0,+∞)×X ; X ), então a solução branda do problema (2.14) é uma solução clássica quando
u0 ∈ D(A).
Demonstração. Ver ((PAZY, 1983), p. 187).
Teorema 2.22
Seja A o gerador infinitesimal de um C0–semigrupo {S(t )}t≥0 sobre o espaço de Banach reflexivo X .
Suponha que f é Lipschitziana na variável t ≥ 0, uniformemente para conjuntos limitados de X e
localmente Lipschitz sobre a variável u ∈ X , uniforme em conjuntos intervalos limitados [0,T ]. Se
u0 ∈ D(A), então a solução branda (mild solution) do problema (2.14) sobre [0, tmax) é uma solução
forte.
Demonstração. Ver ((PAZY, 1983), p. 185 e p. 189).

2.2.2 Problema abstrato de Cauchy não-autônomo

Para concluir esta seção, apresentaremos resultados de existência e unicidade de soluções
estabelecidos em (KATO, 1985), aplicáveis a uma classe particular de problemas lineares autônomos
de Cauchy. A característica fundamental dessa classe reside no fato de que o operador linear
dependente do tempo associado ao problema possui um domínio independente do parâmetro
temporal. A combinação desses resultados com aqueles fornecidos em (PAZY, 1983) fornece as
ferramentas necessárias para demonstrar a boa colocação do problema não autônomo (6.2)–(6.6)
proposto no Capítulo 6.
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Consideremos, para isso, o seguinte problema linear não autônomo:{
u′(t )− A(t )u = f (t ); t ≥ 0

u(0) = u0

, (2.16)
onde A(t ) : D(A(t )) ⊂ X → X um operador linear tempo-dependente e f : [0,+∞) → X uma função
contínua.
Definição 2.23
Seja ({A(t )}t≥0, X ,Y ) uma tripla, onde X e Y são espaços de Banach separáveis, com Y ⊂ X e para
cada t ≥ 0, A(t ) : D(A(t )) ⊂ X → X é um operador linear. Dizemos que o sistema ({A(t )}t≥0, X ,Y ) é
um sistema CD de Kato se satisfaz as seguintes condições:

(i) Y está imerso continuamente e é denso em X e D(A(t )) = Y para todo t ≥ 0. Em particular, o
domínio D(A(t )) do operador linear A(t ) é independente de t .

(ii) Para cada t ≥ 0, o operador linear A(t ) : Y ⊂ X → X é gerador de um C0–semigrupo {St (s)}s≥0

sobre X , e existem constantes M ≥ 1 e ω≥ 0 independentes de t , tais que
∥St (s)∥L (X ) ≤ Meωs ;∀t , s ≥ 0.

(iii) A família A : [0,+∞) →L (Y , X ) pertence ao espaço Li p∗ (0,+∞;L (Y , X )). Equivalentemente,
temos que d

d t
A(t ) ∈ L∞∗ (0,+∞;L (Y , X )),

onde L∞∗ (0,+∞;L (Y , X )) é o espaço das (classes de) funções essencialmente limitadas e
fortemente mensuráveis de [0,+∞) no conjunto L (Y , X ) dos operadores lineares limitados de Y

em X .
O leitor interessado pela definição do espaço Li p∗ (0,+∞;L (Y , X )), bem como na demonstra-

ção da equivalência A ∈ Li p∗ (0,+∞;L (Y , X )) ⇐⇒ d

d t
A(t) ∈ L∞∗ (0,+∞;L (Y , X )) pode consultar

(KATO, 1985), páginas 7 e 8.
Teorema 2.24
Seja ({A(t )}t≥0, X ,Y ) é um sistema CD de Kato.

(i) Se f ∈ L1 (0,+∞; X ), então para cada u0 ∈ X , o problema linear não-autônomo (2.16) tem uma
única solução branda (mild solution) u ∈C 0 ([0,+∞); X )

(ii) Se f ∈W 1,1 ((0,+∞); X ), então para cada u0 ∈ Y , a solução u é um solução forte satisfazendo:
u ∈C 0 ([0,+∞);Y )∩C 1 ((0,+∞); X ) .

Demonstração. Ver ((KATO, 1985), p. 11 e (PAZY, 1983), p. 106-107).
Mais geralmente, tem-se o seguinte resultado:
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Teorema 2.25
Seja f : [0,+∞)×X → X uma função contínua na variável t ≥ 0 e localmente Lipschitz sobre a variável
u ∈ X , uniformemente em t sobre intervalos limitados. Se ({A(t )}t≥0, X ,Y ) é um sistema CD de Kato,
então para cada u0 ∈ X , existe um 0 < tmax ≤+∞, tal que o problema de Cauchy{

u′(t )+ A(t )u = f (t ,u(t )); t ≥ 0

u(0) = u0

, (2.17)
adimite uma única solução branda u ∈ C ([0,+∞); X ) sobre [0,+tmax). Além disso, se tmax < +∞,
então

lim
t→t−max

∥u(t )∥ =∞

Demonstração. Ver ((PAZY, 1983), p. 185-186; e (KATO, 1985), p. 11).
Teorema 2.26
Seja ({A(t )}t≥0, X ,Y ) é um sistema CD de Kato.Suponha que f é Lipschitziana na variável t ≥ 0,
uniformemente para conjuntos limitados de X e localmente Lipschitz sobre a variávelu ∈ X , uniforme
em conjuntos intervalos limitados [0,T ]. Se u0 ∈ Y , então a solução branda (mild solution) do
problema (2.17) (ou a solução branda do problema (2.17) sobre [0, tmax)) é uma solução forte.
Demonstração. Ver ((PAZY, 1983), p. 185 e p. 189; e (KATO, 1985), p. 11).
Corolário 2.27
Seja ({A(t )}t≥0, X ,Y ) é um sistema CD de Kato. Se u0 ∈ X , f : [0,+∞)×X → X uma função contínua
na variável t ≥ 0 e localmente Lipschitz sobre a variável u ∈ X , uniformemente em t sobre intervalos
limitados, e h ∈ L1

l oc (0,+∞; X ), então existe um 0 < tmax ≤+∞, tal que o problema de Cauchy{
u′(t )− A(t )u + f (t ,u(t )) = h(t ); t ≥ 0

u(0) = u0

, (2.18)
admite uma única solução branda no intervalo [0,+tmax), de modo que lim

t→t−max
∥u(t )∥ =∞, sempre

que tmax <+∞.
Além disso, se u0 ∈ Y , f : [0,+∞)×X → X é Lipschitziana na variável t ≥ 0, uniformemente

para conjuntos limitados de X e localmente Lipschitz sobre a variável u ∈ X , uniforme em conjuntos
intervalos limitados [0,T ], e h ∈W 1,1

loc (0,+∞; X ), então a solução branda é uma solução forte sobre
[0, tmax).

Demonstração. Basta combinar os Teoremas 2.24, 2.25 e 2.26.
Observação 2.28
Os resultados apresentados nesta seção permanecem válidos para o problema de Cauchy com dado
inicial em um instante arbitrário τ0 ∈R, mediante uma modificação mínima na definição de solução
branda.
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Com efeito, a representação
u(t ) = S(t )u0 +

∫ t

0
S(t − s) f (s,u(s))d s, t > 0,

corresponde ao caso em que o dado inicial é imposto em t = 0, isto é, u(0) = u0.
Por outro lado, se o dado inicial é prescrito em um instante τ0 ∈R, isto é, u(τ0) = uτ0 , então a

solução branda é dada por
u(t ) = S(t −τ0)uτ0 +

∫ t

τ0

S(t − s) f (s,u(s))d s, t ≥ τ0.

2.3 Teoremas de Geração e Estabilidade de Semigrupos

Até o presente momento, desenvolvemos diversos resultados de existência e unicidade para
problemas de valor inicial em diferentes contextos e sob distintas hipóteses estruturais. Esses
resultados constituem um marco essencial no estudo de equações diferenciais de evolução, pois
asseguram que os modelos matemáticos considerados admitem soluções bem definidas e que estas
soluções são únicas para cada dado inicial.

Contudo, um aspecto central permeia todos esses resultados: a parte linear do problema,
representada por um operador (em geral não limitado) A, deve necessariamente ser o gerador
infinitesimal de um C0–semigrupo de operadores lineares. Essa exigência não é apenas técnica,
mas estrutural, uma vez que é justamente a teoria de semigrupos que fornece a linguagem e o
ferramental para a formulação abstrata e a análise dos problemas de Cauchy. Mesmo em situações
não autônomas, a condição não se torna mais flexível: para cada instante t ≥ 0, o operador A(t)

deve ser o gerador de um C0–semigrupo.
Diante dessa exigência fundamental, o objetivo desta seção é duplo. Em primeiro lugar,

buscamos estabelecer condições necessárias e suficientes para que um operador não limitado A

seja, de fato, o gerador de um C0–semigrupo. Esse estudo nos conduzirá a resultados clássicos,
como os Teoremas de Hille–Yosida e de Lumer–Phillips, que constituem pilares da teoria moderna de
semigrupos e oferecem critérios práticos para identificar geradores. Em segundo lugar, voltaremos
nossa atenção para a análise da estabilidade de semigrupos de operadores lineares, investigando
comoas propriedades espectrais e dissipativas do gerador se traduzemno comportamento assintótico
das soluções, o que permitirá uma análise abrangente do comportamento assintótico das soluções
do problema linear (4.1)–(4.3) proposto no Capítulo 4.

A investigação da estabilidade não é apenas um desdobramento natural da teoria de geração,
mas também um elemento crucial para aplicações em modelos físicos, mecânicos e de controle. De
fato, compreender se as soluções de um problema de evolução permanecem limitadas, decaem
assintoticamente ou ainda em que taxa se dissipam constitui informação fundamental para a in-
terpretação do modelo. Assim, estudaremos diferentes noções de estabilidade (forte, uniforme,



2.3. Teoremas de Geração e Estabilidade de Semigrupos 55

exponencial e polinomial), explorando suas inter-relações e condições de caracterização. Destacare-
mos ainda resultados de grande relevância, como os Teoremas de Arendt–Batty, Borichev–Tomilov,
Batty–Chill–Tomilov e Gearhart, que estabelecem vínculos profundos entre o espectro do gerador A

e o decaimento temporal da energia associada ao sistema.

2.3.1 Teoremas de Geração de Semigrupos

Lembre-se de que, se A : D(A) ⊂ X → X é um operador linear (não necessariamente limitado),
o conjunto resolvente do operador A é definido como

ρ(A) = {λ ∈C; λI − A é invertível e (λI − A)−1 ∈L (X )}.

O conjunto complementar σ(A) =C\ρ(A) é denominado o espectro do operador A. Um ponto λ ∈C
é chamado de autovalor de A, quando o operador λI − A não é injetivo. Neste caso, um elemento
não nulo x ∈ D(A), tal que Ax =λx é chamado de autovetor associado ao autovalor λ.

O conjuntos de todos os autovalores de A é denominado o espectro pontual de A e é denotado
por σp (A).
Teorema 2.29 (Hille-Yosida)
Um operador linear A : D(A) ⊂ X → X é gerador infinitesimal de um C0–semigrupo de contrações
{S(t )}t≥0 se, e somente se,

(i) A é fechado e D(A) é denso em X .
(ii) ρ(A) ⊃ (0,+∞) e para todo λ> 0, tem-se

∥(λI − A)−1∥L (X ) ≤ 1

λ

Demonstração. Ver ((PAZY, 1983), p. 8).
A seguir, apresentamos o Teorema de Lummer-Phillips. Esse teorema é uma caracterização

mais prática, do ponto de vista operacional, dos geradores infinitesimais dos C0–semigrupos de
contrações.

Inicialmente, lembre-se de que, se X é um espaço de Banach, para cada x ∈ X , pelo Teorema
de Hahn-Banach, existe um funcional linear limitado Lx ∈ X ′ tal que

〈Lx , x〉 = ∥x∥2
X = ∥Lx∥2

X ′ .

Assim, para cada x ∈ X , o conjunto de dualidade definido por
J (x) = {

L ∈ X ′; 〈L, x〉 = ∥x∥2
X = ∥L∥2

X ′
}

é não vazio.
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Definição 2.30
Seja A : D(A) ⊂ X → X um operador linear. Dizemos que A é dissipativo se, para todo x ∈ D(A),
existe um funcional linear Lx em seu conjunto de dualidade J (x) tal que

Re〈Lx , Ax〉 ≤ 0.

Observe que, no contexto de um espaço de Hilbert H , tem-se ∥ ·∥2
H = 〈·, ·〉H , onde 〈·, ·〉H é o

produto interno de H . Nesse caso, o Teorema da Representação de Riesz garante que é possível
identificar H com o seu dual H ′, identificando cada x ∈ H ao funcional Lx ∈ H ′.

Assim, se (H ,〈·, ·〉H ) é um espaço de Hilbert, então o conjunto de dualidade (via identificação)
é simplemente J(x) = {x} para todo x ∈ H . Como 〈x, y〉H = 〈y, x〉H ; ∀x, y ∈ H , um operador linear
A : D(A) ⊂ H → H é dissipativo se, e somente se

Re〈Ax, x〉H ≤ 0; ∀x ∈ D(A). (2.19)
Teorema 2.31 (Lummer-Phillips)
Sejam X um espaço de Banach e A : D(A) ⊂ X → X um operador linear tal que D(A) = X . Então

(i) Se A é dissipativo e existe λ0 > 0 tal que o operador λ0I − A é sobrejetivo, então A é o gerador
infinitesimal de um C0–semigrupo de contrações sobre X .

(ii) Se A é o gerador infinitesimal de umC0–semigrupo de contrações sobre X , então A é dissipativo
e o operador λI − A é sobrejetivo, qualquer que seja λ> 0.

Demonstração. Ver ((PAZY, 1983), p. 14).
Definição 2.32
Seja A : D(A) ⊂ X → X um operador linear sobre um espaço de Banach X . Dizemos que A émaximal
se λ0I − A é sobrejetivo para algum λ0 > 0

Proposição 2.33
Sejam X um espaço de Banach e A : D(A) ⊂ X → X um operador linear dissipativo. Se A é maximal,
então λI − A é sobrejetivo para todo λ> 0.
Demonstração. Ver ((PAZY, 1983), p 15-16).

2.3.2 Teoremas de Estabilidade para Semigrupos

Ao analisar um sistema dinâmico regido por Equações Diferenciais de Evolução, é fundamental
compreender o comportamento assintótico de suas soluções e a taxa de decaimento da energia
do sistema quando t →∞. Para finalizar esta seção, introduziremos as noções de estabilidade do
semigrupo que caracteriza o decaimento da norma das soluções, e de estabilidade da energia do
sistema, que descreve a dissipação ao longo do tempo da quantidade de energia associada à solução.
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Serão apresentadas condições necessárias e suficientes para a estabilidade deumC0–semigrupo
de operadores lineares, bem como a relação entre o tipo de estabilidade do semigrupo e o compor-
tamento assintótico da energia do sistema. Essa conexão é essencial para traduzir propriedades do
gerador infinitesimal, como a localização do espectro, em informações qualitativas sobre a dinâmica
do problema de Cauchy associado.

Alémdisso, enunciaremos resultados importantes que estabelecemequivalências entre diferen-
tes noções de estabilidade para semigrupos e o decaimento exponencial ou polinomial das soluções
(ou de sua energia). Tais resultados serão posteriormente aplicados no estudo do comportamento
assintótico das soluções do problema (4.1)–(4.3), formulado no Capítulo 4.
Definição 2.34
Seja A : D(A) ⊂ X → X o gerador infinitesimal de um C0–semigrupo {S(t)}t≥0 sobre um espaço de
Banach X . A energia da solução u : [0,+∞) → X do problema abstrato de Cauchy (2.6) é definida
como

E(t ) = 1

2
∥u(t )∥2

X = 1

2
∥S(t )u0)∥2

X ;∀t ≥ 0. (2.20)
Definição 2.35
Seja {S(t )}t≥0 um C0–semigrupo sobre um espaço de Banach X .

(i) Dizemos que {S(t )}t≥0 é fortemente (ou assintoticamente) estável quando
lim

t→+∞∥S(t )x∥X = 0; ∀x ∈ X .

(ii) Dizemos que {S(t )}t≥0 é uniformemente estável quando
lim

t→+∞∥S(t )∥L (X ) = 0.

(ii’) Dizemos que {S(t )}t≥0 é exponencialmente estável quando existem constantes ω> 0 e M ≥ 1

tais que
∥S(t )∥L (X ) ≤ Me−ωt ; ∀t ≥ 0.

Proposição 2.36
Um C0–semigrupo é exponencialmente estável se, e somente se é uniformemente estável.
Demonstração. Seja {S(t)}t≥0 um C0–semigrupo sobre um espaço de Banach X . Se {S(t)}t≥0 é
exponencialmente estável, é claro que ele é uniformemente estável. Reciprocamente suponha
que {S(t)}t≥0 é uniformemente estável. Assim, existe t0 > 0 tal que q := ∥S(t0)∥L (X ) < 1. Defina
M0 = sup

0≤s≤t0

∥S(s)∥L (X ), que existe, uma vez que a aplicação t 7→ ∥S(t)∥L (X ) é contínua e [0, t0] é
compacto. Escrevendo t = kt0 + s > 0, com k ∈N tal que kt0 ≤ t ≤ (k +1)t0 e 0 ≤ s < t0, tem-se

∥S(t )∥L (X ) ≤ ∥S(s)∥L (X ) · ∥S(kt0)∥L (X ) ≤ M0∥S(t0)k∥L (X ) ≤ M0∥S(t0)∥k
L (X ) ≤ M0qk .
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Note que qk = ek ln q . Como q < 1, temos ln q < 0, e podemos escrever qk = e−k| ln q | . Por
outro lado, como t = kt0 + s e kt0 ≤ t ≤ (k +1)t0, tem-se que k ≥ t/t0 −1, e portanto
∥S(t )∥L (X ) ≤ M0qk ≤ M0e−k| ln q| ≤ M0e

−
(

t
t0
−1

)
= M0e | ln q| ·e

− t
t0
| ln q | = M0

q
e
− t

t0
| ln q| = Me−ωt ,

onde ω := | ln q|/t0 e M := (M0/q) ≥ 1.
Em termos da Energia E(t ) = 1

2∥e t Au0∥2
X associada ao sistema (2.6), temos as seguintes carac-

terizações de estabilidade:
(i) O semigrupo {e t A}t≥0 é fortemente (ou assintoticamente) estável, se, e somente se, o sistema

(2.6) for assintoticamente estável. Em outras palavras, isso ocorre quando:
lim

t→+∞E(t ) = 0

(ii) O semigrupo {e t A}t≥0 é exponencialmente (ou uniformemente) estável, se, e somente se, o
sistema (2.6) for exponencialmente estável. Neste caso, existem constantes C > 0 e w > 0

independentes da condição inicial u0, tais que:
E(t ) ≤C E(0)e−w t ; ∀t > 0.

Há ainda um conceito de estabilidade que é mais abrangente do que a estabilidade assintótica,
pois, além de garantir que a energia decai para zero quando t > 0 é suficientemente grande,é
suficientemente grande, ele descreve a taxa desse decaimento. No entanto, esse decaimento é mais
lento do que aquele observado na estabilidade exponencial. Trata-se do conceito de estabilidade
polinomial, cuja definição, em termos da energia do sistema (2.6), é dada por:

E(t ) ≤ C

tω
∥u0∥D(A); ∀t > 0,

onde C e w são constantes positivas e a norma ∥u0∥D(A) é definida por:
∥u0∥D(A) = ∥u0∥X +∥Au0∥X .

Motivados pelo conceito de estabilidade polinomial aplicado ao sistema (2.6), apresentamos a
definição equivalente de estabilidade polinomial no contexto de semigrupos:
Definição 2.37
Seja A : D(A) ⊂ X → X o gerador infinitesiamal de um C0–semigrupo {S(t)}t≥0 sobre o espaço de
Banach X . Dizemos que {S(t )}t≥0 é polinomialmente estável se existirem constantes M > 0 e ω> 0

tais que
∥S(t )x∥X ≤ M

tω
∥x∥D(A); ∀x ∈ D(A) e ∀t > 0.

Finalmente, no que segue, apresentaremos os resultados de establidade que utilizaremos na
análise do comportamento assintótico da solução do problema que será estudado no capítulo 3.
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Teorema 2.38 (Teorema de Arendt-Batty)
Seja A : D(A) ⊂ X → X o gerador infinitesimal de um C0–semigrupo limitado {S(t)}t≥0 sobre um
espaço de Banach reflexivo X . Então {S(t )}t≥0 é fortemente estável se satisfaz as seguintes condições:

(i) O operador A não possui autovalores no eixo imaginário, ou seja σp (A)∩ {λi ∈C;λ ∈R} =;.
(ii) O espactro de A, contém, nomáximoumaquantidade enumerável de pontos no eixo imaginário.

Em outras palavras, σ(A)∩ {λi ∈C;λ ∈R} é um conjunto enumerável.
Demonstração. Ver (ARENDT; BATTY, 1988)
Teorema 2.39 (Teorema de Borichev-Tomilov)
Seja A : D(A) ⊂ H → H o gerador infinitesimal de um C0-semigrupo limitdo {S(t)}t≥0 sobre um
espaço de Hilbert H tal que {iλ ∈C;λ ∈R} ⊂ ρ(A). Então {S(t )}t≥0 é polinomialmente estável, se, e
somente se,

limsup
λ∈R, |λ|→+∞

1

|λ|1/ω

∥∥(iλI − A)−1
∥∥

L (H) <∞.

Neste caso, existe uma constante M > 0, tal que
∥S(t )x∥H ≤ M

tω
∥x∥D(A); ∀x ∈ D(A) e ∀t > 0. (2.21)

Demonstração. Ver (BORICHEV; TOMILOV, 2010).
Teorema 2.40 (Teorema de Batty-Chill-Tomilov)
Seja A : D(A) ⊂ H → H o gerador infinitesimal de um C0-semigrupo limitdo {S(t)}t≥0 sobre um
espaço de Hilbert H tal que σ(A)∩ {λi ∈C;λ ∈R} = {0}. Se existem constantes σ≥ 1 e γ> 0 tais que

∥λi I − A∥L (H) ≤
{

O (|λ|−σ) , se |λ|→ 0,

O
(|λ|γ) , se |λ|→+∞.

,

então, existe uma constante C > 0 tal que:
∥S(t )x∥H ≤ C

t
1

max{σ,γ}

∥x∥D(A); ∀x ∈ D(A)∩ A(H) e t > 0.

Demonstração. Ver (BATTY; CHILL; TOMILOV, 2016).
Teorema 2.41 (Teorema de Gearhart)
Seja A : D(A) ⊂ H → H o gerador infinitesimal de C0–semigrupo de contrações {S(t )}t≥0 sobre um
espaço de Hilbert H . Então {S(t )}t≥0 é exponencialmente estável se, e somente se,

(i) ρ(A) ⊃ {λi ∈C;λ ∈R}.
(ii) limsup

λ∈R, |λ|→∞
∥(iλI − A)−1∥L (H) <∞.

Demonstração. Ver (GEARHART, 1978).
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Uma observação de caráter prático a respeito da segunda condição (ii) da definição de um
sistema CD de Kato (ver Definição 2.23) é oportuna.
Observação 2.42
Geralmente nas apicações, a condição de estabilidade uniforme em t exigida em (ii):

∥St (s)∥L (X ) ≤ Meωs ;∀t , s ≥ 0.

é difícil de ser verificada diretamente. Então é desejável que existisse um critério prático e suficiente
para obter essa condição. Um critério conveniente é que X admita uma norma equivalente ∥ · ∥t

tempo dependente que seja localmente Lipschitziana. Isto é, existe c > 0 tal que:
∥x∥t

∥x∥s
≤ ec|t−s|, para todo t , s ≥ 0 e para todo x ̸= 0 em X ,

Para mais detalhes, ver (KATO, 1985), página 10.
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Capítulo 3

DinâmicaNão LinearAutônomaeNão-Autônoma

O mundo natural é intrinsecamente não linear. Desde sistemas físicos clássicos até modelos
mais sofisticados da biologia, da mecânica ou da economia, as equações diferenciais que descrevem
tais fenômenos raramente apresentam uma estrutura linear simples. Nesse cenário, a noção de
semigrupo, tão poderosa no estudo da dinâmica de sistemas lineares, pode ser magnificamente
generalizada para lidar com a evolução temporal de soluções de problemas de Cauchy não lineares
autônomos. Essa generalização dá origem à chamada Teoria de Semigrupos Não Lineares de Opera-
dores Contínuos, frequentemente interpretada sob a ótica de Sistemas Dinâmicos Autônomos em
dimensão infinita.

A primeira seção deste capítulo será dedicada a essa teoria. Diferentemente do caso linear,
onde as soluções tendem a decair para zero (como discutimos na seção final do Capítulo 2, ao abordar
a estabilidade de energia e de semigrupos lineares), no contexto não linear as trajetórias podem
apresentar comportamentos assintóticos mais ricos. Em vez de convergirem necessariamente para a
origem, as soluções podem ser atraídas para um conjunto compacto invariante especial, denominado
atrator. Esse conjunto desempenha o papel de descrever, de forma qualitativa e geométrica, o regime
permanente das soluções.

No caso puramente linear, o atrator reduz-se a umúnico ponto: tipicamente a origem do espaço
de fases X . Já no cenário não linear, o estudo torna-se substancialmentemais sofisticado, deslocando
o foco para a análise de sistemas dinâmicos em dimensão infinita. Conceitos fundamentais como
atratores globais emergem, oferecendo uma descrição abrangente do comportamento assintótico.
Um atrator global é um conjunto compacto, invariante, que atrai todos os subconjuntos limitados
de X . Em outras palavras, independentemente da condição inicial, todas as trajetórias do sistema
(soluções) acabam sendo capturadas por esse conjunto, o que proporciona uma caracterização
completa do comportamento de longo prazo.

Surpreendentemente, existe uma generalização aindamais abrangente dessa estrutura. Muitos
sistemas físicos, mecânicos e biológicos não são autônomos, ou seja, as leis que os regem variam
explicitamente no tempo. Nesses casos, a estrutura de semigrupo, que depende apenas do intervalo
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de tempo decorrido (t − s), mostra-se insuficiente para descrever adequadamente a dinâmica. Surge
então a Teoria de Processos de Evolução, também conhecida como a teoria de Sistemas Dinâmicos
Não Autônomos.

Um processo de evolução é uma família de operadores que depende de dois instantes tem-
porais, descrevendo a evolução do sistema desde um instante inicial s até um instante posterior t ,
refletindo a natureza não estacionária do operador ao longo do tempo. Essa teoria, que apresentare-
mos na segunda seção deste capítulo, representa o ponto culminante da estruturação hierárquica
que parte dos semigrupos lineares, passa pelos semigrupos não lineares e chega aos processos não
autônomos.

No âmbito dos sistemas não autônomos, o estudo do comportamento assintótico (dinâmica
do sistema) é enriquecido por noções mais sutis, como o conceito de atrator pullback. Em contraste
com os atratores globais de sistemas autônomos, que atraem soluções para um conjunto fixo quando
t →+∞, o atrator pullback incorpora a ideia de puxar soluções a partir de condições iniciais situadas
em tempos cada vez mais distantes no passado (s →−∞) até o presente t . Dessa forma, ele se
adapta dinamicamente às forças externas variantes no tempo, oferecendo uma caracterização mais
natural e robusta do regime permanente em sistemas não autônomos.

Assim, este capítulo tem como objetivo complementar e expandir o estudo iniciado no contexto
linear. Primeiro, apresentamos a teoria de semigrupos não lineares e o estudode atratores globais; em
seguida, avançamos até a abstração máxima dos processos de evolução não autônomos, culminando
na análise sofisticada dos atratores pullback. Essa jornada fornece não apenas técnicas avançadas de
análise e resolução, mas também uma visão unificada e profunda da dinâmica de sistemas descritos
por equações diferenciais, iluminando os vínculos entre linearidade, não linearidade e dependência
temporal explícita.

3.1 Teoria Semigrupos de Operadores não Lineares Contínuos

Nesta seção, estudaremos a teoria de semigrupos de operadores não lineares contínuos, cujo
objetivo central é analisar a dinâmica das soluções de problemas de Cauchy não lineares autônomos.
Esse arcabouço teórico, também conhecido como teoria de sistemas dinâmicos autônomos em
dimensão infinita, amplia de maneira significativa a teoria de semigrupo de operadores lineares
limitados desenvolvida no Capítulo 2, permitindo compreender o comportamento de fenômenos
mais realistas, nos quais a presença de não linearidades desempenha papel essencial.

Ao contrário do caso linear, em que a análise assintótica das soluções se baseia em critérios
espectrais e no estudo da estabilidade de semigrupos, conduzindo, na maioria das vezes, ao decai-
mento exponencial ou polinomial em direção à origem, no caso não linear, o comportamento de
longo prazo das soluções revela uma rica estrutura geométrica. Em particular, as soluções deixam
de tender, em geral, a um único ponto (a origem) e passam a ser atraídas por conjuntos compactos
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invariantes especiais, denominados atratores.
Mostraremos como a teoria de semigrupos de operadores não lineares caracteriza o compor-

tamento assintótico do sistema. O conceito-chave será o de atrator global, um conjunto compacto,
invariante e atrativo que resume o regime permanente do sistema. Esse atrator contém todas as
órbitas limite do sistema e fornece uma descrição qualitativa completa da sua dinâmica a longo
prazo. A existência de tal atrator frequentemente está vinculada a duas propriedades fundamentais
do semigrupo: a dissipatividade (existência de um conjunto absorvente que atrai todas as órbitas
limitadas) e a compacidade assintótica. Esta última garante que as órbitas possuem subsequências
convergentes para tempos grandes, assegurando a compacidade do atrator.

No caso linear, o atrator global se reduz a um único ponto (tipicamente a origem do espaço
de fase X ), ou algum compacto contendo a origem, enquanto, no contexto não linear, ele pode
apresentar geometria mais complexa, revelando novos padrões de estabilidade e organização do
sistema dinâmico. Outra estrutura importante a ser explorada é a dos semigrupos gradientes, que
são aqueles munidos de uma função de Lyapunov estrita. Esta função, que decresce ao longo das
trajetórias, permite identificar o atrator global como a variedade instável do conjunto dos pontos de
equilíbrio, fornecendo uma caracterização precisa de sua geometria e dinâmica.

Além disso, abordaremos a propriedade de quase estabilidade, uma ferramenta poderosa para
analisar a dinâmica no atrator. Um semigrupo quase-estável admite estimativas que permitem provar
a finitude da dimensão fractal do atrator global e obter ganhos de regularidade para as trajetórias
completas contidas nele, indo além da mera existência do objeto atrator.

Os conceitos discutidos nesta seção serão fundamentais para o estudo da dinâmica do sistema
(5.3) (5.6), que será desenvolvido no Capítulo 5, especialmente na demonstração da existência de
um atrator global para esse problema.

Considere o problema de Cauchy não linear:{
u′(t ) = F (u(t )); t > 0

u(0) = u0

, (3.1)
onde F : X → X é um operador contínuo e X é um espaço de Banach.

Suponhamos que o problema (3.1) é bem colocado, isto é, que ele admite uma única solução
global u : [0,+∞) → X . Assim, podemos definir uma coleção {T (t )}t≥0 de operadores contínuos (não
necessariamente lineares), da seguinte forma:

T (t ) : X −→ X

u0 7−→ u(t ),

para cada t ≥ 0.
Observe que:

(i) T (0) = I , onde I : X → X é o operador identidade.



64 Capítulo 3. Dinâmica Não Linear Autônoma e Não-Autônoma

(ii) T (t + s) = T (t )◦T (s); ∀t , s ≥ 0.
Com efeito, dado u0 ∈ X , temos T (0)u0 = u(0) = u0. Logo S(0) = I . Além disso, definindo

v(t ) = u(t + s), temos que v ′(t ) = u′(t + s) = F (u(t + s)) = F (v(t )) para todo t > 0, e v(0) = u(s) ∈ X .
Logo:

(T (t )◦T (s))u0 = T (t ) (T (s)u0) = T (t )u(s) = v(t ) = u(t + s) = T (t + s)u0; ∀t , s ≥ 0.

Portanto T (t + s) = T (t )◦T (s); ∀t , s ≥ 0.
As propriedades (i) e (ii) acimam sugerem uma teoria de semigrupos para operadores contínuos

relacionados a problemas de Cauchy não lineares. O foco dessa teoria é entender o comportamento
do semigrupo {T (t )}t≥0 para t suficientemente grande, e consequentemente, a dinâmica da solução
u(t ) = T (t )u0, para cada u0 ∈ X .

O comportamento a longo prazo de uma solução é sempre descrito por um conjunto invariante
A ⊂ X , para o qual a órbita u(t ) converge quando t →+∞. Mais precisamente:

T (t )A = A; ∀t ≥ 0 e di stânci a (u(t ), A) → 0, quando t →+∞. (3.2)
Veremos que para sistemas dissipativos existem conjuntos A ⊂ X satisfazendo (3.2), e fazem

parte de um “grande"conjunto compacto e invariante A que atrai todas as orbitas. Esse conjunto
será chamado de atrator global do semigrupo {T (t )}t≥0.

3.1.1 Semigrupo de Operadores Contínuos Sobre um Espaço Métrico

Definição 3.1
Seja X um espaço métrico. Uma família de operadores contínuos {T (t )}t≥0 de X sobre X chama-se
um semigrupo em X se satisfaz as seguinte propriedades:

(i) T (0) = I , onde I : X → X é o operador identidade.
(ii) T (t1 + t2) = T (t1)T (t2); ∀t1, t2 ≥ 0.
(iii) A aplicação

T : [0,+∞)×X −→ X

(t , x) 7−→ T (t )x,

é contínua.
Semigrupos são também chamados sistemas dinâmicos autônomos. Observe que, da condição

(ii) da definição de semigrupo, segue que o semigrupo é comutativo com respeito a composição. De
fato, dados t1, t2 ≥ 0, temos T (t1)T (t2) = T (t1 + t2) = T (t2 + t1) = T (t2)T (t1).
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Os operadores T (t ) : X → X podem não ser injetivos. Quando o semigrupo {T (t )}t≥0 é tal que,
para cada t ≥ 0, o operador T (t) : X → X é um homeomorfismo, então, para cada t ≤ 0, define-se
U (s) = T (−s)−1 : X → X . A família {U (s)}s∈R, com{

U (s) = T (s), se s ≥ 0

U (s) = T (−s)−1 se s < 0
,

é chamada grupo em X .
A órbita ou trajetória do semigrupo {T (t )}t≥0 que começa em u0 ∈ X é o conjunto⋃

t≥0
T (t )u0.

Do mesmo modo, quando existe, uma órbita ou trajetória que termina em u0 é um conjunto de
pontos ⋃

t≥0
{ξ(s)},

onde ξ : (−∞,0] → X é uma aplicação contínua tal que ξ(0) = u0 e ξ(t + s) = T (t)u0, para todos os
números reais s e t tais que s ≤ 0, t ≥ 0 e s+t ≤ 0 (ou de forma equivalente u(t ) ∈ T (−t )−1u0; ∀t ≥ 0).

As órbitas que começam ou terminam em u0 são também chamadas órbitas positivas ou
negativas através de u0. Uma trajetória completa (ou órbita global) passando por u0 é a união das
órbitas positivas e negativas através de u0.

A seguir formalizamos os conceitos discutidos acima.
Definição 3.2
Sejam X um espaçométrico e {T (t )}t≥0 um semigrupo em X . Uma aplicação ξ :R→ X é uma solução
global para {T (t )}t≥0, quando

T (t )ξ(s) = ξ(t + s); ∀t ≥ 0 e ∀s ∈R.

O conjunto imagem ξ(R) = {ξ(s); s ∈R} é chamada órbita global ou órbita completa da solução
global ξ.
Definição 3.3
Sejam X um espaço métrico e {T (t)}t≥0 um semigrupo em X . Dado um conjunto B ⊂ X e t0 ≥ 0,
definimos a semiórbita positiva do conjuno B à direita de t0 relativa ao semigrupo {T (t )}t≥0 por:

γ+t0
(B) = {S(t )x; t ≥ t0 e x ∈ B}.

Quando t0 = 0, escrevemos γ+0 (B) simplesmente por γ+(B) e a chamamos apenas de Semiórbita
positiva do conjuno B relativa ao semigrupo {T (t )}t≥0.

A seguir definiremos uma classe de subconjuntos do espaço de fase X que preservam a
dinâmica do semigrupo {T (t )}t≥0.
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Definição 3.4
Sejam X umespaçométrico e {T (t )}t≥0 um semigrupo em X . Um subconjunto A ⊂ X é dito invariante
pelo semigrupo {T (t )}t≥0 quando

T (t )A := {T (t )x; x ∈ A} = A; ∀t ≥ 0.

Quando temos apenas T (t )A ⊂ A; ∀t ≥ 0, dizemos que o conjunto A é positivamente invariante por
{T (t )}t≥0. O conjunto A é dito negativamente invariante por {T (t )}t≥0 quando T (t )A ⊃ A; ∀t ≥ 0.
Proposição 3.5
A união de qualquer família de conjuntos invariantes por um semigrupo é também um conjunto
invariante por esse semigrupo.
Demonstração. Sejam {T (t )}t≥0 um semigrupo sobre um espaço métrico X e (Aλ)λ∈L uma família
arbitrária de conjuntos invariantes pelo semigrupo {T (t )}t≥0. Considere o conjunto A = ⋃

λ∈L
Aλ. Então

T (t )A = T (t )

(⋃
λ∈L

Aλ

)
= ⋃
λ∈L

T (t )Aλ =
⋃
λ∈L

Aλ = A; ∀t ≥ 0.

A interseção de conjuntos invariantes não é necessariamente um conjunto invariante. Contudo,
observe que, se T (t ) : X → X é injetivo para todo t ≥ 0, então a interseção arbitrária de conjuntos
invariantes é também um conjunto invariante. Portanto em um grupo de operadores contínuos essa
propriedade é válida.

As órbitas globais de um semigrupo são conjuntos invariantes e as soluções globais são aplica-
ções contínuas, como veremos a seguir.
Proposição 3.6
Toda órbita global de um semigrupo é um conjunto invariante para esse semigrupo.
Demonstração. Sejam {T (t )}t≥0 um semigrupo sobre um espaço métrico X e ξ :R→ X uma solução
global para {T (t )}t≥0. Queremos mostrar que T (t )ξ(R) = ξ(R); ∀t ≥ 0. Para tal, seja t ≥ 0.

Se u ∈ T (t )ξ(R), então u = T (t )x para algum x = ξ(s0), com s0 ∈R. Assim
u = T (t )x = T (t )ξ(s0) = ξ(t + s0) ∈ ξ(R).

Logo T (t )ξ(R) ⊂ ξ(R).
Reciprocamente, se u ∈ ξ(R), então u = ξ(s0) para algum s0 ∈R. Escolha o ponto x = ξ(s0− t ) ∈

ξ(R). Observe que:
T (t )x = T (t )ξ(s0 − t ) = ξ(t + s0 − t ) = ξ(s0) = u.

Logo u ∈ T (t )ξ(R). Portanto ξ(R) ⊂ T (t )ξ(R), o que completa a prova.
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Proposição 3.7
Toda solução global de um semigrupo é uma aplicação contínua.
Demonstração. Sejam {T (t)}t≥0 um semigrupo sobre um espaço métrico (X ,d) e ξ : R→ X uma
solução global para {T (t)}t≥0. Do item (iii) da definição de semigrupo, dado ε> 0 e x0 ∈ X , existe
δ> 0 tal que

d (T (t )x,T (t0)x0) ≤ ε, sempre que (t , x) ∈ [0,+∞)×X e |t − t0|+d(x, x0) < δ. (3.3)
Assim, dado s0 ∈ R, fixe τ ∈ R tal que 0 < δ < s0 − τ. Se s ∈ R é tal que |s − s0| < δ, então

s −τ, s0 −τ> 0. Definindo t = s −τ, t0 = s0 −τ e x0 = ξ(τ), temos que:
|s − s0| = |t +τ− t0 −τ| = |t − t0| = |t − t0|+d(x0, x0) < δ.

Então, de (3.3) segue que
d(ξ(s),ξ(s0)) = d (ξ(s −τ+τ),ξ(s0 −τ+τ)) = d (T (s −τ)ξ(τ),T (s0 −τ)ξ(τ))

= d (T (t )x0,T (t )x0) ≤ ε.

Portanto ξ :R→ X é contínua, como queríamos provar.
Os conceitos de conjunto invariante e de solução global estão conectados por meio do próximo

resultado.
Teorema 3.8
Seja {T (t )}t≥0 um semigrupo sobre um espaço métrico X . Um subconjunto A ⊂ X é invariante pelo
semigrupo {T (t )}t≥0, se e somente se é uma reunião de órbitas globais de {T (t )}t≥0.
Demonstração. Como vimos na Proposição 3.6, toda órbita global é um conjunto invariante. Então,
se A é uma reunião de órbitas globais, então segundo a Proposição 3.5, A é invariante.

Reciprocamente, suponhamos que A seja um conjunto invariante. Considere qualquer ponto
x0 ∈ A. Como A é invariante, temos que T (t )x0 ∈ A para todo t ≥ 0. Além disso (ainda pela invariância
de A), existe um ponto x−1 ∈ A tal que x0 = T (1)x−1. Analogamente, existe um ponto x−2 ∈ A tal
que x−1 = T (1)x−2. Continuando o processo indutivamente, para cada n ∈N, obtemos um ponto
x−n ∈ A tal que x−n+1 = T (1)x−n . Portanto T (n)x−n = x0. Mais geralmente, por indução segue que:

T (n)xm = xn−m , sempre que m ≥ n.

Agora, defina ξ :R→ X por:
ξ(s) :=

{
T (s)x0, se s ≥ 0

T (s +n)x−n se −n ≤ s < 1−n
,
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Por construção, temos ξ(s) ∈ A para cada s ∈ R. Assim, resta apenas mostrar que ξ é uma
solução global para {T (t )}t≥0.

Sejam t ≥ 0 e s ∈R. Se s ≥ 0, então
T (t )ξ(s) = T (t )T (s)x0 = T (t + s) = ξ(t + s), pois t + s ≥ 0.

No caso em que s < 0, existe n0 ∈N tal que −n0 ≤ s < 1−n0. Note que t + s ≥ 0 ou t + s < 0.
No primeiro caso, temos:

T (t )ξ(s) = T (t )T (s +n0)x−n0 = T ([t + s]+n0)x−n = T (t + s)T (n0)x−n0 = T (t + s)x0 = ξ(t + s).

Finalmente, no caso em que s < 0 e t +s < 0, considere n1 ∈N tal que n1 ≤ t +s < 1−n1. Como
s < t + s, temos que n1 ≤ n0 Então

T (t )ξ(s) = T (t )T (s +n0)x−n0 = T (t + [s +n0])x−n0 = T ([t + s +n1]+ [n0 −n1])x−n0

= T (t + s +n1)T (n0 −n1)x−n0

= T (t + s +n1)x−n1

= ξ(t + s).

Portanto T (t)ξ(s) = ξ(t + s); ∀t ≥ 0 e ∀s ∈R. Logo ξ é uma solução global para o semigrupo
{T (t )}t≥0, o que completa a prova.

Quando se deseja estudar o comportamento assintótico dos sistemas dinâmicos, uma ferra-
menta bastante útil é a semidistância de Hausdorff, a qual será a “medida” responsável por descrever
a noção de proximidade entre os objetos relacionados à dinâmica do sistema.
Definição 3.9
Seja (X ,d) um espaço métrico. Dados dois conjuntos não vazios A,B ⊂ X , definimos a semidistância
de Hausdorff entre A e B (nessa ordem) por:

di stX (A,B) := sup
x∈A

inf
y∈B

d(x, y).

Um fato que faz da semidistância de Hausdorff uma ferramenta útil nesta teoria é que ela
satisfaz a desigualdade triangular. Contudo, ela não é simetrica. Além disso di st (A,B) = 0 se, e
somente se, A ⊂ B . Assim por meio dessa semidistância é possível definir uma boa noção de atração
em um semigrupo.

Para mais detalhes sobre a semidistância de Hausdorff, vide (FEDERER, 1969).
Definição 3.10
Seja {T (t )}t≥0 um semigrupo sobre um espaçométrico (X ,d) e sejam A,B ⊂ X . Diz-se que o conjunto
A atrai B (ou que B é atraído por A) por meio (ou ação) do semigrupo {T (t )}t≥0 quando

lim
t→+∞di stX (T (t )B , A) = 0.
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Mais precisamente, dado ε> 0 existe t0 > 0 (que depende de ε e de B ) tal que:
T (t )B ⊂ Vε(A) := ⋃

x∈A
Bε(x) = {x ∈ X ;d(x, A) < ε}; ∀t > t0. (3.4)

Um conjunto A ⊂ X é dito atrativo se atrai todos os subconjuntos limitados de X .
No que segue definimos o conceito mais importante desta seção.

Definição 3.11
Seja {T (t)}t≥0 um semigrupo sobre um espaço métrico X . Um subconjunto A ⊂ X chama-se um
atrator global (ou simplesmente atrator) para o semigrupo {T (t )}t≥0 se satisfaz as seguintes condi-
ções:

(i) A é um subconjunto compacto de X .
(ii) A é invariante pelo semigrupo {T (t )}t≥0.
(iii) A atrai todos os subconjuntos limitados de X pela ação do semigrupo {T (t )}t≥0.

Proposição 3.12
Seja {T (t )}t≥0 um semigrupo sobre umespaçométrico X . Se existir umatrator globalA para {T (t )}t≥0,
então ele é único.
Demonstração. Sejam A1 e A2 dois atratores para {T (t )}t≥0. Da condição (i) da definição de atrator,
segue queA2 é compacto (em particular é limitado). ComoA1 é atrator, da condição (iii), temos que:

lim
t→+∞di stx (T (t )A2,A1) = 0.

Contudo, A2 é invariante (condição (iii)). Logo
0 = lim

t→+∞di stx (T (t )A2,A1) = lim
t→+∞di stx (A2,A1) = di stx (A2,A2) .

Portanto A2 ⊂A1 =A1, uma vez que A1 é fechado, pois é compacto.
De forma análoga, invertendo os papéis de A1 e A2 np argumento anterior, conclui-se que

A1 ⊂A2, o que completa a prova.
Proposição 3.13
Seja {T (t )}t≥0 um semigrupo sobre um espaço métrico X . Se {T (t )}t≥0 possui atrator globalA, então
A se exprime como a reunião de todos os conjunto invariantes e limitados de X .
Demonstração. SejaB a reunião de todos os conjuntos invariantes por {S(t )}t≥0 e limitado em X .
Como A é atrator, em particular e invariante e limitado, temos A⊂B. Reciprocamente, seja B ⊂ X

um conjunto invariante e limitado. Como A é o atrator global, então A atrai B . Então
0 = lim

t→+∞di stX (T (t )B ,A) = di stX (B ,A) .

Logo B ⊂A=A, e portantoB⊂A, como queriamos mostrar.
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Corolário 3.14
Se um semigrupo {T (t )}t≥0 em um espaço métrico X possui atrator globalA, entãoA é a reunião de
todas as órbitas globais limitadas de {T (t )}t≥0 .
Demonstração. Basta combinar o Teorema 3.8 com a Proposição 3.13.
Definição 3.15
Sejam X um espaço métrico e {T (t )}t≥0 um semigrupo em X .

(i) {T (t )}t≥0 diz-se limitado, quando a semiórbita positiva de qualquer subconjunto limitado de
X é um limitado de X .

(ii) {T (t)}t≥0 diz-se eventualmente limitado, quando para cada subconjunto limitado de B ⊂ X ,
existe t0 ≥ 0 (dependendo do conjunto B ) tal que γ+t0

(B) é um conjunto limitado em X .
Observamos que, se um semigrupo {T (t)}t≥0 sobre um espaço métrico X admite atrator A,

então ele é eventualmente limitado. De fato, dado o conjunto limitado B ⊂ X , temos que A atrai B ,
e portanto, tomando ε= 1 em (3.4), temos que γ+t0

(B) ⊂ V1 (A). Como V1 (A) é limitado em X , segue
que γ+t0

(B) também o é. Em particular, se ξ :R→ X é uma solução global para {T (t )}t≥0, então para
todo número real t , o conjunto {ξ(s); s ≥ t } é limitado.

3.1.2 Conjuntos ω–limites e Existência de Atrator Global

O objetivo desta subseção é obter condições suficientes e práticas do ponto de vista analítico
para existência de atrator global para um semigrupo. Começaremos definido o conceito fundamental
para esse objetivo.

Definiremos agora o conceito de conjunto ω–limite que a peça fundamental do atrator global
de um semigrupo.
Definição 3.16
Sejam {T (t )}t≥0 um semigrupo sobre um espaço métrico X e B ⊂ X . O conjunto ω–limite de B com
respeito ao semigrupo {T (t )}t≥0 é definido por:

ω(B) = ⋂
t≥0

(⋃
τ≥t

T (τ)B

)
= ⋂

t≥0
γ+t (B).

Lema 3.17
Sejam {T (t )}t≥0 um semigrupo sobre um espaço métrico X e B ⊂ X . Entãoω(B) é fechado e x ∈ω(B)

se, e somente se, existem sequências (tn)n∈N em [0,+∞) e (xn)n∈N em X tais que
tn →+∞, xn ∈ B ; ∀n ∈N e x = lim

n→∞T (tn)xn .

Demonstração. (Ver (ROBINSON, 2001), p. 265).
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Teorema 3.18
Sejam X um espaço métrico e {T (t)}t≥0 um semigrupo em X . O semigrupo {T (t)}t≥0 admite um
atrator global A se, e somente se, existe um conjunto compacto atrativo K . Nesse caso, A=ω(K ).
Demonstração. (Ver (ROBINSON, 2011), p. 117).

Apresentamos agora, uma caracterização alternativa e mais analítica dos atratores em termos
de órbitas limitadas globais. Isso mostra que, embora esses objetos tenham uma definição em
termos de dinâmica, eles são de interesse do ponto de vista das Equações Difereciais.
Corolário 3.19
O atrator global A de um semigrupo {T (t )}t≥0 sobre um espaço de Banach (X ,∥ ·∥), quando existe, é
dado por:

A= {u0 ∈ X ; existe uma solução global ξ :R→ X , com ξ(0) = u0 tal que ∥ξ(s)∥ ≤ N ; ∀s ∈R,

para algum M > 0}.

Demonstração. (Ver (ROBINSON, 2011), p. 118).
Observe que para u0 ∈ X , a única solução global do problema de (não linear) de Cauchy (3.1) é

dada por u = ξ|[0,+∞) : [0,+∞) → X .
Definiremos agora a noção mais forte e mais prática do que o conceito de atração.

Definição 3.20
Sejam X um espaçométrico, {T (t )}t≥0 um semigrupo em X e A e B dois subconjuntos de X . Dizemos
que A absorve o conjunto B pela ação do semigrupo {T (t )}t≥0, quando existe t0 ≥ 0 (dependente de
B ) tal que

T (t )B ⊂ A, sempre que t ≥ t0.

Um conjunto A ⊂ X que absorve todos os subconjuntos limitados de X é chamado conjunto
absorvente. Note que, todo conjunto absorvente é um conjunto atrativo.
Definição 3.21
Seja {T (t )}t≥0 um semigrupo sobre um espaço métrico X . Dizemos que {T (t )}t≥0 é limitado dissipa-
tivo ou simplemente dissipativo, quando existe um subconjunto limitado B de X que atrai cada um
dos subconjuntos limitados de X sob a ação de {T (t )}t≥0.
Corolário 3.22
Sejam {T (t)}t≥0 um semigrupo limitado dissipativo sobre um espaço métrico X . Se o conjunto
absorvente B é compacto, então o semigrupo {T (t )}t≥0 admite (um único) atrator global dado por:

A=ω(B).
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Demonstração. (Ver (ROBINSON, 2001), p. 269).

É importante observar que nem sempre é prático do ponto de vista das aplicações encontrar
conjuntos compactos. Contudo, existe uma noção de compacidade mais computacional (analítica)
para um semigrupo, que também garante a existência de atrator. A saber, a de compacidade
assintótica.
Definição 3.23
Dizemos que um semigrupo {T (t)}t≥0 sobre um espaço métrico X é assintoticamente compacto
quando para todo sequência limitada (xn)N em X e toda sequência (tn)n∈N de números reais não
negativos, com tn →+∞, a sequência (T (tn)xn)n∈N de X possui uma subsequência convergente.
Teorema 3.24
Sejam X um espaço métrico completo e {T (t)}t≥0 um semigrupo sobre X . Se {T (t)}t≥0 é limitado
dissipativo e assintoticamente compacto, então {T (t )}t≥0 admite um único atrator globalA dado por

A=ω(B),

onde B é qualquer conjunto limitado atrativo.

Demonstração. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 34).

Finalizaremos a seção apresentando uma condição suficiente e analítica para compacidade
assintótica de um semigrupo.
Definição 3.25
Sejam (X ,d) um espaço métrico e B ⊂ X um conjunto limitado. Um aplicação f : X ×X →C é dita
contrativa sobre B ×B se para qualquer sequência (xn)n∈N ⊂ B , temos:

lim
n→∞ inf lim

m→∞sup f (xn , xm) = 0.

Proposição 3.26
Sejam {T (t)}t≥0 um semigrupo sobre um espaço métrico completo (X ,d) e B ⊂ X um conjunto
absorvente. Se dado qualquer ε> 0, existe um número real positivo t∗ > 0 (dependente de B e de ε)
e uma função contrativa ft∗ : B ×B ⊂ X ×X →C sobre B ×B tal que:

d
(
T (t∗)x1,T (t∗)x2

)≤ ε+ ft∗(x1, x2); ∀x1, x2 ∈ B ,

então o semigrupo {T (t )}t≥0 é compactamente assintótico em X .

Demonstração. (Ver (CHUESHOV; LASIECKA, 2008), Proposição 2.10).
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3.1.3 Semigrupo Gradiente e Função de Lyapunov

Definição 3.27
Seja {T (t)}t≥0 uma semigrupo de operadores contínuos sobre um espaço métrico X e seja Y ⊂ X

um conjunto positivamente invariante por {T (t )}t≥0. Um funcional contínuo Φ : Y →R é chamado
função de Lyapunov para {T (t )}t≥0 sobre Y se a aplicação t 7−→Φ

(
T (t )y

) é não crescente, qualquer
que seja para cada y ∈ Y .

Se Φ(
T (t )y

)=Φ(y) para todo t > 0 e algum y ∈ Y , então y é um ponto fixo de {T (t )}t≥0 (isto
é, S(t )y = y ; ∀t > 0), dizemos que a função de Lyapunov Φ é estrita sobre Y .

Um semigrupo gradiente ({T (t )}t≥0,Φ) é um semigrupo {T (t )}t≥0 munido de uma função de
Lyapunov Φ : X →R estrita sobre o espaço de fase X .
Teorema 3.28
Seja ({T (t )}t≥0,Φ) um semigrupo gradiente e assintoticamente suave sobre um espaço de Banach X .
Suponha que

(i) A função de Lyapunov Φ : X →R é limitada por cima sobre qualquer subconjunto limitado de
X .

(ii) O conjunto ΦR = {x ∈ X ; Φ(x) < R} é limitado, qualquer que seja R > 0.
(iii) O conjunto dos pontos fixos (ou estacionários) N = {x ∈ X / T (t )x = x; ∀t > 0} é limitado.

Então o semigrupo ({T (t )}t≥0,Φ) admite um atrator global dado por A = M u(N ), onde
M u(N ) é a variedade não estável proveniente de N como o conjunto de todos os x ∈ X tal
que exista uma trajetória completa γ= {u(s); s ∈R} satisfazendo:

u(0) = x e lim
s→−∞di stX (u(s),N ) = 0.

Demonstração. (Ver (CHUESHOV; LASIECKA, 2010), Corolário 7.5.7).
Definição 3.29 (Quase estabilidade)
Sejam X , Y e Z espaços de Banach Reflexivos tais que X

comp
,→ Y . Considere o espaço H = X ×Y ×Z

munido da norma definida por:
∥y∥2

H = ∥u0∥2
X +∥u1∥2

Y +∥θ0∥2
Z ; y = (u0,u1,θ0). (3.5)

Seja {T (t )}t≥0 um semigrupo de operadores contínuos sobre H com operador de evolução da
forma:

T (t )y = (u(t ),ut (t ),θ(t )); y = (u0,u1,θ0) ∈ H (3.6)



74 Capítulo 3. Dinâmica Não Linear Autônoma e Não-Autônoma

satisfazendo: u ∈C 0 ([0,+∞); X )∩C 1 ([0,+∞);Y ) ,

θ ∈C 0 ([0,+∞); Z ) .
(3.7)

Dizemos que o semigrupo {T (t )}t≥0 é assintoticamente quase-estável sobre um conjunto B ⊂ H

se existe uma seminorma compacta µX (·) sobre o espaço X e funções a,b,c : [0, t ) →R não negativas
tais que:

(i) a e c são localmente limitadas.
(ii) b ∈ L1(0,+∞) e lim

t→+∞b(t ) = 0.
(iii) Para todo y1, y2 ∈ B e t > 0, tem-se

∥T (t )y1 −T (t )y2∥2
H ≤ a(t )∥y1 − y2∥2

H

e
∥T (t )y1 −T (t )y2∥H ≤ b(t )∥y1 − y2∥2

H + c(t ) · sup
0≤s≤t

[
µX

(
u1(s)−u2(s)

)]2
,

onde T (t )y j =
(
u j (t ),u j

t (t ),θ j (t )
).

Teorema 3.30
Seja {T (t )}t≥0 um semigrupo de operadores sobre o espaço H = X ×Y ×Z , onde X ,Y , Z são espaços
de Banach Reflexivos e X

comp
,→ Y . suponha que as condições (3.5)–(3.7) são satisfeitas. Se {T (t )}t≥0

admite um atrator global A e é quase-estável sobre A, então o atrator A tem dimensão fractal finita.
Demonstração. (Ver (CHUESHOV; LASIECKA, 2010), Teorema 7.9.6).
Teorema 3.31
Seja {T (t )}t≥0 um semigrupo de operadores sobre o espaço H = X ×Y ×Z , onde X ,Y , Z são espaços
de Banach Reflexivos e X

comp
,→ Y . suponha que as condições (3.5)–(3.7) são satisfeitas. Se {T (t )}t≥0

admite um atrator global A e é quase-estável sobre A e c∞ := sup
t≥0

c(t) <∞ (ver Definição 3.29),
então qualquer trajetória completa {(u(s),us(s),θ(s)); s ∈R} que pertence ao atrator global satisfaz
as seguintes propriedades de regularidade:

us ∈ L∞ (R; X )∩C 0 (R; Y )

uss ∈ L∞ (R; Y )

θs ∈ L∞ (R; Z )

(3.8)

Além disso, existe R > 0 tal que:
∥us(s)∥2

X +∥uss(s)∥2
Y +∥θs(s)∥2

Z ≤ R; ∀s ∈R,

onde R depende da constante C∞, da seminorma µX na Definição 3.29, e também das propriedades
de imersão de X e Y .
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Demonstração. (Ver (CHUESHOV; LASIECKA, 2010), Teorema 7.9.8).

3.2 Teoria de Processos de Evolução

Nesta seção, desenvolveremos a teoria de processos de evolução, cujo objetivo central é
analisar a dinâmica de problemas de Cauchy não autônomos, isto é, problemas em que o operador
responsável pela evolução do sistema depende explicitamente do tempo. Esse arcabouço teórico,
também conhecido como teoria de sistemas dinâmicos não autônomos em dimensão infinita, amplia
de maneira decisiva a teoria de semigrupos estudada anteriormente, permitindo a compreensão
de fenômenos mais realistas, nos quais as leis que regem a dinâmica do sistema não permanecem
invariantes no tempo.

Ao contrário do caso autônomo, no qual a evolução temporal pode ser descrita por um se-
migrupo {T (t)}t≥0, dependendo apenas do intervalo de tempo decorrido (t − s), no cenário não
autônomo tal estrutura se mostra insuficiente, pois a dinâmica passa a depender de dois instantes de
tempo distintos: o inicial s e o final t . Para lidar com essa complexidade, introduziremos o conceito
de processo de evolução, isto é, uma família de operadores {P (t , s)}t≥s que generaliza a noção de
semigrupo e captura a dependência explícita do tempo.

Mostraremos como essa teoria descreve demaneira qualitativa a dinâmica pullback de sistemas
não autônomos, sendo que o conceito de atrator pullback desempenha, no contexto não autônomo,
papel análogo ao do atrator global em sistemas autônomos. Enquanto o atrator global captura o
regime permanente quando t →+∞, o atrator pullback reflete a influência de condições iniciais
vindas do passado remoto (s →−∞), adaptando-se dinamicamente às variações externas no tempo
e fornecendo uma caracterização robusta do comportamento de longo prazo.

Desenvolveremos condições para a existência de atratores pullback, destacando o papel crucial
da dissipatividade pullback (existência de uma família de conjuntos absorventes) e da compacidade
assintótica pullback, que garante a convergência de subsequências para tempos iniciais tendendo a
−∞. Exploraremos também a noção de conjuntos ω-limite pullback, que constituem a base para a
construção do atrator.

Um aspecto fundamental desta teoria é a generalização proporcionada pelo conceito de
universo de subconjuntos D, que permite definir atratores pullback com bacias de atração mais
amplas. Essa abordagem nos permitirá estudar a atração de famílias de conjuntos dependentes
do tempo, indo além da atração de conjuntos limitados fixos. Apresentaremos resultados sobre D-
atratores pullback, incluindo condições suficientes para sua existência baseadas na D-compacidade
assintótica pullback.

Os conceitos abordados nesta seção serão fundamentais para estudar a dinâmica pullback do
sistema (6.2)–(6.6), que será tratado no Capítulo 6, especialmente na demonstração da existência de
um D– atrator pullback para esse problema.
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Considere o problema de Cauchy não linear e não autônomo:{
u′(t ) = F (t ,u(t )); t > τ
u(τ) = uτ

, (3.9)
onde F :R×X → X é uma aplicação contínua e X é um espaço de Banach.

Suponhamos que o problema (3.9) seja bem colocado, isto é, para cada τ ∈ R e uτ ∈ X , ele
admite uma única solução global u : [τ,+∞) → X . Dessa forma, podemos definir uma família de
operadores contínuos (não necessariamente lineares) {P (t ,τ)}t≥τ, da seguinte forma:

P (t ,τ) : X −→ X

uτ 7−→ u(t ),

para cada t ≥ τ.
Observe que:

(i) P (τ,τ) = I ;∀τ ∈R, onde I : X → X é o operador identidade.
(ii) P (t ,τ) = P (t , s)◦P (s,τ); ∀t ≥ s ≥ τ.

Com efeito, dado uτ ∈ X , temos P (τ,τ)uτ = u(τ) = uτ, logo P (τ,τ) = I . Além disso, se v(t ) =
P (t , s)us e us = P (s,τ)uτ, então v(t ) resolve:{

v ′(t ) = F (t , v(t )); t > s

v(s) = us

.

Como u(s) = P (s, t)us = us , a unicidade da solução implica que v(t) = u(t) para cada t ∈ R, com
t ≥ s ≥ τ. Assim:

P (t , s)◦P (s,τ)uτ = P (t ,τ)uτ; ∀uτ ∈ X .

Portanto P (t , s)◦P (s,τ) = P (t ,τ); ∀t ≥ s ≥ τ.
Essas propriedades caracterizam um processo evolutivo (ou sistema de evolução), que ge-

neraliza a noção de semigrupo para o caso não autônomo. O objetivo dessa teoria é estudar o
comportamento assintótico das soluções u(t ) = P (t ,τ)xτ, quando t →∞, analisando a dinâmica do
sistema em relação a conjuntos invariantes.

Em sistemas não autônomos, o comportamento de longo prazo é frequentemente descrito
por uma família {A(t )}t∈R de subconjuntos de X pullback invariantes, isto é:

P (t ,τ)A (τ) =A (t ); ∀t ≥ τ, (3.10)
que atrai as órbitas no sentido pullback:

di stânci a (u(t ), A(t )) → 0, quando τ→−∞; ∀t ∈R. (3.11)
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Para sistemas dissipativos não autônomos, existe frequentemente um atrator pullback A(t ),
que é compacto, invariante e atrai todas as soluções uniformemente em certas classes de funções.
Esse conceito generaliza o atrator global do caso autônomo e desempenha um papel central na
análise da dinâmica assintótica de sistemas dependentes do tempo.

Neste contexto, estudaremos as propriedades do processo evolutivo {P (t ,τ)}t≥τ, a existência
e estrutura de atratores pullback, e suas implicações na dinâmica não autônoma.

3.2.1 Processos de Evolução

Definição 3.32
Seja (X ,d) Um espaço métrico. Um Processo de Evolução em X é uma família {P (t , s); t ≥ τ} de
operadores contínuos P (t , s) : X −→ X , satisfazendo as seguintes propriedades:

(i) P (t , t ) = I ; ∀t ∈R, onde I : X → X é o operador identidade.
(ii) P (t , s) = P (t ,τ)P (τ,τ); ∀t ≥ τ≥ s.
(iii) A aplicação P :∆×X → X dado por P (t , s)x é contínua, em que ∆= {(t , s) ∈R2; t ≥ s}.

É comum denotar um processo evolutivo simplemente por {P (t , s)}t≥s . Processos evolutivos
são também chamados sistemas dinâmicos não-autônomos. Essa nomeclatura tem relação com
os semigrupos que são comumente chamados de sistemas dinâmicos autônomos. No que segue
exploraremos a relação entre processos e semigrupos.

Observe que, a partir de um semigrupo de operadores contínuos {T (t )}t≥0 (ver Definição 3.1),
pode-se definir um processo evolutivo correspondente, fazendo PT (t , s) := T (t − s). De fato:

(i) PT (t , t ) = T (t − t ) = T (0) = I .
(ii) PT (t ,τ)PT (τ, s) = T (t −τ)T (τ− s) = T ((t −τ)+ (τ− s)) = T (t − s) = PT (t , s); ∀t ≥ τ≥ s.
(iii) Sejam (t0, s0, x0) ∈ ∆× X e (tn , sn , xn)n∈N uma sequência em ∆× X tal que (tn , sn , xn) →

(t0, s0, x0). Então:
d (PT (tn , sn)xn ,PT (t0 − s0)x0) = d (T (tn − sn)xn ,T (t0, s0)x0) −→ 0.

Reciprocamente, a partir de um processo evolutivo tempo-independente, isto é um processo
{P (t , s)}t≥s que satisfaz a condição:

P (t , s) = P (t − s,0); ∀t ≥ s,

é possível definir uma semigrupo, fazendo TP (t ) := P (t ,0). De fato:
(i) TP (0) = P (0,0) = I .



78 Capítulo 3. Dinâmica Não Linear Autônoma e Não-Autônoma

(ii) Da condição de independência temporal, tem-se P (t , s) = P (t − s,0) = P (t +h − (s +h),0) =
P (t +h, s +h) para todo h ∈R e t ≥ s. Então

TP (r1 + r2) = P (r1 + r2,0) = P (r1 + r2,r2)P (r2,0) = P (r1 + r2 − r2,0)P (r2,0)

= P (r1,0)P (r2,0)

= TP (r1)TP (r2); ∀r1,r2 ≥ 0.

(iii) Sejam (t0, x0) ∈ [0,+∞)× X e (tn , xn)n∈N uma sequência em [0,+∞)× X tal que (tn , xn) →
(t0, x0). Então:

d (TP (tn)xn ,TP (t0)x0) = d (P (tn ,0)xn ,P (t0, )x0) −→ 0.

Definição 3.33
Seja {T (t )}t≥0 um semigrupo sob umespaçométrico X . O processo de evolução {PT (t , s)}t≥s , definido
por PT (t , s) = T (t − s) é chamado de processo induzido pelo semigrupo {T (t )}t≥0.
Observação 3.34
No inicio da primeira seção deste capítulo apresentamos o sistema CD de Kato, que garantia solução
para o problema de Cauchy não-autônomo. (ver Definição 2.23). O sistema CD de Kato pode ser
definido em um domínio triângular:

∆= {(t ,τ) ∈R2; t ≥ s}.

Nesse caso, uma tripla ({A(t )}t≥τ, X ,Y ) é um sistema CD de Kato, se X e Y são espaços de Banach
separáveis, com Y ⊂ X e para cada t ≥ τ, A(t ) : D(A(t )) ⊂ X → X é um operador linear, e satisfaz as
seguintes condições:

(i) Y está imerso continuamente e é denso em X e D(A(t )) = Y para todo t ≥ τ. Em particular, o
domínio D(A(t )) do operador linear A(t ) é independente de t .

(ii) Para cada t ≥ τ, o operador linear A(t ) : Y ⊂ X → X é gerador de um C0–semigrupo {St (s)}s≥τ
sobre X , e existem constantes M ≥ 1 e ω≥ 0 independentes de t , tais que

∥St (s)∥L (X ) ≤ Meωs ;∀t , s ≥ τ. (3.12)
(iii) A família A : [τ,+∞) →L (Y , X ) pertence ao espaço Li p∗ (τ,+∞;L (Y , X )). Equivalentemente,

temos que d

d t
A(t ) ∈ L∞∗ (τ,+∞;L (Y , X )),

Como foi observado na Observação 2.42, a condição (3.12)é difícil de ser verificada diretamente.
Então é desejável que existisse um critério prático e suficiente para obter essa condição. Um critério
conveniente é que X admita uma norma equivalente ∥ ·∥t tempo dependente que seja localmente
Lipschitziana. Isto é, existe c > 0 tal que:

∥x∥t

∥x∥s
≤ ec|t−s|, para todo t , s ≥ τ e para todo x ̸= 0 em X .
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Dado um sistema CD de Kato, ({A(t )}t≥τ, X ,Y ), existe um processo de evolução {P (t ,τ)}t≥s de
modo que a única solução branda do problema linear não-homogêneo:{

u′(t )− A(t )u = f (t ); t ≥ τ
u(τ) = uτ

, (3.13)
é dado por:

u(t ) = P (t ,τ)uτ+
∫ t

τ
P (t , s) f (s)d s,

onde f ∈ L1(τ,+∞; X ) e uτ ∈ X .
Sendouma solução forteu ∈C 0 ([τ,+∞);Y )∩C 1 ((τ,+∞); X ) .quandouτ ∈ Y e f ∈W 1,1(τ,+∞; X ).
Observe que o crescimento da solução é controlado pelas constantes uniforme da família

{{St (s)}s≥τ}t≥τ de semigrupos (condição (ii) da Definição 2.23), garantindo:
∥u(t )∥X ≤ Meω(t−τ)∥uτ∥X +M

∫ t

τ
eω(t−τ)∥ f (s)∥X d s.

Quando f ≡ 0, o problema (3.13) é homogêneo, e a solução é dada por u(t ) = P (t ,τ)uτ. Note
o o processo {P (t , s)}t≥s substitui o semigrupo {S(t −τ)}t≥τ do caso autônomo, mas agora depende
explicitamente de τ e t (não apenas da diferença t −τ).

Mais geralmente, o problema não-linear e não-homogêneo:{
u′(t )+ A(t )u = f (t ,u(t )); t ≥ τ
u(τ) = uτ

, (3.14)
adimite uma única solução branda local dada por

u(t ) = P (t ,τ)uτ+
∫ t

τ
P (t , s) f (s,u(s))d s,

onde uτ ∈ X , f é uma função contínua na variável t ≥ τ e localmente Lipschitz sobre a variável u ∈ X ,
uniformemente em t sobre intervalos limitados e {P (t , s)}t≥s é o processo dado pelo sistema CD de
Kato.

Agora se consideramos o problema{
u′(t )− A(t )u + f (t ,u(t )) = h(t ); t ≥ τ
u(τ) = uτ

, (3.15)
deve-se ter uτ ∈ X , f : [τ,+∞)× X → X contínua na variável t ≥ τ e localmente Lipschitz sobre a
variável u ∈ X , uniformemente em t sobre intervalos limitados, e h ∈ L1

loc (τ,+∞; X ), para obter a
solução branda local dada por:

u(t ) = P (t ,τ)uτ+
∫ t

τ
P (t , s)

[
h(s)− f (s,u(s))

]
d s.

A solução forte é obtida quando uτ ∈ Y , f : [τ,+∞)× X → X Lipschitziana na variável t ≥ τ,
uniformemente para conjuntos limitados de X e localmente Lipschitz sobre a variávelu ∈ X , uniforme
em conjuntos intervalos limitados, e h ∈W 1,1

l oc (τ,+∞; X ).
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A seguir definimos a noção de conjunto invariante e de atração no contexto dos processos
evolutivos.
Definição 3.35
Seja {P (t , s)}t≥s um processo evolutivo sobre um espaço métrico X . Uma família tempo-dependente
{A(t )}t∈R de subconjunto A(t ) ⊂ X é invariante pelo processo {P (t , s)}t≥s quando

P (t , s)A(s) = A(t ); ∀t ≥ s.

A noção de solução global fornecida na Teoria de semigrupos (ver Definição 3.2) se encontra
bem mais intuitiva no contexto dos processos evolutivos.
Definição 3.36
Seja {P (t , s)}t≥s umprocesso evolutivo sobre o espaçométrico X . Uma solução global para {P (t , s)}t≥s

é uma função ξ :R→ X tal que
P (t , s)ξ(s) = ξ(t ); ∀t ≥ s.

Proposição 3.37
Toda solução global de um processo evolutivo é uma aplicação contínua.
Demonstração. Análoga à demonstração da Proposição 3.7.
Proposição 3.38
Seja {P (t , s)}t≥s um processo de evolução. Uma família tempo-dependente {A(t)}t∈R é invariante
pelo processo {P (t , s)}t≥s , se e somente se ela consiste em uma coleção de soluções globais.
Demonstração. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 9).

A noção de invariância definida para processos, difere da noção de invariância fornecida para
semigrupos na Definição 3.4. Na verdade, o que ocorre é o seguinte. Enquanto qualquer solução
global ξ de um semigrupo {T (t )}t≥0 é invariante para o processo induzido {PT (t , s)}t≥s , é toda órbita
ξ(R) que é invariante para o semigrupo {T (t )}t≥0. Note que a família constante {γ(t ) = ξ(R); ∀t ∈R}

também é invariante para {PT (t , s)}t≥s . Mais geralmente, se {A(t )}t∈R é invariante para {PT (t , s)}t≥s ,
então ⋃

t∈R
A(t) é invariante para {T (t)}t≥0; em particular, se A(t) = A para todo t ∈ R, então A é

invariante para {T (t )}t≥0 se e somente se {A(t )}t≥0 é invariante para {PT (t , s)}t≥s .
Definição 3.39
Seja {P (t , s)}t≥s um processo evolutivo sobre um espaço métrico X . Dizemos que

(i) Um conjunto A ⊂ X pullback atrai um conjunto B ⊂ X no tempo t ∈R por meio (ou pela ação)
do processo {P (t , s)}t≥s se

lim
s→−∞di stX (P (t , s)B , A) = 0.
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(ii) Uma família {A(t )}t∈R de subconjuntos de X pullback atrai um conjunto B ⊂ X se para cada
t ∈R,tem-se

lim
s→−∞di stX (P (t , s)B , A(t )) = 0,

(iii) Uma família {A(t)}t∈R de subconjuntos de X pullback atrai uma família B̂ = {B(t)}t∈R de
subconjuntos de X , se para cada t ∈R, tem-se

lim
s→−∞di stX (P (t , s)B(s), A(t )) = 0,

onde di stX é a semidistância de Hausdorff apresentada na Definição 3.9.
Uma família {A(t )}t∈R de subconjunto de X é dita pullback atrativa se pullback atrai todos os

subconjuntos limitados de X .
Da mesma forma que foi feito para semigrupos, precisamos de uma noção de atrator global

para processos evolutivos, que faça sentindo a nossa noção de invariância e de atração.
Definição 3.40
Seja {P (t , s)}t≥s um processo evolutivo em uma espaço métrico X . Uma família {A(t)}t∈R de sub-
conjuntos de X é o atrator pullback para o processo {P (t , s)}t≥s se as seguintes condições são
satisfeitas:

(i) A(t ) ⊂ X é compacto para todo t ∈R.
(ii) A família {A(t )}t∈R é pullback invariante pelo processo {P (t , s)}t≥s .
(iii) A família {A(t)}t∈R pullback atrai todos os subconjuntos limitados X pela ação do processo

{P (t , s)}t≥s .
(iv) {A(t )}t∈R é a família minimal de subconjuntos fechados de X que satisfaz a condição (iii). Mais

precisamente, se {A(t )}t∈R é uma família de subconjuntos fechados de X que pullback atrai
todos os limitados de X pelo processo {P (t , s)}t≥s , então A(t ) ⊂ A(t ) para todo t ∈R.
As três primeiras condições da definição de um atrator pullback são análogas às do atrator

global para semigrupos. A condição adicional (iv) garante a unicidade do atrator pullback. No caso
de semigrupos, as três primeiras condições já asseguram a unicidade do atrator global, mas para o
atrator pullback, a condição (iv) é essencial como veremos a seguir.
Proposição 3.41
Se {A1(t)}t∈R e {A2(t)}t∈R são atratores pullback para um processo evolutivo {P (t , s)}t≥s , então
A1(t ) =A2(t ) para todo t ∈R.
Demonstração. O atrator pullback {A1(t)}t∈R é em particular, uma família de conjuntos fechados
que atrai subconjuntos limitados de X . Como {A2(t )}t∈R é atrator pullback, do item (iv) da Definião
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3.40, segue que A2(t) ⊂ A1(t) para todo t ∈ R. Revertendo os papeis de {A1(t)}t∈R e {A2(t)}t∈R,
obtém-se que A1(t ) ⊂A2(t ) para cada t ∈R.
Teorema 3.42
Seja {T (t )}t≥0 um semigrupo sobre um espaço métrico X e considere o processo evolutivo induzido
{PT (t , s)}t≥s (isto é, PT (t , s) := T (t−s); ∀t ≥ s). Então {T (t )}t≥0 possui atrator globalA se, e somente
se, {PT (t , s)}t≥s possui atrator pullback {A(t )}t∈R. Nesse caso, tem-se A(t ) =A para todo t ∈R.
Demonstração. Suponha que {T (t )}t≥0 possua atrator global A e defina {A(t )}t∈R por A(t ) =A para
todo t ∈R. Portanto {A(t )}t∈R é compacto para todo t ∈R. Agora, para t ≥ s, tem-se

PT (t , s)A(s) = T (t − s)A=A=A(t ),

mostrando a invariância.
Além disso, temos que {A(t )}t∈R pullback atrai conjuntos limitados pelo processo {PT (t , s)}t≥s .

De fato, se t ∈R e B ⊆ X é limitado, então
lim

s→−∞distX (PT (t , s)B ,A(t )) = lim
s→−∞distX (T (t − s)B ,A) = lim

u→+∞distX (T (u)B ,A) = 0.

Por fim, seja {A(t)}t∈R uma família de conjuntos fechados que pullback atrai subconjuntos
limitados de X . Então,

distX (A(t ), A(t )) = distX (PT (t , s)A(s), A(t )) = distX (PT (t , s)A, A(t )),

e tomando o limite quando s →−∞, concluímos que A(t) ⊆ A(t ) ⊂ A(t). Portanto, {A(t)}t∈R é o
atrator pullback.

Por outro lado, suponha que {PT (t , s)}t≥τ tenha o atrator pullback {A(t)}t∈R. Então, para
qualquer t ∈R e qualquer B ⊆ X limitado, temos

lim
s→−∞distX (PT (t , s)B ,A(t )) = lim

s→−∞distX (T (t − s)B ,A(t )) = 0.

Seja t0 ∈ R arbitrário e defina {A(t)}t∈R por A(t) :=A(t0) para todo t ∈ R. Para t ∈ R e B ⊆ X

limitado, temos que
lim

s→−∞distX (PT (t , s)B , A(t )) = lim
s→−∞distX (T (t − s)B ,A(t0)) = 0.

Assim, pela minimalidade, segue que A(t) ⊆ A(t) para todo t ∈ R, ou seja, A(t) ⊆A(t0) para todo
t ∈R. Como t0 ∈R é arbitrário, de forma análoga, concluímos que A(t0) ⊆A(t ) para todo t ∈R, ou
seja, A(t ) =A(t0) =:A para todo t ∈R.

Resta provar que A é o atrator global para {T (t)}t≥0. De fato, A é compacto e, para t ≥ 0,
tem-se

T (t )A= PT (t ,0)A(0) =A(t ) =A.

Logo, A é invariante.
Finalmente, dado B ⊆ X limitado, temos lim

t→+∞distX (T (t )B ,A) = 0.
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3.2.2 Conjuntos ω–limites e Existência de Atrator Pullback

O objetivo desta subseção é obter condições suficientes e práticas do ponto de vista analítico
para existência de atrator pullback para um processo de evolução. Começaremos definido o conceito
fundamental para esse objetivo.

Definiremos agora o conceito de conjunto pullbackω–limite que a peça fundamental do atrator
pullback de um processo.
Definição 3.43
Sejam {P (t , s)}t≥s um processo de evolução sobre um espaçométrico X e B ⊂ X . O conjunto pullback
ω–limite de B no tempo t ∈R com respeito ao processo {P (t , s)}t≥s é definido por:

ω(B , t ) = ⋂
t≥s

(⋃
s≥τ

P (t ,τ)B

)
.

Lema 3.44
{P (t , s)}t≥s um processo de evolução sobre um espaço métrico X e B ⊂ X . Então ω(B , t ) é fechado e
x ∈ω(B , t ) se, e somente se, existem sequências (sn)n∈N em R, com sn ≤ t ; ∀n ∈N e (xn)n∈N em X

tais que
sn →−∞, xn ∈ B ; ∀n ∈N e x = lim

n→∞P (t , sn)xn .

Demonstração. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 25).
Observe que, se {T (t )}t≥0 é um semigrupo e {ST (t , s)}t≥s o processo por ele induzido, então

ω(B , t ) é independente de t e coincide com a definição de conjunto ω—limite para semigrupos, ou
seja,

ω(B , t ) = ⋂
h≥0

(⋃
s≥h

T (s)B

)
=ω(B).

Teorema 3.45
Sejam X um espaço métrico e {P (t , s)}t≥s um processo de evolução em X . O processo {P (t , s)}t≥s

admite um atrator pullback A(t ) se, e somente se, existe uma família de compacto pulback atrativa
{K (t )}t∈R. Nesse caso,

A(t ) =⋃
{ω(B , t ); B ⊂ X e B é limitado}. (3.16)

Demonstração. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 28-29).
Definiremos agora a noção mais forte e mais prática do que o conceito de pullback atração.

Definição 3.46
Sejam X um espaço métrico e {P (t , s)}t≥s um processo de evolução em X . Dizemos que
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(i) Um conjunto A ⊂ X pullback absorve um conjunto B ⊂ X pela ação do processo {P (t , s)}t≥s no
tempo t ∈R, quando existe T = T (B , t ) ≤ t (dependente de B e t ) tal que

P (t , s)B ⊂ A, para todo s ≤ T.

(ii) Uma família {A(t )}t∈R de subconjuntos de X pullback absorve um conjunto B ⊂ X se para cada
t ∈R, existe T = T (B , t ) ≤ t (dependente de B e t ) tal que

P (t , s)B ⊂ A(t ), para todo s ≤ T.

(iii) Uma família {A(t)}t∈R de subconjuntos de X pullback absorve uma família B̂ = {B(t)}t∈R de
suconjuntos de X , se para cada t ∈R, existe T = T (B̂ , t ) ≤ t (dependente da família B̂ e t ) tal
que

P (t , s)B(s) ⊂ A(t ), para todo s ≤ T.

Uma família {A(t)}t∈R de subconjunto de X é dita pullback absorvente se pullback absorve
todos os subconjuntos limitados de X . Observamos que, toda família pullback absorvente é uma
família pullback atrativa.
Definição 3.47
Seja {P (t , s)}t≥s um processo de evolução sobre um espaço métrico X . Dizemos que {P (t , s)}t≥s

é pullback limitado dissipativo ou simplemente pullback dissipativo, quando existe uma família
{B(t )}t∈R de subconjuntos limitados de X que pullback atrai cada um dos subconjuntos limitados de
X sob a ação do processo {P (t , s)}t≥s .
Corolário 3.48
Seja {P (t , s)}t≥s um processo de evolução pulback limitado dissipativo sobre um espaço métrico X .
Se a família absorvente {B(t )}t∈R é formada por conjuntos compactos, então o processo {P (t , s)}t≥s

admite (um único) atrator pullback dado por (3.16).
Demonstração. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 30).

É importante observar que nem sempre é prático do ponto de vista das aplicações encontrar
conjuntos compactos. Contudo, existe uma noção de compacidade mais computacional (analítica)
para um processo de evolução, que também garante a existência de atrator pullback. A saber, a de
pullback compacidade assintótica.
Definição 3.49
Dizemos que um processo de evolução {P (t , s)}t≥s sobre um espaço métrico X é pullback assintoti-
camente compacto quando para todo t ∈R, toda sequência limitada (xn)n∈N em X e toda sequência
(sn)n∈N de números reais, com sn ≤ t e sn →−∞, a sequência (P (t , sn)xn)n∈N de X possui uma
subsequência convergente.
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Definição 3.50
Dizemos que um processo de evolução {P (t , s)}t≥s sobre um espaço métrico X é fortemente pullback
limitado dissipativo se para cada t ∈R, existe um subconjunto limitado B(t ) ⊂ X que pullback atrai
subconjuntos limitados de X no tempo τ para cada τ≤ t , ou seja, dado um subconjunto limitado
B ⊂ X e τ≤ t , temos

lim
s→−∞di stX (P (τ, s)B ,B(t )) = 0.

Teorema 3.51
Sejam X um espaço métrico completo e {P (t , s)}t≥s um processo de evolução sobre X . Se {P (t , s)}t≥s

é fortemente pullback limitado dissipativo e pullback assintoticamente compacto, então {P (t , s)}t≥s

admite um único atrator global A dado por:
A(t ) =ω

(
B(t ), t

)
; ∀t ∈R,

onde {B(t )}t∈R é qualquer família que atraia suconjuntos limitados de X no tempo τ, com τ≤ t .
Além disso, tem-se ⋃

s≤t
A(t ) é limitado para cada t ∈R.

Demonstração. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 34).

3.2.3 Atratores Pullback com Bacias de Atração mais Gerais

Nas subseções anteriores, concentramo-nos em conjuntos que pullback atraem subconjuntos
limitados de um espaço métrico X . Uma consequência disso é que, a menos que o atrator pullback
seja limitado no passado, ele não pertence à classe de conjuntos que ele deve atrair. Isso impede a
dedução da unicidade dos atratores pullback se a condição de minimalidade (não necessário no caso
autônomo) for abandonada. Observe que, para garantir a compacidade do atrator pullback, tivemos
de impor uma dissipatividade pullback forte (Teorema 3.51), o que também implica que o atrator
pullback deve ser limitado no passado. Mas o atrator pullback pode ser compacto sem ser limitado
no passado, como se pode ver no Teorema 3.45.

A atração pullback de conjuntos limitados fixos implica na atração pullback de famílias depen-
dentes do tempo que são limitadas no passado. No entanto, é comum em aplicações que exista um
atrator pullback que atraia famílias dependentes do tempo mais gerais, e nesta subseção desenvol-
veremos um pouco de uma teoria que permite essas bacias de atração mais gerais, uma vez que
esse tipo mais geral de atrator pullback será necessário na resolução do problema não autônomo
proposto no Capítulo 5 desta tese.

Teria sido possível desenvolver toda a teoria anterior neste contexto mais geral, mas a maior
generalidade não pareceu merecer a complicação resultante da apresentação. Não obstante, dentro
desta estrutura podemos provar a unicidade de atratores e a sua compacidade a partir das definições
apropriadas de processos pullback dissipativos e pullback assintoticamente compactos
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Definição 3.52
Sejam X umespaçométrico eM a coleção de todas as famílias (tempodependentes) de subconjuntos
não vazios de X . Dizemos que um subconjunto D ⊂M é um universo de subconjuntos do espaço
métrico X se for fechado por inclusão. Mais precisamente, se satisfaz a seguinte condição:

(i) Se D̂ = {D(t )}t∈R ∈D, Ĉ = {C (t )}t∈R ∈M e C (t ) ⊂ D(t ) para todo t ∈R, então Ĉ ∈D.
Note que, devido ao requisito de que D deve ser fechado por inclusão, a coleção de todas as

famílias constantes D̂ = {D(t )}t∈R, onde D(t ) = D ; ∀t ∈R não forma um universo de subconjuntos
de X . Em vez disso, o universo mínimo que inclui esses conjuntos (o universo limitado DB ) consiste
em todas as famílias dependentes do tempo D̂ = {D(t )}t∈R tais que, para algum conjunto limitado
D ⊂ X , tem-se D(t ) ⊂ D para todo t ∈R.
Definição 3.53
Sejam {P (t , s)}t≥s um processo evolutivo sobre um espaço métrico X e D um universo de subcon-
juntos do espaço métrico X . Dizemos que uma família {A(t )}t∈R de subconjuntos de X é

(i) D–pullback atrativa se pullback atrai todas as famílias D̂ do universo D.
(ii) D–pullback absorvente se pullback abserve todas as famílias D̂ ∈D.

Definição 3.54
Sejam {P (t , s)}t≥s um processo evolutivo sobre um espaço métrico X e D um universo de subcon-
juntos de X . Uma família {A(t)}t∈R de subconjuntos de X é o D–atrator pullback para o processo
{P (t , s)}t≥s se as seguintes condições são satisfeitas:

(i) A(t ) ⊂ X é compacto para todo t ∈R.
(ii) A família {A(t )}t∈R é pullback invariante pelo processo {P (t , s)}t≥s .
(iii) A família {A(t )}t∈R é D–pullback atrativa.
(iv) {A(t )}t∈R é a família minimal de subconjuntos fechados de X que satisfaz a condição (iii). Mais

precisamente, se {A(t )}t∈R é uma família de subconjuntos fechados de X que pullback atrai
todos os limitados de X pelo processo {P (t , s)}t≥s , então A(t ) ⊂ A(t ) para todo t ∈R.
As noções de conjunto pullback atrativo (Definição 3.39), conjunto pullback absorvente (De-

finição 3.46) e de atrator pullback (Definição 3.40) coincidem com as respectivas definições de
conjunto D–pullback atrativo, conjunto D–pullback absorvente e de D–atrator pullback, quando
consideramos D como sendo o universo limitado DB de todas as famílias (tempo dependentes)
D̂ = {D(t )}t∈R tais que, para algum conjunto limitado D ⊂ X , tem-se D(t ) ⊂ D para todo t ∈R.
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Exemplo 3.55
Diferentes universos fornecem diferentes bacias de atração, e darão origem a diferentes atratores,
refletindo diferentes aspectos da dinâmica. De fato, considere o seguinte problema:{

x ′(t ) = f (t , x); t ≥ τ
x(τ) = xτ ∈R

,

onde
f (t , x)


−x, se x ∈ [−e−t ,e−t ]

−x −x(x −e−t )e t , se e−t ≤ |x| ≤ 2e−t

−2x, se |x| ≥ 2e−t

.

Se o universo D contém D̂ = {[−e−t ,e−t ]; ∀t ∈R}, então o D–atrator Pullback {AD(t)}t∈R irá
satisfazer

[−e−t ,e t ] ⊂AD(t ) ⊂ [−2e−t ,2−t ].

Por outro lado, se desejarmos atrair apenas conjuntos limitados, então o atrator pullback será
{A(t )}t∈R, com A(t ) = {0}.

Um forma de escolher (de foma natural) a bacia de atração do atrator pullack de um deter-
minado problema é tentar encontrar o maior universo possível D para o qual existe um D–atrator
pullback. Por exemplo, se consideramos o problema:{

x ′(t ) =−kx + f (t ); t ≥ τ
x(τ) = xτ ∈R

,

que possui a seguinte solução explícita:
x(t ) = e−k(t−τ)xτ+

∫ t

τ
e−k(t−τ) f (s)d s,

observamos (essencialmente) que se ∫ 0

−∞
eks f (s)d s converge, então x∗(t) =

∫ t

−∞
e−k(t−s) f (s)d s

pullback atrai conjuntos limitados de condições iniciais. No entanto, é evidente que se pode, de
fato, permitir que x(τ) cresça quando τ→−∞, desde que ekτx(τ) → 0 quando τ→−∞. Assim,
poderíamos considerar a coleção de todas as famílias do tipo{

{x(s)}s∈R; eks x(s) → 0 quando s →−∞
}

como universo D.
Para finalizar a seção, definiremos o conceito de conjunto ω–limite para D–atratores pullback,

bem como os principais conceitos e resultados que utilizaremos para mostrar a existência de atrator
pullback para o problema não autônomo que será estudado no capítulo 5.
Definição 3.56
Sejam {P (t , s)}t≥s um processo evolutivo sobre um espaço métrico X e D um universo de subcon-
juntos de X . Dado D̂ = {D(t ); t ∈R} em D, o pullback ω–limite de D̂ é definido por:

ω(D̂ , t ) = ⋂
t≥s

⋃
s≥τ

P (t ,τ)D(τ).
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Definição 3.57
Sejam {P (t , s)}t≥s um processo evolutivo sobre um espaço métrico X e D um universo de subcon-
juntos de X . O processo {P (t , s)}t≥s é dito D–pullback assintoticamente compacto se, para qualquer
t ∈ R, qualquer D̂ = {D(t); ∀t ∈ R} ∈ D e, quaisquer sequências {sn}n∈N em (−∞, t ] e {xn}n∈N em
X tais que sn →−∞ e xn ∈ D(sn); ∀n ∈N, a sequência {P (t , sn)xn}n∈N possui uma subsequência
convergente em X .
Teorema 3.58
Sejam {P (t , s)}t≥s um processo evolutivo sobre um espaço métrico X e D um universo de subconjun-
tos de X . Se o processo {P (t , s)}t≥s é D–pullback assintoticamente compacto e admite uma família
B̂ = {B(t )}t∈R D–pullback absorvente, então a família {AD(t )}t∈R definida por

AD(t ) = ⋃̂
D∈D

ω(D̂ , t ).

é o D–atrator pullback para o processo {P (t , s)}t≥s .
Além disso, se B̂ ∈D, então AD(t ) =ω(B̂ , t ) ⊂ B(t ) e {AD(t )}t∈R ∈D.

Demonstração. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 51–52).
Proposição 3.59
Sejam {P (t , s)}t≥s um processo de evolução sobre um espaço métrico completo (X ,d) e e D um
universo de subconjuntos de X . Suponha que existe uma família B̂ = {B(t)}t∈R de subconjuntos
de X , D–pullback absorvente. Se para qualquer t ∈R e qualquer ε> 0, existe um número real τ∗
(dependente de B̂ e de ε) e uma função contrativa (ver Definição 3.25) fτ∗ : B(τ∗)×B(τ∗) ⊂ X ×X →C

tal que:
d

(
P (t ,τ∗)x1,P (t ,τ∗)x2

)≤ ε+ fτ∗(x1, x2); ∀x1, x2 ∈ B(τ∗),

então o processo {P (t , s)}t≥s é D–pullback assintoticamente compacto em X .
Demonstração. (Ver (MA; SOUZA, 2017), Teorema 3.2).
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Capítulo 4

Sobre um sistema de ponte suspensa do tipo
Timoshenko com amortecimento interno fraci-
onário

Vários problemas em diversas áreas do conhecimento podem ser representados por meio de
expressões matemáticas, com destaque para aqueles em Física e Engenharia. No caso da Engenharia,
um modelo de viga amplamente conhecido foi inicialmente introduzido pelo o engenheiro mecânico
ucraniano Stephen Prokofievich Timoshenko. Em 1921, Timoshenko formulou, em (TIMOSHENKO,
1921), uma equaçãomatemática para descrever as vibrações transversais de uma viga de comprimento
L, a qual se tornou uma referência na área, sendo expressa pelo seguinte sistema de equações:

ρ1φt t −k(φx +ψ)x = 0,

ρ2ψt t −bψxx +k(φx +ψ) = 0,

onde 0 ≤ x ≤ L é a variável posição que denota a distância ao longo da linha central da viga, e t ≥ 0 a
variável tempo. A função φ=φ(x, , t ) representa o deslocamento transversal, enquanto ψ=ψ(x, , t )

corresponde à rotação das fibras transversais da viga. Os coeficientes são números reais positivos:
ρ1 = ρA, ρ2 = ρI , b = E I e K = κG A, onde ρ é a densidade de massa do material, A e I representam
a área e o momento de inércia de uma seção transversal da viga, G e E denotam os módulos de
cisalhamento e de elesticidade de Young, e κ é um fator de coreção do cisalhamento.

Sobre esse sistema pioneiro, temos uma vasta literatura; veja, por exemplo, (ADNANE; BE-
NAISSA; BENOMAR, 2023; BENAISSA; BENAZZOUZ, 2017; RAPOSO et al., 2005; SOUFYANE, 1999).

Uma ponte suspensa, Figura 2, é uma estrutura mecânica que transporta cargas verticais por
meio dos cabos principais modelados por uma corda elástica que é acoplada à uma viga por meio de
cabos de suspensão. Um sistema para ponte suspensa, em que o tabuleiro (deck) é modelado pela
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teoria de vigas de Timoshenko, é dado por:
ut t −auxx −τ(φ−u) = 0,

ρ1φt t −k(φx +ψ)x +τ(φ−u) = 0,

ρ2ψt t −bψxx +k(φx +ψ) = 0.

0 L

Cabo principal
Cabos de suspensão

Pilar PilarTabuleiro

Figura 2 – Ponte suspensa. Esta figura foi extraída da referência (RAPOSO et al., 2023).

Nesse modelo, considerou-se que o tabuleiro tem dimensões de seção transversal insignifican-
tes em comparação com seu comprimento (vão da ponte). Presume-se que os cabos de suspensão
sejam molas elásticas lineares com rigidez padrão τ> 0. A função u = u(x, t ) representa as vibrações
verticais do cabo principal e a constante a > 0 é o módulo de elasticidade dos cabos de suspensão
(que prende o cabo principal ao tabuleiro)

Uma das pontes suspensas mais antigas do mundo foi construída em Viena, na França, em
1829; a ponte de Vienne, Figura 3, atravessa o rio Rhône. Atualmente, ela está aberta apenas para
pedestres, mas continua sendo uma maravilha histórica da engenharia.

Figura 3 – Extraído de www.bridgemeister.com/imgdda/ddfrvienne1.jpg
A ponte suspensa mais longa do mundo é a Ponte Çanakkale de 1915, Figura 4, no Estreito de

Dardanelos, na Turquia, que liga a Europa à Ásia.

Figura 4 – Extraído de www.azernews.az/region/190860.html
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Historicamente, a necessidade de entender como essas estruturas se comportam foi e é
fundamental para o desenvolvimento humano. Há muitos casos em que as pontes suspensas
precisam de reparos devido à ação de forças naturais, como o vento, as correntes marítimas e a
passagem de pedestres e veículos. Na Ponts des Arts, em Paris, milhares de cadeados presos à
estrutura por casais foram removidos em 2015. Além de afetar a estética, eles causaram danos à
integridade da própria ponte, o que poderia causar acidentes.

A Tacoma Narrow Bridge, Figura 5, teve sua estrutura destruída, poucos meses após sua
inauguração devido a falhas de projeto que não previram os efeitos da ressonância do vento e da
vibração aeronáutica.

Figura 5 – Extraído de www.azernews.az/region/190860.html
Em 2022, a Ponte Rio-Niterói, Figura 6, que liga as cidades do Rio de Janeiro e Niterói no Brasil,

também foi atingida por um navio e teve que ser parcialmente fechada por cinco dias para reparo de
sua estrutura. Devido à instalação de Atenuadores Dinâmicos Sincronizados, desenvolvidos e paten-
teados pelo Professor Ronaldo Battista do Programa de Engenharia Civil da COPPE na Universidade
Federal do Rio de Janeiro, a Ponte Rio-Niterói não desabou.

Figura 6 – Extraído de https://www.marinha.mil.br/dphdm/ponte-rio-niteroi
Em (ARIOLI; GAZZOLA, 2015), Arioli e Gazzola, sugeriram um novo modelo para a dinâmica de

uma ponte suspensa por meio de um sistema de equações diferenciais hiperbólicas não lineares e
não locais, em que as equações são de segunda e quarta ordem e descrevem o comportamento dos
principais componentes da ponte. Bochicchio et al. (AOURAGH; BAZ; SEGAOUI, 2020) estudaram
um problema linear das vibrações de uma ponte suspensa acoplada como uma viga termoelástica
dada pela lei de Fourier, em que o tabuleiro é modelado pela teoria de vigas de Timoshenko.

Mais recentemente, Aouragh et al. (AOURAGH; BAZ; SEGAOUI, 2024) discutiram o compor-
tamento assintótico das vibrações de um problema de ponte suspensa acoplada, em que um leito
de estrada de um único vão foi modelado como uma viga termoelástica extensível e amortecida,
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apoiada nas extremidades e usando a lei de Cattaneo para descrever a condução de calor. Raposo et
al. (RAPOSO et al., 2023), provaram a existência e a unicidade de uma ponte suspensa modelada
pela teoria de vigas de Timoshenko com amortecimento interno, obtendo, além do decaimento
exponencial, a analiticidade da solução. Posteriormente, esse trabalho foi generalizado por Nas-
cimento et al. (NASCIMENTO; NONATO; RAMOS, 2025), que consideraram o mesmo modelo sob
mecanismos não lineares de amortecimento interno localizado, afetando todas as três equações
de onda. Especificamente, eles demonstraram que um amortecimento aplicado em um intervalo
arbitrariamente pequeno, mas com medida positiva, é eficaz, independentemente do seu tama-
nho. Além disso, estabeleceram a existência e unicidade das soluções e determinaram algumas
taxas de decaimento para essas soluções sem assumir qualquer relação entre os coeficientes. Por
fim, provaram um resultado sobre a observabilidade interna do sistema conservativo, garantindo o
comportamento assintótico mencionado.

Uma ponte suspensa com vigas laminadas, ou seja, duas vigas de Timoshenko conectadas
em paralelo, foi considerada em (RAPOSO, 2023) e provou a existência, a unicidade da solução e
a estabilidade exponencial. O monitoramento da saúde estrutural de pontes a partir de eventos
dinâmicos foi considerado em (ARAGÓN; PUCHOL; ASTIZ, 2024). A análise de estabilidade de uma
ponte suspensa parcialmente amortecida por atrito foi estudada por Gutemberg et al. (GUTEMBERG
et al., 2024).

Motivado pelos trabalhos citados anteriormente, este capítulo tem como objetivo analisar um
modelo de ponte suspensa cujo tabuleiro é representado com base na teoria das vigas de Timoshenko
e submetido à influência de mecanismos de amortecimento internos, descritos por operadores do
tipo derivada fracionária. Mais precisamente, o modelo é dado por:

ut t −auxx −τ(φ−u)+ c1∂
α,η
t u = 0; x ∈ (0,L) e t > 0,

ρ1φt t −k(φx +ψ)x +τ(φ−u)+ c2∂
β,ζ
t φ= 0; x ∈ (0,L) e t > 0,

ρ2ψt t −bψxx +k(φx +ψ)+ c3∂
θ,ξ
t ψ= 0; x ∈ (0,L) e t > 0.

(4.1)

onde c j > 0 e ∂ω,δ
t é o operador derivada fracionária de Caputo exponencialmente modificada de

ordem ω e peso δ.
O sistema (4.1) está sujeito a dados iniciais:

u(x,0) = u0(x), ut (x,0) = u1(x); x ∈ (0,L),

φ(x,0) =φ0(x), φt (x,0) =φ1(x); x ∈ (0,L),

ψ(x,0) =ψ0(x), ψt (x,0) =ψ1(x); x ∈ (0,L),

(4.2)

e às condições de contorno de Dirichlet-Dirichlet-Neumann:
u(0, t ) = u(L, t ) = 0; t ≥ 0,

φ(0, t ) =φ(L, t ) = 0; t ≥ 0,

ψx(0, t ) =ψx(L, t ) = 0; t ≥ 0.

(4.3)
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Este capítulo está dividido em três seções. Na primeira seção, definimos o conceito de derivada
de Caputo exponencialmente modificada e, a partir de suas propriedades fundamentais, realizamos
uma mudança de variável que permite, após essa transformação, reescrever o problema (4.1)–(4.3)
na forma de um problema linear abstrato de Cauchy.

Os resultados apresentados neste capítulo foram publicados no periódico Acta Mechanica,
conforme o artigo (JESUS et al., 2025a).

4.1 Derivada Fracionária e Modelo Ampliado

Nesta seção, definiremos de maneira clara e concisa o conceito de derivada de ordem fraci-
onária, destacando sua relevância, origem e aplicações. Diferentemente do cálculo diferencial e
integral clássico, o Cálculo Fracionário abrange diversas noções de derivadas e integrais de ordem não
inteira, cada uma com suas particularidades e utilidades. Nosso foco será na formulação introduzida
pelo matemático italiano Michele Caputo, apresentada em (CAPUTO, 1967), que se destaca por sua
aplicabilidade em problemas físicos e de engenharia.

Em seguida, transformaremos o sistema (4.1)–(4.3) em um sistema equivalente ampliado,
por meio de uma mudança de variável inspirada no trabalho desenvolvido em (MBODJE, 2006).
Essa transformação tem como objetivo principal substituir o operador de derivada fracionária por
um termo integral mais tratável computacionalmente, o que simplificará a análise matemática do
problema.

Com essa reformulação, o sistema será reescrito na forma de Cauchy, uma estrutura que
permite a aplicação direta da teoria de semigrupos discutida na seção anterior. Essa abordagem não
só facilita a análise matemática, mas também possibilita o estudo de propriedades fundamentais,
como existência, unicidade e comportamento assintótico das soluções. Dessa forma, estabelecemos
as bases necessárias para uma compreensão mais profunda e uma aplicação prática do modelo em
questão.

Por fim, apresentaremos lemas técnicos relacionados ao termo integral obtido com a ampliação
do sistema. Esses lemas serão essenciais para as estimativas desenvolvidas nas seções posterio-
res, onde estudaremos a boa-colocação (existência e unicidade de soluções) e o comportamento
assintótico do sistema ampliado e, consequentemente, do sistema original (4.1)–(4.3).

4.1.1 Derivada de Ordem Fracionária

Dado um número real x > 0 e um inteiro positivo n, é simples calcular a potência xn , que
corresponde a xn = x · x · · ·x︸ ︷︷ ︸

n fatores

. No entanto, expressões como xπ não são tão diretas de calcular,
embora sejam bem definidas. De maneira análoga, pode-se imaginar que dπ

d tπ
f (t) não seja tão
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intuitiva quanto d n

d t n
f (t ) para n inteiro, mas que ainda assim faça algum sentido. A ideia por trás

dessa generalização está enraizada na extensão de expressões originalmente definidas para números
inteiros para todo o conjunto dos números reais. Por exemplo, para α ∈R, define-se xα = eα ln x .

Um caso semelhante ocorre com o fatorial. Para n ∈N, temos n! = n · (n −1) · (n −2) · · ·3 ·2 ·1.
Essa operação pode ser generalizada para todo número complexo com parte real positiva. De fato,
temos z! = Γ(z +1), onde Γ : {z ∈C; Re(z) > 0} →C é a função gamma de Riemman, definida por:

Γ(z) =
∫ +∞

0
σz−1e−σ dσ.

A função Γ é caracterizada pelas seguintes propriedades fundamentais:
Γ(n +1) = n!; ∀n ∈N e Γ(z +1) = zΓ(z), ∀z ∈C, com Re(z) > 0. (4.4)

O cálculo fracionário, que estuda integrais e derivadas de ordem real ou complexa arbitrária,
ganhou popularidade e relevância significativas nas últimas décadas. Esse crescimento deve-se, em
grande parte, às suas aplicações bem-sucedidas em diversos campos da ciência e da engenharia. Por
exemplo, ele tem sido utilizado em bioengenharia (MAGIN, 2006), dinâmica de partículas, campos
e meios (TARASOV, 2011), modelos de transmissão da COVID-19 que simulam a interação entre
morcegos, hospedeiros, reservatórios e pessoas, incluindo medidas de controle e resposta individual
(SHAIKH; SHAIKH; NISAR, 2020), circuitos elétricos (ALSHABANAT et al., 2020), e em diversas áreas
da matemática e engenharia (PODLUNY, 1998; KILBAS; SRIVASTAVA; TRUJILLO, 2006; ZARRAGA et al.,
2019).

A particularidade do cálculo fracionário reside no fato de que derivadas e integrais de ordemnão
inteira são não locais, ou seja, levam em consideração o histórico e os efeitos distribuídos ao longo do
tempo ou do espaço. Isso permite uma representação mais fiel de fenômenos naturais, oferecendo
uma perspectiva mais rica e abrangente para descrever sistemas complexos. Recentemente, Ammari
et al. (AMMARI; HASSINE; ROBBIANO, 2022) desenvolveram métodos unificados para estabilizar
sistemas de evolução fracionária. Eles abordaram a estabilização de equações de evolução abstratas
com amortecimento fracionário, validando os resultados teóricos com exemplos concretos. Alguns
casos particulares já foram estudados anteriormente. Recentemente, destacam-se os seguintes
trabalhos (AMMARI et al., 2025; JESUS et al., 2025b; OLIVEIRA; CORDEIRO; CUNHA, 2024).

Os avanços mais recentes em dinâmica não linear têm demonstrado o papel crucial do amorte-
cimento fracionário na modificação do comportamento de osciladores em diversos sistemas físicos.
Coccolo et al. (COCCOLO et al., 2023) revelaram como parâmetros fracionários governam tanto as
amplitudes de oscilação quanto os tempos transitórios em osciladores de Duffing, sendo que seu
estudo de 2024 (COCCOLO; SEOANE; SANJUÁN, 2024) identificou ainda fenômenos ressonantes que
emergem exclusivamente em sistemas com amortecimento fracionário. Estas descobertas comple-
mentam trabalhos anteriores de Ortiz et al. (ORTIZ et al., 2020) sobre o oscilador de Helmholtz, nos
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quais o amortecimento fracionário demonstrou alterar significativamente a dinâmica de escape e a
geração de caos por meio do controle da ordem da derivada fracionária.

A interação entre amortecimento e sistemas com atraso temporal foi igualmente investigada
por Cantisán et al. (CANTISÁN et al., 2020; COCCOLO et al., 2021), que demonstraram como atrasos
temporais podem neutralizar efeitos de amortecimento através de mecanismos de ressonância em
osciladores de Duffing. Coletivamente, estes estudos estabelecemque parâmetros de amortecimento
fracionário modificam fundamentalmente a dinâmica dos sistemas de maneiras que modelos de
ordem inteira não conseguem capturar; particularmente no controle de comportamentos transitórios,
fenômenos de ressonância e transições caóticas, fornecendo insights cruciais para a modelagem de
sistemas mecânicos complexos como pontes suspensas, onde tais efeitos são fisicamente observados.

Acredita-se que o conceito de cálculo fracionário tenha se originado de uma questão proposta
em 1695 pelo Marquês de L’Hôpital (1661–1704) a Gottfried Wilhelm Leibniz (1646–1716). L’Hôpital
questionou o significado da notação de Leibniz d n x/d t n , para n = 1/2, marcando o início das
investigações sobre derivadas de ordem não inteira. Posteriormente, o matemático e físico suíço
Leonhard Paul Euler, em 1730, sugeriu uma abordagem para definir derivadas de ordem negativa ou
não inteira (racional) para funções da forma x = t m . A ideia de Euler, de forma simplificada, foi a
seguinte:

Observe que, para m,n ∈N, temos:
d n t m

d t n
= m · (m −1) · (m −2) · (m −n +1)t m−n .

No entanto, pela propriedade da função gama, sabemos que:
Γ(m +1) = m · (m −1) · (m −2) · (m −n +1)Γ(m −n +1).

Portanto, a derivada pode ser reescrita como:
d n t m

d t n
= Γ(m +1)

Γ(m −n +1)
t m−n .

Aplicando essa ideia para m = 1 e n = 1/2, por exemplo, otemos:
d 1/2t

d x1/2
= Γ(2)

Γ(3/2)
t 1/2 = 1!

Γ(1/2+1)
t 1/2.

Sabendo que Γ
(

1

2

)
=p

π e utilizando a propriedade (4.4), obtemos:
d 1/2t

d x1/2
= 1

Γ(1/2)/2
t 1/2 = 1p

π/2
t 1/2 = 2

p
πt

π

Embora Euler tenha começado a explorar ideias relacionadas ao cálculo fracionário em 1730,
o artigo (EULER, 1738) contém algumas das primeiras discussões relevantes sobre o tema, espe-
cialmente no contexto da interpolação de séries e da generalização do conceito de diferenciação.
Posteriormente, derivadas fracionárias foram mencionadas em diferentes contextos por diversos
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matemáticos, como Lagrange em 1772, Laplace em 1812, Fourier em 1822, Liouville em 1832 e Riemann
em 1867.

Por muito tempo, o cálculo fracionário permaneceu esquecido. No entanto, nas últimas
décadas, ele retornou com força total devido à alta demanda por modelos cada vez mais realistas
em engenharia, física e outras áreas. A seguir, apresentamos dois dos conceitos mais populares de
derivada fracionária desenvolvidos recentemente:
Definição 4.1
Sejam ω ∈C tal que Re(ω) > 0, e n ∈N tal que n −1 ≤ Re(ω) < n. A derivada fracionária de ordem ω

segundo Riemann-Liouville de uma função f : [0,+∞) →C é dada por:
Dω f (t ) = 1

Γ(n −ω)

d n

d t n

∫ t

0
(t − s)n−(ω+1) f (t ) d s

A integral fracionária de ordem ω segundo Riemann-Liouville de f é definida por:
Jω f (t ) = 1

Γ(ω)

∫ t

0
(t − s)ω−1 f (t ) d s

Note que
Dω f (t ) = d n

d t n
J n−ω f (t ) e Dω Jω f (t ) = f (t ).

Além disso:
JωDω f (t ) = f (t )−

ω−1∑
k=0

f k (0)
t k

k !
.

Em particular para ω= 1, temos:
J 1D1 f (t ) = f (t )− f (0).

Para mais detalhes sobre as propriedades da derivada e da integral fracionária de Riemann-
Liouville, consulte (KILBAS; SRIVASTAVA; TRUJILLO, 2006); seção 2.1.
Definição 4.2
Sejam ω ∈C tal que Re(ω) > 0 e n ∈N tal que n −1 ≤ Re(ω) < n. A derivada fracionária de ordem ω

segundo Caputo de uma função f : [0,+∞) →C, é dada por:
Dω

C f (t ) = J n−ω d n

d t n
f (t ) = 1

Γ(n −ω)

∫ t

0
(t − s)n−(ω+1) f (n)(s) d s,

Observe que, quando ω ∈N, a derivada de Caputo coincide com a n–ésima derivada ordinária.
Para n = 1, temos:

Dα
C f (t ) = 1

Γ(1−ω)

∫ t

0
(t − s)−ω f ′(s) d s, para 0 ≤ Re(ω) < 1

Uma observação é oportuna. A derivada de Caputo está em concordância com o cálculo feito
por Euler em 1730. De fato:

D1/2
C t = 1

Γ(1−1/2)

∫ t

0

1p
t − s

d s =− 1

Γ(1/2)

∫ 0

t

1p
u

du = 2
p
πt

π
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Observamos que a definição de Caputo da derivada fracionária é uma reformulação da definição
de Riemann-Liouville. Ela possui uma interpretação simples, porém interessante: se a função f (t )

representa o histórico de deformação em um material viscoelástico cuja função de relaxamento
é [Γ(1−ω)tω]−1, então o material sofrerá, a qualquer momento, uma tensão total em t dada a
expressão Dω

C f (t ). De fato, em (CAPUTO, 1969), Caputo utilizou essa formulação para resolver um
problema relacionado à viscoelasticidade.

No problema (4.1)–(4.3) e em outros problemas que estudaremos neste trabalho, utilizamos
uma variação da derivada fracionária de Caputo (com 0 < Re(ω) < 1) como um sistema de amor-
tecimento, visando obter um sistema dissipativo. Em (CHOI; MACCAMY, 1989), Choi e MacCamy
definiram operadores integro-diferenciais fracionários de Caputo com peso exponencial da seguinte
forma:
Definição 4.3
Sejam 0 <ω< 1 e δ≥ 0. A derivada fracionária de Caputo exponencialmente modificada de ordem
α e peso δ de uma função f ∈W 1,1([0,+∞)) é definda por

∂ω,δ
t f (t ) = 1

Γ(1−ω)

∫ t

0
e−δ(t−s)(t − s)−ω f ′(s)d s. (4.5)

A integral fracionária de Caputo exponencialmente modificada de ordem α e peso δ de uma
função f ∈ L1([0,+∞)) é definda por

Jω,δ
t f (t ) = 1

Γ(ω)

∫ t

0
e−δ(t−s)(t − s)ω−1 f (s)d s. (4.6)

Os operadores Dω
C e ∂ω,δ

t diferem apenas em seus núcleos. O operador ∂ω,δ
t é essencialmente

a derivada fracionária de Caputo, mas com um fator exponencial adicional que depende do peso
δ. Quando δ = 0, temos ∂ω,0

t = Dω
C . Além disso, os operadores definidos em (4.5) e (4.6) estão

relacionados pela seguinte identidade fundamental:

∂ω,δ
t f (t ) = J 1−ω,δ

t f ′(t ). (4.7)

4.1.2 Modelo Ampliado

Proposição 4.4
Sejam 0 <ω< 1, δ≥ 0 e p :R→R definida por p(y) = |y | 2ω−1

2 . Então para cada U ∈C 0([(0,+∞)], a
solução ϕ : [0,+∞)×R→C do problema:ϕt (t , y)+ (

y2 +δ)
ϕ(t , y) = p(y)U (t ); y ∈R e t > 0,

ϕ(0, y) = 0; y ∈R,

satisfaz a seguinte relação:
γ

∫
R

p(y)ϕ(t , y) d y = J 1−ω,δU (t ),
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onde γ= 1

Γ(ω)Γ(1−ω)
= sen(ωπ)

π
.

Demonstração. Primeiro, note que a solução ϕ(t , y) é dada por:
ϕ(t , y) = p(y)

∫ t

0
e−(y2+δ)(t−s)U (s) d s. (4.8)

Para verificar isso, multiplicamos a equação diferencial pelo fator integrante e(y2+δ)t , obtendo:
e(y2+δ)tϕt (t , y)+ (

y2 +δ)
e(y2+δ)tϕ(x, t ) = p(y)e(y2+δ)tU (t ).

Isso pode ser reescrito como:
∂

∂t

(
e(y2+δ)tϕ(t , y)

)
= p(y)e(y2+δ)tU (t ).

Integrando ambos os lados de 0 a t e utilizando a condição inicial ϕ(0, y) = 0, obtemos:(
e(y2+δ)tϕ(t , y)

)
= p(y)

∫ t

0
e(y2+δ)sU (s) d s.

Portanto:
ϕ(t , y) = p(y)

∫ t

0
e−(y2+δ)t e(y2+δ)sU (s) d s = p(y)

∫ t

0
e−(y2+δ)(t−s)U (s) d s,

como afirmado em (4.8).
Agora, definimos:

O (t ) = γ
∫
R

p(y)ϕ(t , y) d y, (4.9)
onde γ= (Γ(ω)Γ(1−ω))−1.

Substituindo a expressão de ϕ(t , y) dado por (4.8) em (4.9) e aplicando o Teorema de Fubini,
temos:

O (t ) = γ

∫
R

∫ t

0

[
p(y)

]2 e−(y2+δ)(t−s)U (s) d s d y

= γ

∫ t

0

∫ +∞

0
2|y |2ω−1e−(y2+δ)(t−s)U (s) d y d s. (4.10)

Fazendo a mudança de variável σ= y2(t − s), temos dσ= 2y(t − s)d y . Observe que:
σω−1 = y2ω−1

y
· (t − s)ω

t − s

Portanto:
σω−1(t − s)−ωdσ= 2y2ω−1d y (4.11)

Substituindo (4.11) na integral, (4.10), obtemos:

O (t ) = γ
∫ t

0
(t − s)−ωe−δ(t−s)

∫ +∞

0
σω−1e−σ dσ U (s) d s.
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Como Γ(ω) = ∫ +∞
0 σω−1e−ω, temos

O (t ) = 1

Γ(ω)Γ(1−ω)

∫ t

0
(t − s)−ωe−δ(t−s)Γ(ω)U (s) d s

= 1

Γ(1−ω)

∫ t

0
(t − s)−ωe−δ(t−s)U (s) d s

= J 1−ω,δU (t ),

o que prova (4.4).
Agora, como destacado anteriormente, utilizaremos a Proposição 4.4 para ampliar o sistema

(4.1)-(4.3) em um sistema equivalente, substituindo os amortecimentos fracionários por termos
integrais mais tratáveis computacionalmente. Aplicando a Proposição 4.4 comω=α, δ= η eU = ut ,
garantimos a existência de uma função ϕ1 : [0,L]× [0,+∞]×R→C tal que:

(ϕ1)t (x, t , y)+ (
y2 +η)

ϕ1(x, t , y) = p(y)ut (x, t ); x ∈ (0,L), t > 0 e y ∈R,

ϕ1(x,0, y) = 0; x ∈ (0,L) e y ∈R,

γ̃1

∫
R

p(y)ϕ1(x, t , y) d y = J 1−α,η
t ut (x, t ), x ∈ (0,L) e t > 0.

onde p(y) = |y | 2α−1
2 e γ̃1 = [Γ(α)Γ(1−α)]−1.

Além disso, pela relação fundamental (4.7), temos:
γ1

∫
R

p(y)ϕ1(t , y) d y = c1 J 1−α,η
t ut (t ) = c1∂

α,η
t u(t ),

onde γ1 = c1

Γ(α)Γ(1−α)
.

Procedendo de forma análoga para (
β,ζ,φt

) e (
θ,ξ,ψt

), podemos reformular o problema
(4.1)–(4.3) no seguinte sistema ampliado equivalente:

ut t −auxx −τ(φ−u)+γ1

∫
R

p(y)ϕ1(y)d y = 0; x ∈ (0,L) e t > 0,

(ϕ1)t (y)+ (y2 +η)ϕ1(y)−p(y)ut = 0; x ∈ (0,L), t > 0 e y ∈R,

ρ1φt t −k(φx +ψ)x +τ(φ−u)+γ2

∫
R

q(y)ϕ2(y)d y = 0; x ∈ (0,L) e t > 0,

(ϕ2)t (y)+ (
y2 +ζ)ϕ2(y)−q(y)φt = 0; x ∈ (0,L), t > 0 e y ∈R,

ρ2ψt t −bψxx +k(φx +ψ)+γ3

∫
R

r (y)ϕ3(y)d y = 0; x ∈ (0,L) e t > 0,

(ϕ3)t (y)+ (
y2 +ξ)ϕ3(y)− r (y)ψt = 0; x ∈ (0,L), t > 0 e y ∈R.

(4.12)

onde q(y) = |y | 2β−1
2 , r (y) = |y | 2θ−1

2 , γ2 = c2

Γ(β)Γ(1−β)
e γ3 = c3

Γ(θ)Γ(1−θ)
.

O sistema (4.12) está sujeito aos seguintes dados iniciais:
u(x,0) = u0(x), ut (x,0) = u1(x); x ∈ (0,L),

φ(x,0) =φ0(x), φt (x,0) =φ1(x); x ∈ (0,L),

ψ(x,0) =ψ0(x), ψt (x,0) =ψ1(x); x ∈ (0,L),

ϕ1(x,0, y) =ϕ2(x,0, y) =ϕ3(x,0, y) = 0; x ∈ [0,L] e y ∈R,

(4.13)
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e às condições de contorno de Dirichlet-Dirichlet-Neumann:
u(0, t ) = u(L, t ) = 0; t ≥ 0,

φ(0, t ) =φ(L, t ) = 0; t ≥ 0,

ψx(0, t ) =ψx(L, t ) = 0; t ≥ 0.

(4.14)

Para finalizar esta seção, apresentaremos alguns lemas técnicos que serão utilizados nas
estimativas das próximas seções, onde estudaremos a boa-colocação e a estabilidade do semigrupo
associado ao problema ampliado (4.12)–(4.14).
Lema 4.5
Seja 0 <ω< 1 e sejam δ,λ ∈R tais que δ≥ 0 e λ>−δ. Então

C (ω, δ, λ) :=
∫
R

|y |2ω−1

y2 +δ+λ d y =C1 (δ+λ)ω−1 <+∞.

e
D(ω, δ, λ) :=

∫
R

|y |2ω−1

(y2 +δ+λ)2
d y =C2 (δ+λ)ω−2 <+∞.

Além disso, para h j ∈ L2(R; L2(0, L)) ( j = 1, 2, 3), temos:

H j (x,ω, δ, λ) :=
∫
R

|y | 2ω−1
2 h j (x, y)

y2 +δ+λ d y ∈ L2(0, L).

Demonstração. Primeiro, note que:
C (ω, δ, λ) :=

∫
R

|y |2ω−1

y2 +δ+λ d y = 2

δ+λ
∫ +∞

0

|y |2ω−1

y2

δ+λ +1

d y.

Fazendo a mudança de variável σ= y2

δ+λ +1, obtemos |y | = (σ−1)1/2(δ+λ)1/2, e portanto

C (ω, δ, λ) = 2

δ+λ
∫ +∞

1

(σ−1)ω−1/2(δ+λ)ω−1/2

σ

1

2
(δ+λ)1/2(σ−1)−1/2dσ

= 1

(δ+λ)1−ω

∫ +∞

1

1

σ(σ−1)1−ωdσ. (4.15)
Para mostrar que a integral em (4.15) é de fato finita, observe que, para σ suficientemente

grande, vale:
1

σ(σ−1)1−ω ≤ 1

σ1+ω (4.16)
De fato, multiplicando ambos os lados da desigualdade (4.16) por σσ1+ω =σ2+ω, temos:

σσ1+ω

σ(σ−1)1−ω ≤ σ2+ω

σ1+ω =σ.
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Assim
1

σ(σ−1)1−ω ≤ 1

σ1+ω ⇐⇒ σω

(σ−1)1−ω ≤ 1.

Considerando σ suficientemente grande, de tal modo que σ2 > 3σ−1, temos σ−1 > σ

σ−1
> 1.

Como 0 <ω< 1, temos ( σ

σ−1

)ω
< σ

σ−1
<σ−1.

Portanto σω < (σ−1)1−ω, o que prova (4.16). Assim:

∫ +∞

1

dσ

σ(σ−1)1−ω ≤
∫ N

1

dσ

σ(σ−1)1−ω +
∫ +∞

N

dσ

σ1+ω

= K + lim
t→+∞

∫ t

N

dσ

σ1+ω = K + 1

ωN−ω :=C1, (4.17)
onde K e N são constantes.

Assim, de (4.15) e (4.17) concluímos que C (ω,δ,λ) =C1 (δ+λ)ω−1 <∞.
Para majorar a integral D(ω, δ, λ) fazemos a seguinte mudança de variável:

σ= y4

(δ+λ)2
+2

y2

δ+λ +1.

Desse modo y4 +2(δ+λ)y2 − (σ−1)(δ+λ)2 = 0, e portanto:
|y | = (δ+λ)1/2 (

σ1/2 −1
)1/2

.

Portanto, de maneira similar, obtemos:
D(ω, δ, λ) = 2

(δ+λ)2

∫ +∞

0

|y |2ω−1

y4

(δ+λ)2 +2
y2

δ+λ +1

d y

= 1

2(δ+λ)2−ω

∫ +∞

1

1

σ3/2
(
σ1/2 −1

)1−ωdσ

≤ C2(δ+λ)ω−2 <∞. (4.18)
Por fim, a partir da desigualdade de Cauchy-Schwarz (Proposição A.8) e do fato de que h j ∈

L2(R; L2(0, L)), segue-se que:
H j (ω,δ,λ) :=

∫ L

0

∣∣H j (x,ω, δ, λ)
∣∣2 d x ≤

∫ L

0

∣∣∣∣∣
∫
R

|y | 2ω−1
2

y2 +δ+λ |h j (x, y)| d y

∣∣∣∣∣
2

d x

≤
(∫
R

|y |2ω−1d y

(y2 +δ+λ)2

)∫ L

0

∫
R
|h j (x, y)|2 d y d x

= D(ω,δ,λ)∥h j∥L2(R;L2(0,L)) <∞.
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Lema 4.6
Sejam 0 <ω< 1 e δ,λ ∈R tais que δ≥ 0 e λ ̸= 0. Então

C (ω,δ,λi ) :=
∫
R

y2ω−1d y

y2 +δ+λi
=C1 (δ+λi )ω−1 ,

e dado h j ∈ L2(R; L2(0, L)) ( j = 1, 2, 3), temos:
H j (x,ω, δ, λi ) :=

∫
R

|y | 2ω−1
2 h j (x, y)d y

y2 +δ+λi
∈ L2(0, L).

Demonstração. Considere a função Fδ : Dδ→C, defina por:
Fδ(z) =

∫
R

y2ω−1d y

y2 +δ+ z
,

onde Dδ = {z ∈C; Re z >−δ ou Im z ̸= 0}.
Note que: ∣∣∣∣ |y |2ω−1

y2 +δ+ z

∣∣∣∣≤ |y |2ω−1

y2 +δ+Re z
e

∣∣∣∣ |y |2ω−1

y2 +δ+ z

∣∣∣∣≤ |y |2ω−1

y2 +δ+| Im z| .

Então: ∣∣∣∣ |y |2ω−1

y2 +δ+ z

∣∣∣∣≤ |y |2ω−1

y2 +δ+δ0
e

∣∣∣∣ |y |2ω−1

y2 +δ+ z

∣∣∣∣≤ |y |2ω−1

y2 +δ1
. (4.19)

onde Re z ≥ δ0 >−δ e | Im z| ≥ δ1 > 0.
Portanto, de (4.19), segue que a função fλ :R→C definida por fλ(y) = |y |2ω−1

y2 +δ+ z
é integrável,

e portanto Fδ é holomorfa em Dδ para todo δ≥ 0.
Agora, considere a função Gδ : Dδ → C, definida por Gδ(z) = C1(δ+ z)ω−1. Do Princípio do

zeros isolados (Teorema A.12), se a função holomorfa H = F −G é não-constante, então existe uma
vizinhança V ⊂ D e um único ponto z0 ∈V tal que H(z0) = Fδ(z0)−Gδ(z0) = 0. Contudo do Lema
4.5, segue que:

Fδ(λ) =C (ω,δ,λ) =
∫
R

y2ω−1d y

y2 +δ+λ =C1 (δ+λ)ω−1 =Gδ(λ); ∀λ>−δ.

Assim, H(λ) = 0, para todo λ > −δ, e portanto H deve ser constante igual a 0 em todo intervalo
(−δ,+∞)∩V . Da continuidade de H em D, segue que F =G.

Em particular, temos:
C (ω, δ, λi ) :=

∫
R

y2ω−1d y

y2 +δ+λi
= F (λi ) =G(λi ) =C1 (δ+λi )ω−1 ;∀λ ̸= 0 e δ≥ 0.

Alémdisso, da desigualdade deCauchy-Schwarz (ProposiçãoA.8) e do fato deh j ∈ L2(R; L2(0, L)),
segue-se que:

H j (ω,δ,λi ) :=
∫ L

0

∣∣H j (x,ω, δ, λi )
∣∣2 d x

≤
(∫
R

|y |2ω−1d y

(y2 +δ)2 +λ2

)∫ L

0

∫
R
|h j (x, y)|2d yd x <+∞.
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De fato. Definindo:
E(ω, δ, λ) :=

∫
R

|y |2ω−1d y

(y2 +δ)2 +λ2
= 2

∫ 1

0

|y |2ω−1d y

(y2 +δ)2 +λ2
+2

∫ +∞

1

|y |2ω−1d y

(y2 +ω)2 +λ2
<∞,

observe que em ambos os casos, (δ> 0 e λ ∈R) ou (δ= 0 e λ ̸= 0), obtemos
|y |2ω−1

(y2 +δ)2 +λ2
∼ |y |2ω−1

δ2 +λ2
quando |y |→ 0, (4.20)

e
|y |2ω−1

(y2 +δ)2 +λ2
∼ |y |2ω−1

y4
= 1

|y |5−2ω
quando |y |→+∞. (4.21)

Lembre que uma função do tipo |y |d pode possuir uma sigularidade em y = 0. Lembre que∫ k
−k |y |d d y <∞, quando d >−1 e ∫ −k

−∞ |y |d d y,
∫ +∞

k |y |d d y <∞, quando d <−1. Assim, como
0 <ω< 1, de (4.20) e (4.21), segue que E(ω,δ,λ) <∞, e consequentemente, H j (ω,δ,λi ) <∞.

4.2 Boa-Colocação

Nesta seção, deduziremos a energia associada ao problema descrito pelas equações (4.12)–
(4.14) e provaremos que essa energia é decrescente no tempo, o que evidencia o caráter dissipativo
do sistema. Em seguida, definiremos um operador linear adequado, de modo que o problema
possa ser reformulado como um problema de Cauchy linear associado a esse operador. Além disso,
utilizaremos a expressão da energia obtida para definir o espaço de fase, isto é, o espaço no qual o
operador está definido. Esse espaço será essencial para a análise das propriedades do sistema.

Por fim, aplicaremos a teoria dos semigrupos de operadores lineares limitados, desenvolvida
no Capítulo 2, para demonstrar que o problema está bem colocado. Isso implica que existe uma
única solução que satisfaz as equações (4.12)–(4.14), garantindo a existência e a unicidade de solução.

4.2.1 Formulação do Semigrupo

Proposição 4.7
A energia associada ao problema (4.12)–(4.14) é dada por:

E(t ) = a

2

∫ L

0
|ux(x, t )|2d x + τ

2

∫ L

0
|(φ−u)(x, t )|2d x + k

2

∫ L

0
|(φx +ψ)(x, t )|2d x

+ b

2

∫ L

0
|ψx(x, t )|2d x + 1

2

∫ L

0
|ut (x, t )|2d x + ρ1

2

∫ L

0
|φt (t )|2d x + ρ2

2

∫ L

0
|ψt (x, t )|2d x

+ γ1

2

∫
R

∫ L

0
|ϕ1(x, t , y)|2d xd y + γ2

2

∫
R

∫ L

0
|ϕ2(x, t , y)|2d xd y + γ3

2

∫
R

∫ L

0
|ϕ3(x, t , y)|2d xd y, (4.22)

e satisfaz:
d

d t
E(t ) =−γ1

∫
R

∫ L

0
(y2 +η)|ϕ1(x, t , y)|2d xd y −γ2

∫
R

∫ L

0
(y2 +ζ)|ϕ2(x, t , y)|2d xd y

−γ3

∫
R

∫ L

0
(y2 +θ)|ϕ2(x, t , y)|2d xd y. (4.23)
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Demonstração. Multiplicando a equação (4.12)1 por ut e integrando em relação a x no intervalo de
0 a L, obtemos: ∫ L

0
ut t ut d x −auxut

∣∣∣x=L

x=0
+a

∫ L

0
uxut x d x −τ

∫ L

0
(φ−u)ut d x

+γ1

∫ L

0
ut

∫
R

p(y)ϕ1(y) d y d x = 0. (4.24)
Note que

ut (0, t ) = lim
h→0

u(0, t +h)−u(0, t )

h
e ut (L, t ) = lim

h→0

u(L, t +h)−u(L, t )

h

Assim, das condições de contorno (4.14)1, segue que ut (0, t ) = ut (L, t ) = 0, e portanto:
auxut

∣∣∣x=L

x=0
:= aux(0, t )ut (0, t )−aux(L, t )ut (L, t ) = 0. (4.25)

Como d

d t
|ut |2 = 2ut t ut e d

d t
|ux |2 = 2uxuxt = 2uxut x , de (4.24) e (4.25), obtemos:

1

2

d

d t

∫ L

0
|ut |2d x + a

2

d

d t

∫ L

0
|ux |2d x −τ

∫ L

0
(φ−u)ut d x +γ1

∫ L

0
ut

∫
R

p(y)ϕ1(y) d y d x = 0 (4.26)
Multiplicando as equação (4.12)3 e (4.12)5 por φt e ψt respectivamente, e agindo de maneira

semelhante, obtemos:
ρ1

2

d

d t

∫ L

0
|φt |2d x +k

∫ L

0
(φx +ψ)φxt d x +τ

∫ L

0
(φ−u)φt d x

+γ2

∫ L

0
φt

∫
R

q(y)ϕ2(y) d y d x = 0 (4.27)
e

ρ2

2

d

d t

∫ L

0
|ψt |2d x + b

2

d

d t

∫ L

0
|ψx |2d x +k

∫ L

0
(φx +ψ)ψt d x

+γ3

∫ L

0
ψt

∫
R

r (y)ϕ3(y) d y d x = 0. (4.28)
Somando (4.26), (4.27) e (4.28), e observando que

d

d t
|φ−u|2 = 2[φ−u][φt −ut ] = 2[φ−u]φt −2[φt −u]ut

e
d

d t
|φx +ψ|2 = 2[φx +ψ][φxt +ψt ] = 2[φx +ψ]φxt +2[φx +ψ]ψt ,

segue que
a

2

d

d t

∫ L

0
|ux |2d x + τ

2

d

d t

∫ L

0
|φ−u|2d x + k

2

d

d t

∫ L

0
|φx +ψ|2d x + b

2

d

d t

∫ L

0
|ψx |2d x

+ 1

2

d

d t

∫ L

0
|ut |2d x + ρ1

2

d

d t

∫ L

0
|φt |2d x + ρ2

2

d

d t

∫ L

0
|ψt |2d x +γ1

∫ L

0
ut

∫
R

p(y)ϕ1(y) d y d x

+γ2

∫ L

0
φt

∫
R

q(y)ϕ2(y) d y d x +γ3

∫ L

0
ψt

∫
R

r (y)ϕ3(y) d y d x = 0. (4.29)
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Por outro lado, ao multiplicar as equações (4.12)2, (4.12)4 e (4.12)6 por γ1ϕ1, γ2ϕ2 e γ2ϕ2

respectivamente e, em seguida, integrar com respeito a variável y sobre R, obtemos:
γ1

2

d

d t

∫
R
|ϕ1(y)|2d y +γ1

∫
R

(
y2 +η) |ϕ1(y)|2d y = γ1ut

∫
R

p(y)ϕ1(y) d y, (4.30)
γ2

2

d

d t

∫
R
|ϕ2(y)|2d y +γ2

∫
R

(
y2 +ζ) |ϕ2(y)|2d y = γ2φt

∫
R

q(y)ϕ2(y) d y (4.31)
e

γ3

2

d

d t

∫
R
|ϕ3(y)|2d y +γ3

∫
R

(
y2 +ξ) |ϕ3(y)|2d y = γ3ψt

∫
R

r (y)ϕ3(y) d y. (4.32)
Substituindo as expressões (4.30), (4.31) e (4.32) em (4.29), obtemos:

a

2

d

d t

∫ L

0
|ux |2d x + τ

2

d

d t

∫ L

0
|φ−u|2d x + k

2

d

d t

∫ L

0
|φx +ψ|2d x + b

2

d

d t

∫ L

0
|ψx |2d x

+ 1

2

d

d t

∫ L

0
|ut |2d x + ρ1

2

d

d t

∫ L

0
|φt |2d x + ρ2

2

d

d t

∫ L

0
|ψt |2d x + γ1

2

d

d t

∫
R

∫ L

0
|ϕ1(y)|2d xd y

+ γ2

2

d

d t

∫
R

∫ L

0
|ϕ2(y)|2d x d y + γ3

2

d

d t

∫
R

∫ L

0
|ϕ3(y)|2d x d y +γ1

∫
R

∫ L

0

(
y2 +η) |ϕ1(y)|2d x d y

+γ2

∫
R

∫ L

0

(
y2 +ζ) |ϕ2(y)|2d x d y +γ3

∫
R

∫ L

0

(
y2 +ξ) |ϕ3(y)|2d x d y = 0. (4.33)

Denotando a energia E(t ) por (4.22), temos que (4.33) estabelece (4.23).
Queremos agora reescrever o problema (4.12)–(4.14) como um problema abstrato de Cauchy

linear. Para isso, introduzimos a função vetorialU = (u, v,ϕ1,φ, w,ϕ2,ψ, z,ϕ3), emqueut = v,φt = w

e ψt = z.
Assim, temos:

Ut =



ut

vt

(ϕ1)t

φt

wt

(ϕ2)t

ψt

zt

(ϕ3)t



=



v

auxx +τ(φ−u)−γ1

∫
R

p(y)ϕ1(y)d y

−(y2 +η)ϕ1(y)+p(y)v

w
1

ρ1

[
k(φx +ψ)x −τ(φ−u)−γ2

∫
R

q(y)ϕ2(y)d y
]

−(y2 +ζ)ϕ2(y)+q(y)w

z
1

ρ2

[
bψxx −k(φx +ψ)−γ3

∫
R

r (y)ϕ3(y)d y
]

−(y2 +ξ)ϕ3(y)+ r (y)z



:=AU . (4.34)

Nosso objetivo é reescrever o problema (4.12)–(4.14) em um problema de Cauchy abstrato da
seguinte forma: {

U ′(t )−AU (t ) = 0; t > 0,

U (0) =U0,
(4.35)
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onde U0 = (u0,u1,0,φ0,φ1,0,ψ0,ψ1,0) e o operador linear A : D(A ) ⊂ H → H é definido con-
forme (4.34), para um espaço de fase H apropriado.

Para determinar o espaço de fase adequado H , podemos observar a expressão da energia
E(t ) definida em (4.23). De acordo com a teoria de semigrupos lineares apresentada no Capítulo 2
(ver Definição 2.34), precisamos garantir que:

E(t ) = 1

2
∥U∥2

H = 1

2
∥S(t )U0∥2

H , (4.36)
onde {S(t )}t≥0 representa o semigrupo de operadores lineares limitados gerado pelo operador linear
A .

De acordo comas condições deDirichlet (4.14)1,2, uma vez que, pelo Teoremado Traço (Teorema
1.63), tem-se:

H 1
0 (0,L) = {u ∈ H 1(0,L); u(0) = u(L) = 0}.

Assim, é natural considerar a norma do espaço H 1
0 (0,L) (ver Corolário 1.18), definida por:

∥ ·∥H 1
0 (0,L) : H 1

0 (0,L) −→ C

u 7−→ ∥u∥H 1
0 (0,L) = ∥ux∥L2(0,L).

Por outro lado, para as condições de Neumann (4.14)1, não há um espaço normado natural
como H 1

0 (0,L). Contudo, o termo ∥ψx∥L2(0,L) aparece naturalmente na expressão da Energia E(t).
Diante disso, seria fundamental considerar um espaço onde valha a desigualdade de Poicaré, mas
sem que ψ ∈ H 1

0 (0,L), ou seja, sem a necessidade de impor, além das condições de contorno de
Neumann, as condições de Dirichlet para ψ.

Observe que, se assumirmos a condição:∫ L

0
ψ(x) d x = 0, (4.37)

dispomos da Desigualdade de Poincaré (Teorema 1.17). Com efeito, pela desigualdade de Poincaré-
Wirtinger (Teorema 1.22), segue que:∥∥∥∥ψ− 1

L

∫ L

0
ψ(x) d x

∥∥∥∥
L2(0,L)

≤ 2L|ψx∥L2(0,L).

Assim, da condição (4.37), tem-se: ∥∥ψ∥∥
L2(0,L) ≤ 2L|ψx∥L2(0,L), (4.38)

Considere o espaço:
H 1

∗ =
{

f ∈ H 1(0,L);
∫ L

0
f (x) = 0

}
.

Dessa forma, a partir da desigualdade (4.38), define-se a seguinte norma:
∥ ·∥H 1∗(0,L) : H 1

∗(0,L) −→ C

u 7−→ ∥u∥H 1∗(0,L) = ∥ux∥L2(0,L).
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Afirmamos que (
H 1∗(0,L); ∥ ·∥H 1∗(0,L)

) é um espaço de Banach. De fato, note que H 1∗(0,L) =
H 1(0,L)∩L2∗(0,L), onde

L2
∗(0,L) =

{
f ∈ L2(0,L);

∫ L

0
f (x) = 0

}
.

Assim, basta mostrar que L2∗(0,L) é subespaço fechado de L2(0,L). Seja ( fn)n∈N uma sequência de
Cauchy em L2∗(0,L). Logo ( fn)n∈N é uma sequência de Cauchy em L2(0,L), e, como L2(0,L) é um
espaço de Banach, existe uma função f ∈ L2(0,L) tal que ∥ fn − f ∥L2(0,L) → 0. Da imersão contínua
L2(0,L) ,→ L1(0,L), temos ∥ fn − f ∥L1(0,L) → 0. Portanto:∣∣∣∣∫ L

0
f (x) d x

∣∣∣∣= ∣∣∣∣∫ L

0
fn(x) d x −

∫ L

0
f (x) d x

∣∣∣∣≤ ∣∣∣∣∫ L

0
( fn(x)− f (x))d x

∣∣∣∣= ∥ fn − f1∥L1(0,L) → 0.

Fazendo n →∞, obtém-se ∫ L
0 f (x) d x = 0, isto é f ∈ L2∗(0,L). Logo L2∗(0,L) é fechado em L2(0,L), e,

portanto H 1∗(0,L) é um espaço de Banach, como afirmado.
Assim, o espaço de fase (H ,∥ ·∥) é definido por:

H = [
H 1

0 (0,L)×L2(0,L)×L2(R; L2(0, L))
]2 × [

H 1
∗(0,L)×L2(0,L)×L2(R; L2(0, L))

]
,

sendo munido da norma ∥ ·∥H : H →R, definida em (4.36).
Para simplificar a notação, denotaremos a norma e o produto interno do espaço L2(0,L)

simplesmente como ∥ ·∥ e 〈·, ·〉 respectivamente. Dessa forma, temos:
∥U∥2

H = a∥ux∥2 +∥v∥2 +ρ1∥w∥2 +ρ2∥z∥2 +b∥ψx∥2 +τ∥φ−u∥2 +k∥φx +ψ∥2

+γ1∥ϕ1∥2
L2(R;L2(0,L)) +γ2∥ϕ2∥2

L2(R;L2(0,L)) +γ3∥ϕ3∥2
L2(R;L2(0,L)),

Na Definição 2.4, vimos queU ∈ D(A ), se, e somente se AU ∈H . Além disso, a condição de
fronteira (4.14)3 deve ser satisfeita. Assim, o domínio de A é dado por:

D(A ) =



(u, v,ϕ1,φ, w,ϕ2,ψ, z,ϕ3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u,φ ∈ H 2(0,L)∩H 1
0 (0,L),

ψ ∈ H 2
N (0,L)∩H 1∗(0,L),

v, w ∈ H 1
0 (0,L)

z ∈ H 1∗(0,L)

ϕ1,ϕ2,ϕ3 ∈ L2(R;L2(0,L)),

|y |ϕ j ∈ L2(R;L2(0,L))( j = 1,2,3),

−(|y |2 +η)ϕ1 +p(y)v ∈ L2(R;L2(0,L)),

−(|y |2 +ζ)ϕ2 +q(y)w ∈ L2(R;L2(0,L)),

−(|y |2 +ξ)ϕ3 + r (y)z ∈ L2(R;L2(0,L)).



,

onde H 2
N (0,L) := {ψ ∈ H 2(0,L); ψx(0) =ψx(L) = 0}.

Observe que D(A ) é denso em H . Além disso, (H ,〈· , ·〉H ) é um espaço de Hilbert, com
∥U∥2

H
= 〈U ,U 〉H , onde
〈U , Ũ 〉H = a〈ux , ũx〉+〈v, ṽ〉+ρ1〈w, w̃〉+ρ2〈z, z̃〉+ b〈ψx , ψ̃x〉+τ〈φ−u, φ̃− ũ〉

+ k〈φx +ψ, φ̃x + ψ̃〉+γ1〈ϕ1, ϕ̃1〉L2(R;L2(0,L)) +γ2〈ϕ2, ϕ̃2〉L2(R;L2(0,L))

+γ3〈ϕ3, ϕ̃3〉L2(R;L2(0,L)),
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paraU = (u, v,ϕ1,φ, w,ϕ2,ψ, z,ϕ3) e Ũ = (ũ, ṽ ,ϕ̃1, φ̃, w̃ ,ϕ̃2,ψ̃, z̃,ϕ̃3).

4.2.2 Existência e Unicidade de Solução

Teorema 4.8 (Teorema de Existência e Unicidade)
Se U0 = (u0,u1,0,φ0,φ1,0,ψ0,ψ1,0) ∈ H , então o problema de Cauchy (4.35) admite uma única
solução branda (ver Definição 2.9, item (i)):

U ∈C 0 ([0, +∞); H ) , (4.39)
dada porU (t ) = e tA U0.

Se U0 ∈ D(A ), então a solução obtida é uma solução regular (Clássica) (ver Definição 2.9, item
(ii)) com a seguinte regularidade:

U ∈C 0 ([0, +∞); D (A ))∩C 1 ([0, +∞); H ) . (4.40)

Demonstração. Dado o Teorema 2.8, é suficiente mostrar que o operador A : D(A ) ⊂H →H é
gerador infinitesimal de um C0–semigrupo {e tA }t≥0. Para isso, utilizaremos o item (i) do Teorema de
Lummer-Phillips (Teorema (2.31)).

Inicialmente, afirmamos que o operador A é dissipativo (ver Definição 2.30). Para verificar
essa propriedade, sejaU = (u, v,ϕ1,φ, w,ϕ2,ψ, z,ϕ3) ∈ D(A ). Temos:

〈AU , U 〉H = a
∫ L

0
vxux d x +a

∫ L

0
uxx v d x +τ

∫ L

0
(φ−u)v d x −γ1

∫
R

∫ L

0
p(y)ϕ1(y)v d x d y

+k
∫ L

0
(φx +ψ)x w d x −τ

∫ L

0
(φ−u)w d x −γ2

∫
R

∫ L

0
q(y)ϕ2(y)w d x d y

+b
∫ L

0
ψxx z d x −k

∫ L

0
(φx +ψ)z d x −γ3

∫
R

∫ L

0
r (y)ϕ3(y)z d x d y

+b
∫ L

0
zxψx d x +τ

∫ L

0
(w − v)(φ−u) d x +k

∫ L

0
(wx + z)(φx +ψ) d x

−γ1

∫
R

∫ L

0
(y2 +η)|ϕ1(y)|2 d x d y +γ1

∫
R

∫ L

0
p(y)ϕ1(y)v d x d y

−γ2

∫
R

∫ L

0
(y2 +ζ)|ϕ2(y)|2d x d y +γ2

∫ L

0
q(y)ϕ2(y)w d x d y

−γ3

∫
R

∫ L

0
(y2 +ξ)|ϕ3(y)|2d x d y +γ3

∫ L

0
r (y)ϕ3(y)z d x d y.

ComoU ∈ D(A ), segue que v, w ∈ H 1
0 (0,L). Logo, utilizando integração por partes, temos:

∫ L

0
uxx v d x =−

∫ L

0
ux v x d x e ∫ L

0
(φx +ψ)x w d x =−

∫ L

0
(φx +ψ)w x d x.
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Simplificando os termos semelhantes, obtemos:
〈AU , U 〉H = a

∫ L

0
[vxux − vxux]d x +τ

∫ L

0
[(w − v)(φ−u)− (w − v)(φ−u)]d x

+k
∫ L

0
[(wx + z)(φx +ψ)− (wx + z)(φx +ψ)]d x +b

∫ L

0
[zxψx − zxψx]d x

+γ1

∫
R

∫ L

0
p(y)[vϕ1(y)− vϕ1(y)]d x d y −γ1

∫
R

∫ L

0
(y2 +η)|ϕ1(y)|2d x d y

+γ2

∫
R

∫ L

0
q(y)[wϕ2(y)−wϕ2(y)]d x d y −γ2

∫
R

∫ L

0
(y2 +ζ)|ϕ2(y)|2d x d y

+γ3

∫
R

∫ L

0
r (y)[zϕ3(y)− zϕ3(y)]d x d y −γ3

∫
R

∫ L

0
(y2 +ξ)|ϕ2(y)|2d x d y.

Portanto:
〈AU , U 〉H = 2i a

∫ L

0
Im[vxux]d x +2iτ

∫ L

0
Im[(w − v)(φ−u)]d x

+2i k
∫ L

0
Im

[
(wx + z)(φx +ψ)

]
d x +2i b

∫ L

0
Im

[
zxψx

]
d x

+2iγ1

∫
R

∫ L

0
p(y)Im

[
vϕ1(y)

]
d x d y −γ1

∫
R

∫ L

0
(y2 +η)|ϕ1(y)|2d x d y

+2iγ2

∫
R

∫ L

0
q(y)Im

[
wϕ2(y)

]
d x d y −γ2

∫
R

∫ L

0
(y2 +ζ)|ϕ2(y)|2d x d y

+2iγ3

∫
R

∫ L

0
r (y)Im

[
zϕ3(y)

]
d x d y −γ3

∫
R

∫ L

0
(y2 +ξ)|ϕ3(y)|2d x d y.

Finalmente, tomando a parte real, temos:
Re〈AU , U 〉H = −γ1

∫
R

∫ L

0
(y2 +η)|ϕ1(y)|2d xd y −γ2

∫
R

∫ L

0
(y2 +ζ)|ϕ2(y)|2d xd y

−γ3

∫
R

∫ L

0
(y2 +ξ)|ϕ3(y)|2d xd y ≤ 0. (4.41)

Isso demonstra que o operador A é dissipativo.
Mostraremos agora que A é um operador maximal (ver Definição (2.32)). Mais precisamente,

devemos provar que, dado W ∈H , existe um vetorU ∈ D(A ) tal que (I −A )U =W . Isto equivale a
resolução do seguinte sistema de equações:

u − v = f1, (4.42)
v −auxx −τ(φ−u)+γ1

∫
R

p(y)ϕ1(y)d y = g1, (4.43)
ϕ1(y)+ (y2 +η)ϕ1(y)−p(y)v = h1(y), (4.44)

φ−w = f2, (4.45)
ρ1w −k

(
φx +ψ

)
x +τ(φ−u)+γ2

∫
R

q(y)ϕ2(y)d y = ρ1g2, (4.46)
ϕ2(y)+ (y2 +η)ϕ2(y)−q(y)w = h2(y), (4.47)

ψ− z = f3, (4.48)
ρ2z −bψxx +k(φx +ψ)+γ3

∫
R

r (y)ϕ3(y)d y = ρ2g3, (4.49)
ϕ3(y)+ (y2 +ξ)ϕ3(y)− r (y)z = h3(y). (4.50)
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Nesse sistema, W = ( f1, g1,h1, f2, g2,h2, f3, g3,h3) eU = (u, v,ϕ1,φ, w,ϕ2,ψ, z,ϕ2).
De (4.42), (4.45) e (4.48), segue que:

v = u − f1, w =φ− f2 e z =ψ− f3. (4.51)
Substituindo (4.51) em (4.44), (4.47) e (4.50) respectivamente, obtemos:

ϕ1(y) = h1(y)

y2 +η+1
− p(y) f1

y2 +η+1
+ p(y)u

y2 +η+1
, (4.52)

ϕ2(y) = h2(y)

y2 +ζ+1
− q(y) f2

y2 +ζ+1
+ q(y)φ

y2 +ζ+1
, (4.53)

ϕ3(y) = h3(y)

y2 +ξ+1
− r (y) f3

y2 +ξ+1
+ r (y)ψ

y2 +ξ+1
. (4.54)

Aplicando o Lema 4.5 às expressões (4.52), (4.53) e (4.54), obtemos:
γ1

∫
R

p(y)ϕ1(y)d y = γ1
[
H1(x,α,η,1)+C (α, η,1)(u − f1)

]
, (4.55)

γ2

∫
R

q(y)ϕ2(y)d y = γ2
[
H2(x,β,ζ,1)+C (β, ζ,1)(φ− f2)

]
, (4.56)

γ3

∫
R

r (y)ϕ3(y)d y = γ3
[
H3(x,θ,ξ,1)+C (θ, ξ,1)(ψ− f3)

]
. (4.57)

Aplicando as expressões (4.51), (4.55), (4.56) e (4.57) nas equações (4.43), (4.46) e (4.49) res-
pectivamente, temos:

u −auxx −τ(φ−u)+γ1C (α, η,1)u = f1 + g1 +γ1C (α, η,1) f1 −γ1H1(x,α,η,1), (4.58)
ρ1φ−k(φx +ψ)x +τ(φ−u)+γ2C (β, ζ,1)φ= ρ1( f2 + g2)+γ2C (β, ζ,1) f2 −γ2H2(x,β,ζ,1), (4.59)
ρ2ψ−bψxx +k(φx +ψ)+γ3C (θ, ξ,1)ψ= ρ2( f3 + g3)+γ3C (θ, ξ,1) f3 −γ3H3(x,θ,ξ,1). (4.60)

Multiplicando as equações (4.58), (4.59) e (4.60) por ũ ∈ H 1
0 (0, L), φ̃ ∈ H 1

0 (0, L) e ψ̃ ∈ H 1∗(0, L)

respectivamente, integrando sobre x de 0 a L e, em seguida, aplicando a integração por partes,
obtém-se o seguinte sistema equivalente:

C1

∫ L

0
uũd x +a

∫ L

0
ux ũxd x −τ

∫ L

0
(φ−u)ũd x =

∫ L

0
F1ũd x,

C2

∫ L

0
φφ̃d x +k

∫ L

0

(
φx +ψ

)
φ̃xd x +τ

∫ L

0
(φ−u)φ̃d x =

∫ L

0
F2φ̃d x,

C3

∫ L

0
ψψ̃d x −bψxψ̃x

∣∣∣x=L

x=0
+b

∫ L

0
ψxψ̃xd x +k

∫ L

0
(φx +ψ)ψ̃d x =

∫ L

0
F3ψ̃d x,

(4.61)

onde os coeficientes são dados por:
C1 = 1+γ1C (α, η,1), C2 = ρ1 +γ2C (β, ζ,1) e C3 = ρ2 +γ3C (θ, ξ,1).

e os termos do lado direito são:
F1 = [1+γ1C (α,η,1)] f1 + g1 −γ1H1(x,α,η,1), F2 = [ρ1 +γ2C (β,ζ,1)] f2 +ρ1g2 −γ2H2(x,β,ζ,1) e
F3 = [ρ2 +γ3C (θ,ξ,1)] f3 +ρ2g3 −γ3H3(x,θ,ξ,1).
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Assim, temos que F j ∈ L2(0,L), uma vez que, pelo Lema 4.5, H j (x,ω,δ,1) ∈ L2(0,L).
Observe que não necessariamente se tem:

−bψxψ̃x

∣∣∣x=L

x=0
= 0, (4.62)

pois nem toda função em H 1∗(0,L) satisfaz as condições de Neumann. Para contornar esse problema,
considere o problema variacional auxiliar de encontrar um vetor (

u,φ,ψ
) ∈ [

H 1
0 (0, L)

]2 ×H 1∗(0,L)

tal que
B((u,φ,ψ), (ũ, φ̃, ψ̃)) =L (ũ, φ̃, ψ̃); ∀(ũ, φ̃,ψ̃) ∈ [H 1

0 (0,L)]2 ×H 1
∗(0,L), (4.63)

onde B :
[
(H 1

0 (0, L))2 ×H 1∗(0,L)
]×[

(H 1
0 (0, L))2 ×H 1∗(0,L)

]−→C é a forma sesquilinear definida por:
B((u,φ,ψ), (ũ, φ̃, ψ̃)) = C1

∫ L

0
uũd x +C2

∫ L

0
φφ̃d x +C3

∫ L

0
ψψ̃d x +a

∫ L

0
ux ũxd x

+b
∫ L

0
ψxψ̃xd x +τ

∫ L

0
(φ−u)(φ̃− ũ)d x +k

∫ L

0
(φx +ψ)(φ̃x + ψ̃)d x

e L : [H 1
0 (0, L)]2 ×H 1∗(0,L) −→C é a forma antilinear definida por:

L (ũ, φ̃, ψ̃) =
∫ L

0
F1ũd x +

∫ L

0
F2φ̃d x +

∫ L

0
F3ψ̃d x.

Usaremos o Teorema de Lax-Milgram (Teorema A.9). Primeiramente note que B é contínua.
Dados (

u,φ,ψ
)

,
(
ũ, φ̃, ψ̃

) ∈ [H 1
0 (0, L)]2 ×H 1∗(0,L), da desigualdade de Cauchy-Schwarz (Proposição

A.8) e das desigualdade de Poincaré (Teorema 1.17) e Poicaré-Wirtinger (Teorema 1.22), temos:∣∣B ((
u,φ,ψ

)
,
(
ũ, φ̃, ψ̃

))∣∣≤C1 |〈u, ũ〉|+C2
∣∣〈φ, φ̃〉∣∣+C3

∣∣〈ψ,ψ̃〉∣∣+a |〈ux , ũx〉|
+b

∣∣〈ψ∗
x ,ψ̃x〉

∣∣+τ ∣∣〈φ−u, φ̃− ũ〉∣∣+k
∣∣〈φx +ψ, φ̃x + ψ̃〉∣∣

≤ C̃1∥ux∥∥ũx∥+ C̃2∥φx∥∥φ̃x∥+ C̃3∥ψx∥∥ψ̃x∥+T ∥φx∥∥ũx∥+T ∥ux∥∥φ̃x∥
+K ∥φx∥∥ψ̃x∥+K ∥ψx∥∥φ̃x∥

≤C · ∥(u,φ,ψ)∥[H 1
0 (0,L)]2×H 1∗(0,L)∥(ũ, φ̃,ψ̃)∥[H 1

0 (0,L)]2×H 1∗(0,L),

onde C̃1 = (C1 +τ)L2 +a, C̃2 = (C2 +τ)L2 +k, C̃3 = (C3 +k)L2 +b, T = τL2, K = kL e
C = max{C̃1,C̃2,C̃3,T,K }.

Agora mostraremos que B é coerciva. Para (u,φ,ψ) ∈ [H 1
0 (0,L)]2 ×H 1∗(0,L), da desigualdade

de Young (Proposição A.3), segue que:
∥(u,φ,ψ)∥2

[H 1
0 (0,L)]2×H 1∗(0,L)

= (∥ux∥+∥φx∥+∥ψx∥
)2

≤ (∥ux∥+∥φx +ψ∥+∥ψ∥+∥ψx∥
)2

≤ 4∥ux∥2 +4∥φx +ψ∥2 +4∥ψ∥2 +4∥ψx∥2

≤ C1∥u∥2 +C2∥φ∥2 + 4

C3
C3∥ψ∥2 + 4

a
a∥ux∥2 + 4

b
b∥ψx∥2 +τ∥φ−u∥2

+4

k
k∥φx +ψ∥2

≤ C ·B((u,φ,ψ), (u,φ,ψ))
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onde C = max{C1,C2,4/C3,4/a,4/b,τ,4/k}.
Por fim, vamos demonstrar que L é limitada. Para (ũ, φ̃,ψ̃) ∈ [H 1

0 (0,L)]2 ×H 1∗(0,L), temos:
|L (ũ, φ̃,ψ̃)| = |〈F1, ũ〉|+ ∣∣〈F2, φ̃〉∣∣+ ∣∣〈F3,ψ̃〉∣∣

≤ L∥F1∥∥ũx∥+L · ∥F2∥∥φ̃x∥+L∥F3∥∥ψ̃x∥
≤ C · ∥(u,φ,ψ)∥2

[H 1
0 (0,L)]2×H 1∗0,L)

,

onde C = L ·max{∥F1∥,∥F2∥,∥F3∥}.
Portanto, do Teorema de Lax-Milgram (Teorema A.9), existe uma única solução (u, φ,ψ) ∈

[H 1
0 (0, L)]2 ×H 1∗(0,L) para o problema variacional (4.63).

Como g1, g2, g3 ∈ L2(0,L), pela regularidade do sistema de equações: (4.43), (4.46) e (4.49),
segue que u,φ,ψ ∈ H 2(0, L). Além disso, como f1, f2 ∈ H 1

0 (0,L) e f3 ∈ H 1∗(0,L), definindo v , w

e z como as expressões dadas em (4.51), temos que v, w ∈ H 1
0 (0, L) e z ∈ H 1∗(0,L). Por outro

lado, h1, h2, h3 ∈ L2(R; L2(0, L)). Assim, definindo ϕ1(y), ϕ2(y) e ϕ2(y) pelas respectivas expres-
sões dadas em (4.52), (4.53) e (4.54), é evidente que |y |ϕ1 ∈ L2(R; L2(0, L)), |y |ϕ2 ∈ L2(R; L2(0, L)),
|y |ϕ3 ∈ L2(R; L2(0, L)), −(

y2 +η)
ϕ1 +p(y)v ∈ L2(R; L2(0, L)), −(

y2 +ζ)ϕ2 +q(y)w ∈ L2(R; L2(0, L))

e −(
y2 +ξ) ϕ3 + r (y)z ∈ L2(R; L2(0, L)).
Assim, para queU = (u, v,ϕ1,φ, w,ϕ2,ψ, z,ϕ3) ∈ D(A ), resta apenas mostrar que ψ satisfaz

as condições de Neumann. Note que o problema variacional (4.63) é equivalente ao sistema (4.61),
quando supomos (4.62). Portanto, a solução (u, φ,ψ) ∈ [H 1

0 (0, L)]2×H 1∗(0,L) do problema variacional
(4.63) satisfaz:

C1

∫ L

0
uũd x +a

∫ L

0
ux ũxd x −τ

∫ L

0
(φ−u)ũd x =

∫ L

0
F1ũd x,

C2

∫ L

0
φφ̃d x +k

∫ L

0

(
φx +ψ

)
φ̃xd x +τ

∫ L

0
(φ−u)φ̃d x =

∫ L

0
F2φ̃d x,

C3

∫ L

0
ψψ̃d x +b

∫ L

0
ψxψ̃xd x +k

∫ L

0
(φx +ψ)ψ̃d x =

∫ L

0
F3ψ̃d x,

(4.64)

para toda terna (ũ, φ̃,ψ̃) ∈ [H 1
0 (0,L)]2 ×H 1∗(0,L).

Em particular, de (4.64)3, segue que
C3

∫ L

0
ψσd x −b

∫ L

0
ψxσxd x +k

∫ L

0
(φx +ψ)σd x =

∫ L

0
F3σd x; ∀σ ∈C 1

0 (0,L)∩H 1
∗(0,L),

Como σx(0) =σx(L) = 0, temos:
C3

∫ L

0
ψσd x −b

∫ L

0
ψxxσd x +k

∫ L

0
(φx +ψ)σd x =

∫ L

0
F3σd x; ∀σ ∈C 1

0 (0,L)∩H 1
∗(0,L),

Portanto:
C3ψ−bψxx +k(φx +ψ) = F3. (4.65)
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Multiplicando a equação (4.65) por uma função ψ̃ ∈ H 1∗(0,L) e integrando por partes, obtemos:
C3

∫ L

0
ψψ̃d x −bψxψ̃x

∣∣∣x=L

x=0
+b

∫ L

0
ψxψ̃xd x +k

∫ L

0
(φx +ψ)ψ̃d x =

∫ L

0
F3ψ̃d x (4.66)

Finalmente, combinando (4.64)3 e (4.66), temos:
−bψxψ̃x

∣∣∣x=L

x=0
+b

∫ L

0
ψxψ̃xd x = b

∫ L

0
ψxψ̃xd x; ∀ψ̃ ∈ H 1

∗(0,L).

Logo
bψx(0)ψ̃x(0)−bψx(L)ψ̃x(L); ∀ψ̃ ∈ H 1

∗(0,L). (4.67)
Agora, considere as funções M : [0,L] →C e N : [0,L] →C definidas por:

M(x) = 2L sen
(πx

2L

)
− 4L

π
e N (x) =−2L cos

(πx

2L

)
+ 4L

π
.

Note que M , N ∈ H 1∗(0,L), Mx (0) = Nx (L) =π e Mx (L) = Nx (0) = 0. Assim, aplicando ψ̃= M e ψ̃= N

em (4.67) respectivamente, obtém-se: ψx(0) = 0 e ψx(L) = 0, logo ψ ∈ H 2
N (0,L).

PortantoU = (u, v,ϕ1,φ, w,ϕ2,ψ, z,ϕ3) ∈ D(A ), e como nesse caso −bψxψ̃x

∣∣∣x=L

x=0
= 0, temos

que o sistema (4.64) é equivalente ao sistema (4.61). Assim, o vetorU = (u, v,ϕ1,φ, w,ϕ2,ψ, z,ϕ3) é
solução do sistema (4.42)–(4.50). Isto é, (I −A )U =W . Portanto A é maximal. Logo, do Teorema
de Lummer-Phillips (Teorema 2.31) segue que o operador A é gerador infinitesimal de um C0–
semigrupo de contrações {e tA }t≥0 sobre o espaço de Hilbert H . Assim, do Teorema 2.8, segue que
U : [0,+∞] →H definido porU (t ) = e tA U0 é a única solução do problema (4.35) satisfazendo (4.39)
e (4.40).

O Teorema anterior pode ser reformulado exclusivamente em termos do Problema original
(4.1)–(4.3) como segue:
Teorema 4.9 (Teorema de Existência e Unicidade)
Se u0,φ0 ∈ H 1

0 (0,L), ψ0 ∈ H 1∗(0,L) e u1,φ1,ψ1 ∈ L2(0,L), então o problema de valor inicial e de
contorno (4.1)–(4.3) admite uma única solução branda (u,φ,ψ) satisfazendo:u,φ ∈C 0

(
[0,+∞); H 1

0 (0,L)
)∩C 1

(
[0,+∞); L2(0,L)

)
,

ψ ∈C 0
(
[0,+∞); H 1∗(0,L)

)∩C 1
(
[0,+∞); L2(0,L)

)
Se u0,φ0 ∈ H 1

0 (0,L)∩H 2(0,L), ψ0 ∈ H 2
N (0,L)∩H 1∗(0,L), u1 =φ1 =ψ1 = 0, então o problema

de valor inicial e de contorno (4.1)–(4.3) admite uma única solução regular (u,φ,ψ) com a seguinte
regularidade:u,φ ∈C 0

(
[0,+∞); H 2(0,L)∩H 1

0 (0,L)
)∩C 1

(
[0,+∞); H 1

0 (0,L)
)∩C 2

(
[0,+∞);L2(0,L)

)
,

ψ ∈C 0
(
[0,+∞); H 2

N (0,L)∩H 1∗(0,L)
)∩C 1

(
[0,+∞); H 1∗(0,L)

)∩C 2
(
[0,+∞);L2(0,L)

)
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Demonstração. Note que, se u0,φ0 ∈ H 1
0 (0,L), ψ0 ∈ H 1∗(0,L) e u1,φ1,ψ1 ∈ L2(0,L), temos U0 =

(u0,u1,0,φ0,φ1,0,ψ0,ψ1,0) ∈ H , e quando u0,φ0 ∈ H 1
0 (0,L)∩ H 2(0,L), ψ0 ∈ H 2

N (0,L)∩ H 1∗(0,L)

e u1 = φ1 =ψ1 = 0, obtemos U = (u0,u1,0,φ0,φ1,0,ψ0,ψ1,0) ∈ D(A ). Portanto, basta aplicar o
Teorema 4.8.

Para obter uma solução que evolua continuamente no espaço de fase H (que inclui as
energias cinéticas, potenciais e das variáveis de memória, basta que o dado inicial U0 pertença
a H . Isso significa que as velocidades iniciais ut (0) = u1, φt (0) = φ1 e ψt (0) = ψ1 podem ser
quaisquer funções em L2(0,L) (energia cinética finita) e as variáveis de memória devem começar
"descarregadas"(ϕ j (0, y) = 0). Neste caso, a evolução temporal U (t) = e tA U0 é bem-definida e
contínua, mas não necessariamente diferenciável. A solução satisfaz as equações de forma integral,
acomodando assim um estado inicial com movimento.

Contudo, para obter uma solução que seja continuamente diferenciável no tempo e que
satisfaça as equações no sentido pontual, é necessário que o dado inicialU0 pertença ao domínio do
operador A , D(A ). Este domínio além de exigir mais regularidade para os dados iniciais, impõe
que as velocidades inicias ut (0) = u = 0, φt (0) =φ1 = 0 e ψt (0) =ψ1 = 0 sejam nulas. Observe que a
condição de velocidade inicial nula, necessária para a existência de solução regular, é plenamente
plausível do ponto de vista físico no contexto do modelo de ponte suspensa apresentado. Considere,
por exemplo, que o cabo principal e o tabuleiro da ponte são inicialmente deformados devido a
uma carga estática ou a uma ação constante do vento, e mantidos nessa configuração deformada,
caracterizada pelos deslocamentos iniciais u0, φ0 e ψ0. No instante t = 0, o sistema é liberado. A
exigência de que as velocidades iniciais sejam nulas, isto é, u1 = 0, φ1 = 0 e ψ1 = 0, significa que, no
exato momento da liberação, a estrutura encontra-se em repouso. Toda a energia do sistema está,
portanto, armazenada sob a forma de energia potencial elástica, contida nas deformações iniciais
u0, φ0 e ψ0, não havendo ainda conversão em energia cinética que implique movimento.

As condições iniciais ϕ j (0, y) = 0 impostas às variáveis auxiliares que representam os termos
de memória, indicam que, no instante inicial, os mecanismos internos de dissipação associados a
cada componente do sistema (o cabo, o deslocamento transversal e a rotação das fibras), não se
encontram tensionados. Casos as velocidades iniciais u1, φ1 ou ψ1 fossem não nulas, surgiria uma
inconsistência instantânea. Para ilustrar, tome a equação de evolução para o termo de memória com
respeito as vibrações do cabo principal:

(ϕ1)t (t , y)+ (y2 +η)ϕ(t , y)−p(y)ut = 0.

No instante t = 0, como ϕ1(0, y) = 0, deduz-se que (ϕ1)t (0, y) = p(y)u1. Contudo, a função p(y) =
|y |(2α−1)/2 não é de quadrado integrável em R, o que implica que (ϕ1)t (0, y) ∉ L2

(
R; L2(Ω)

), violando
assim a regularidade requerida para uma solução regular.

Esta condição é fundamental porque os amortecimentos fracionários incorporados ao sistema
são não locais no tempo, e as forças dissipativas deles decorrentes dependem de toda a história
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pregressa das velocidades ut , φt e ψt . O sistema dispõe de "graus de liberdade internos", repre-
sentados por ϕ1, ϕ2 e ϕ3, os quais armazenam informação sobre o passado. Um estado inicial que
inclua velocidades não nulas demandaria que estes graus de liberdade internos fossem excitados
de maneira instantânea, com um aporte infinito de energia, decorrente do espectro singular das
funções p(y), q(y) e r (y), o que é fisicamente irrealizável. A imposição u1 =φ1 =ψ1 = 0 assegura
que o sistema parta de um estado de equilíbrio, sem que haja um salto inicial incompatível com a
natureza dos materiais modelados.

Este comportamento reflete a física inerente ao modelo. Os amortecimentos fracionários
destinam-se a capturar o comportamento de materiais dotados de memória de longo prazo, como
os cabos de aço e o tabuleiro de concreto com propriedades viscoelásticas, os quais não reagem
instantaneamente a perturbações bruscas. Em contrapartida, um amortecimento viscoso convencio-
nal é puramente instantâneo. Por conseguinte, a condição de velocidade inicial nula é inerente à
modelagem que incorpora memória fracionária, ao passo que se torna dispensável na modelagem
com amortecimento viscoso. No contexto de pontes suspensas, tal condição corresponde a um
cenário no qual a estrutura é liberada a partir de uma configuração estaticamente deformada, sem
qualquer impulso inicial, situação comum em testes de vibração ou sob a ação de cargas que variam
gradualmente.

4.3 Comportamento Assintótico

Nesta seção, analisaremos o comportamento assintótico da solução obtida anteriormente.
Para isso, utilizaremos os resultados de estabilização de semigrupos apresentados no final da terceira
seção do Capítulo 2.

Iniciaremos com o estudo das propriedades espectrais do operador A , responsável por gerar o
semigrupo associado ao problema. A partir dessas propriedades, aplicaremos o Teorema de Arendt-
Batty (Teorema 2.38) e concluiremos que o semigrupo é fortemente estável, isto é, a solução decai
pontualmente para zero quando t →∞.

Na sequência, recorreremos ao Teorema de Gearhart (Teorema 2.41) para demonstrar que o
semigrupo em questão não apresenta estabilidade exponencial. Finalmente, aplicando o Teorema de
Borichev-Tomilov (Teorema 2.39), estabeleceremos que o decaimento ocorre de forma polinomial,
caracterizando assim a estabilidade polinomial do semigrupo associado ao nosso problema.

4.3.1 Análise Espectral

Proposição 4.10
Sejam λ ∈R e A o operador definido em (4.34). Então o operador λi I −A é injetivo.
Demonstração. Sejam λ ∈R eU = (u, v,ϕ1, φ, w,ϕ2,ψ, z,ϕ3) ∈ D(A ) tais que AU =λiU . Equiva-
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lentemente:
v =λi u, (4.68)

auxx +τ(φ−u)−γ1

∫
R

p(y)ϕ1(y)d y =λi v, (4.69)
(y2 +η+λi )ϕ1(y) = p(y)v, (4.70)

w =λiφ, (4.71)
k

(
φx +ψ

)
x −τ(φ−u)−γ2

∫
R

q(y)ϕ2(y)d y = ρ1λi w, (4.72)
(y2 +ζ+λi )ϕ2(y) = q(y)w, (4.73)

z =λiψ, (4.74)
bψxx −k(φx +ψ)−γ3

∫
R

r (y)ϕ3(y)d y = ρ2λi z, (4.75)
(y2 +ξ+λi )ϕ3(y) = r (y)z. (4.76)

De (4.41), segue-se que
0 = Re〈λiU , U 〉H = −γ1

∫
R

(y2 +η)∥ϕ1(y)∥2
L2(0,L)d y −γ2

∫
R

(y2 +ζ)∥ϕ2(y)∥2
L2(0,L)d y

−γ3

∫
R

(y2 +ξ)∥ϕ3(y)∥2
L2(0,L)d y ≤ 0

Portanto
ϕ1(x, y) = 0 =ϕ2(x, y) =ϕ2(x, y) = 0, em quase todo ponto (x, y) ∈ (0, L)×R. (4.77)

Substituindo (4.77) nas equações (4.70), (4.73) e (4.76) respectivamente, obtemos:
v(x) = w(x) = z(x) = 0, em quase todo ponto x ∈ (0, L). (4.78)

Agora, substituindo (4.78) nas equações (4.68), (4.71) e (4.74), obtemos:
λi u(x) =λiφ(x) =λiψ(x) = 0, em quase toda parte x ∈ (0, L). (4.79)

Se λ ̸= 0, então de (4.79), segue que u(x) =φ(x) =ψ(x) = 0, em quase todo ponto x ∈ (0, L).
PortantoU = 0 em H , logo λi I −A é injetivo. Caso contrário (λ= 0), substitua λ= 0 e ϕ1 =ϕ2 =
ϕ3 = 0 nas equações (4.69), (4.72) e (4.75). Assim, obtemos o seguinte sistema:

−auxx −τ(φ−u) = 0,

−k(φx +ψ)x +τ(φ−u) = 0,

−bψxx +k(φx +ψ) = 0.

(4.80)

Multiplicando as equações (4.80)1, (4.80)2 e (4.80)3 por u, φ, ψ respectivamente, integrando por
partes e usando o fato de que u,φ ∈ H 2(0,L)∩H 1

0 (0,L) e ψ ∈ H 2
N (0,L)∩H 1∗(0,L), obtemos:

a∥ux∥2 −τ〈φ−u,u〉 = 0

+k〈φx +ψ,φx〉+τ〈φ−u,φ〉 = 0,

b∥ψx∥2 +k〈φx +ψ,ψ〉 = 0.

(4.81)
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Somando (4.81)1, (4.81)2 e (4.81)3, obtemos:
a∥u∥2 +b∥ψx∥2 +τ∥φ−u∥2 +k∥φx +ψ∥2 = 0. (4.82)

De (4.82), segue que u = φ = ψ = 0. Assim, em qualquer caso temos U = 0. Portanto
ker(λi I −A ) = {0}, para todo λ ∈R.

Corolário 4.11
O escalar λi não é um autovalor do operador A , qualquer que seja λ ∈R.
Proposição 4.12
Seja A o operador definido em (4.34). Se η = 0 ou ζ = 0 ou ξ = 0, então A não é invertível, e
consequentemente 0 pertence ao espectro do operador A , isto é, 0 ∈σ(A ).

Demonstração. Suponha que η = 0 e escolha o vetor W0 = ( sen(πx/L), 0, 0, 0, 0, 0, 0, 0, 0) ∈ H .
Suponha que existe um vetorU = (u, v,φ, w,ψ, z,ϕ1,ϕ2,ϕ3) ∈ D(A ) tal que AU =W0. Nesse caso,
ϕ1(y) = |y | 2α−5

2 sen(πx/L). Como 0 < α < 1, temos que ϕ1 ∉ L2(R; L2(0, L)), o que é um absurdo.
Com efeito:

∥ϕ1∥2
L2(R;L2(0,L)) =

∫
R
|y |2α−5

∫ L

0
sen2

(πx

L

)
d x d y

≤
∫
R
|y |2α−5d y =

∫ −1

−∞
|y |2α−5d y +

∫ 1

−1
|y |2α−5d y +

∫ +∞

1
|y |2α−5d y.

Mas, ∫ 1
−1 |y |2α−5d y <∞, se e somente se α> 2.
Os casos em que ζ= 0 ou ξ= 0 são semelhantes. Basta escolher um vetorU ∈ D(A ) tal que

AU = (0, 0, 0, sen(πx/L), 0,0, 0, 0, 0) ou AU = (0, 0, 0, 0, 0,0, cos(πx/L), 0, 0).

Proposição 4.13
Seja A o operador definido em (4.34). Então:

(a) Se η= 0 ou ζ= 0 ou ξ= 0, então o operador λi I −A é sobrejetivo, qualquer que seja o número
real λ ̸= 0.

(b) Se η,ζ,ξ> 0, então λi I −A é sobrejetiva, qualquer que seja λ ∈R.

Demonstração. Seja W = ( f1, g1, h1, f2, g2, h2, f3, g3, h3) ∈H . Nosso objetivo é mostrar que existe
um vetorU = (u, v,ϕ1,φ, w,ϕ2,ψ, z,ϕ3) ∈ D(A ) tal que (λi I−A )U =W . Ou seja, valem as seguintes
equações:
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λi u − v = f1, (4.83)
λi v −auxx −τ(φ−u)+γ1

∫
R

p(y)ϕ1(y)d y = g1, (4.84)
(y2 +η+λi )ϕ1(y)−p(y)v = h1(y), (4.85)

λiφ−w = f2, (4.86)
ρ1λi w −k

(
φx +ψ

)
x +τ(φ−u)+γ2

∫
R

q(y)ϕ2(y)d y = ρ1g2, (4.87)
(y2 +ζ+λi )ϕ2(y)−q(y)w = h2(y), (4.88)

λiψ− z = f3, (4.89)
ρ2λi z −bψxx +k(φx +ψ)+γ3

∫
R

r (y)ϕ3(y)d y = ρ2g3, (4.90)
(y2 +ξ+λi )ϕ3(y)− r (y)z = h3(y). (4.91)

Das equações (4.83), (4.86) e (4.89), segue que:
v =λi u − f1, w =λiφ− f2 e z =λiψ− f3. (4.92)

Substituindo (4.92), nas equações (4.85), (4.88) e (4.91), respectivamente, obtemos:
ϕ1(y) = h1(y)

y2 +η+λi
− p(y) f1

y2 +η+λi
+ λi p(y)u

y2 +η+λi
, (4.93)

ϕ2(y) = h2(y)

y2 +ζ+λi
− q(y) f2

y2 +ζ+λi
+ λi q(y)φ

y2 +ζ+λi
, (4.94)

ϕ3(y) = h3(y)

y2 +ξ+λi
− r (y) f3

y2 +ξ+λi
+ λi r (y)ψ

y2 +ξ+λi
. (4.95)

Aplicando o Lemma 4.6 nas expressões (4.93), (4.94) e (4.95), temos:
γ1

∫
R

p(y)ϕ1(y)d y = γ1
[
H1(x,α,η,λi )+C (α, η, λi )(λi u − f1)

]
, (4.96)

γ2

∫
R

q(y)ϕ2(y)d y = γ2
[
H2(x,β,ζ,λi )+C (β, ζ, λi )(λiφ− f2)

]
, (4.97)

γ3

∫
R

r (y)ϕ3(y)d y = γ3
[
H3(x,θ,ξ,λi )+C (θ, ξ, λi )(λiψ− f3)

]
, (4.98)

Assim, aplicando as expressões (4.92), (4.96), (4.97)e (4.98)nas equações (4.84), (4.87)e (4.90),
respectivamente, obtemos:

−λ2u −auxx −τ(φ−u)+γ1λiC (α, η, λi )u =λi f1 + g1

+γ1C (α, η, λi ) f1 −γ1H1(x,α,η,λi ), (4.99)
−ρ1λ

2φ−k(φx +ψ)x +τ(φ−u)+γ2λiC (β, ζ, λi )φ= ρ1(λi f2 + g2)

+γ2C (β, ζ, λi ) f2 −γ2H2(x,β,ζ,λi ), (4.100)
−ρ2λ

2ψ−bψxx +k(φx +ψ)+γ3λiC (θ, ξ, λi )ψ= ρ2(λi f3 + g3)

+γ3C (θ, ξ, λi ) f3 −γ3H3(x,θ,ξ,λi ). (4.101)
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Se λ= 0, por hipótese, temos η,ζ,ξ> 0. Nesse caso, temos:
−auxx −τ(φ−u) = g1 +γ1C (α, η,0) f1 −γ1H1(x,α,η,0), (4.102)
−k(φx +ψ)x +τ(φ−u) = ρ1g2 +γ2C (β, ζ,0) f2 −γ2H2(x,β,ζ,0), (4.103)
−bψxx +k(φx +ψ) = ρ2g3 +γ3C (θ, ξ,0) f3 −γ3H3(x,θ,ξ,0). (4.104)

Multiplying as equações (4.102), (4.103) e (4.104) by ũ ∈ H 1
0 (0, L), φ̃ ∈ H 1

0 (0, L) e ψ̃ ∈ H 1∗(0, L) respec-
tivamente, integrando sobre x de 0 a L e, em seguida, aplicando a integração por partes, obtém-se o
seguinte sistema equivalente:

a
∫ L

0
ux ũxd x −τ

∫ L

0
(φ−u)ũd x =

∫ L

0
F1ũd x,

k
∫ L

0

(
φx +ψ

)
φ̃xd x +τ

∫ L

0
(φ−u)φ̃d x =

∫ L

0
F2φ̃d x,

−bψxψ̃x

∣∣∣x=L

x=0
+b

∫ L

0
ψxψ̃xd x +k

∫ L

0
(φx +ψ)ψ̃d x =

∫ L

0
F3ψ̃d x,

(4.105)

onde
F1 = γ1C (α,η,0) f1 + g1 −γ1H1(x,α,η,0), F2 = γ2C (β,ζ,0) f2 +ρ1g2 −γ2H2(x,β,ζ,0) e
F3 = γ3C (θ,ξ,0) f3 +ρ2g3 −γ3H3(x,θ,ξ,0).

Considere o problema variacional auxiliar de encontrar um vetor (u,φ,ψ) ∈ [
H 1

0 (0,L)
]2 ×

H 1∗(0,L) tal que:
B((u,φ,ψ), (ũ, φ̃, ψ̃)) =L (ũ, φ̃, ψ̃); ∀(u,φ,ψ) ∈ [

H 1
0 (0,L)

]2 ×H 1
∗(0,L), (4.106)

B :
[
(H 1

0 (0, L))2 ×H 1∗(0,L)
]× [

(H 1
0 (0, L))2 ×H 1∗(0,L)

]−→C é a forma sesquilinear definida por:
B((u,φ,ψ), (ũ, φ̃, ψ̃)) = a

∫ L

0
ux ũxd x +b

∫ L

0
ψxψ̃xd x +τ

∫ L

0
(φ−u)(φ̃− ũ)d x

+k
∫ L

0
(φx +ψ)(φ̃x + ψ̃)d x (4.107)

e L : [H 1
0 (0, L)]2 ×H 1∗(0,L) −→C é a forma antilinear definida por:

L (ũ, φ̃, ψ̃) =
∫ L

0
F1ũd x +

∫ L

0
F2φ̃d x +

∫ L

0
F3ψ̃d x. (4.108)

Agora, basta utilizar o Teorema de Lax-Milgram e proceder demaneira semelhante à abordagem
usada na prova do Teorema 4.8. Assim, encontramos um vetorU = (u, v,ϕ1,φ, w,ϕ2,ψ, z,ϕ3) ∈ D(A )

tal que (λi I −A )U =W .
Por fim, suponha que λ ̸= 0. Defina o operador auxiliar M : D(M ) ⊂ H → H dado por:

M


u

φ

ψ

=


auxx +τ(φ−u)− I1(α,η,λ)u

k(φx +ψ)x −τ(φ−u)− I2(β,ζ,λ)φ

bψxx −k(φx +ψ)− I3(θ,ξ,λ)ψ

 ,
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onde H := [L2(0,L)]2 ×L2∗(0,L)], D(M ) = [H 2(0,L)∩H 1
0 (0,L)]2 × [H 2

N (0,L)∩H 1∗(0,L)] e
I j (ω,δ,λ) = γ jλiC (ω,δ,λi ) ( j = 1,2,3).

De maneira similar, do Teorema de Lax-Milgram, conclui-se que é um isomorfismo. Assim,
temos que o sistema (4.99)–(4.101) é equivalente a:−λ2


1

ρ1

ρ2

M−1 − I




u

φ

ψ

=M−1


F̃1

F̃2

F̃3

 , (4.109)

F̃ = [λi +γ1C (α,η,λi )] f1+g1−γ1H1(α,η,λi ), F̃2 = [ρ1λi +γ2C (β,ζ,λi )] f1+ρ1g2−γ2H2(β,ζ,λi ) e
F̃3 = [ρ2λi +γ3C (θ,ξ,λi )] f3 +ρ2g3 −γ3H3(θ,ξ,λi ).

Como o operador M é um isomorfismo e H 1
0 (0,L), H 1∗(0,L)

comp
,→ L2(0,L), do Teorema de

Rellich-Kondrachov (Teorema 1.28), segue que D(M )
comp
,→ H . Então o operador M tem resolvente

compacto. Logo M−1 é um operador compacto de H em D(M ). Consequentemente, da alternativa
de Fredholm (Teorema A.10), seque que, mostrar a existência de um vetor (u,φ,ψ) ∈ D(M ) solução
de (4.109) se reduz a provar que:

ker

λ2


1

ρ1

ρ2

M−1 − I

=




0

0

0


 .

Com efeito, se (ũ, φ̃,ψ̃) ∈ ker

−λ2


1

ρ1

ρ2

M−1 − I

, então;
−λ2


1

ρ1

ρ2

 I −M




ũ

φ̃

ψ̃

=


0

0

0

 .

Isto é, 
(I1(α, η, λ)−λ2)ũ −aũxx −τ(φ̃− ũ) = 0

(I2(β, ζ, λ)−ρ1λ
2)φ̃−k(φ̃x + ψ̃)x +τ(φ̃− ũ) = 0

(I3(θ, ξ, λ)−ρ2λ
2)ψ̃−bψ̃xx +k(φ̃x + ψ̃) = 0

(4.110)

Multiplicando (4.110), por ũ, φ̃ e ψ̃ respectivamente, integrando por partes, segue-se que
(ũ, φ̃,ψ̃) = (0,0,0). Portanto, pela alternativa de Fredholm (Teorema A.10), existe solução (u,φ,ψ) ∈
[H 2(0,L)∩H 1

0 (0,L)]2 × [H 2
N (0,L)∩H 1∗(0,L)] para (4.109). Agora, definindo v , w , z como dado em

(4.92) e ϕ1, ϕ2, ϕ3 como dado em (4.93)–(4.95). Evidentemente, U = (u, v,ϕ1,ψ, w,ϕ2,ψ, z,ϕ3) ∈
D(A ) e (λi I −A )U =W .
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4.3.2 Estabilidade Forte e Falta de Estabilidade Uniforme

Teorema 4.14
SejaA o operador definido em(4.34). O C0–semigrupo de contrações {e tA }t≥0 sobreH é fortemente
estável (veja Definição 2.35). Isto é

lim
t→+∞∥U (t )∥H = lim

t→+∞

∥∥∥e tA U0

∥∥∥
H

= 0; ∀U0 ∈H ,

ondeU : [0, t ] →H é a solução do problema (4.35).
Demonstração. Do Corolário 4.11, segue-se que o operador A não possui autovalores puramente
imaginários. Observe que como o operador A é gerador infinitesimal de um C0–semigrupo de
contrações, do Teorema de Hille-Yosida (Teorema 2.29), segue que A é um operador fechado, no
caso em que η= 0 ou ζ= 0 ou ξ= 0, a Proposição 4.12 e o item (a) da Proposição 4.13, implicam que
σ(A )∩ {λi ; λ ∈R} = {0}. Por outro lado, no caso em que η,ζ,ξ> 0, a Proposição 4.10 e o item (b) da
Proposição 4.13, garante que σ(A )∩ {λi ; λ ∈R} =;. Portanto, em ambos os casos, podemos aplicar
o Teorema de Arendt e Batty (Teorema 2.38) e, assim, obter o resultado desejado.
Teorema 4.15
O C0-semigrupo de contrações {e tA }t≥0 não é exponencialmente estável (Veja Definição 2.35). Isto
é, não existem constantes ω> 0 e M ≥ 1 tais que:

∥eA t∥L (H ) ≤ Me−ωt ; ∀t ≥ 0.

Em termos da solução do problema (4.35), não existem constantes w > 0 e C ≥ 1, tais que:
∥U (t )∥H ≤C∥U0∥H ·e−w t ; ∀t > 0

Demonstração. Inicialmente, observe que, conforme mostrado na Proposição 4.12, para η= 0 ou
ζ = 0 ou ξ = 0, temos que 0 ∈ σ(A ), e, portanto {iλ; λ ∈ R} ̸⊂ ρ(A ), onde ρ(A ) é o conjunto
resolvente do operador A . Assim, de acordo com o Teorema de Gearhart (Teorema 2.41), segue-se
que o semigrupo (e tA )t≥0 não é exponencialmente estável e, consequentemente, a solução U (t ) do
problema (4.35) não decai exponencialmente.

Por outro lado, se η,ζ,ξ> 0 a Proposição 4.10 e o item (b) da Proposição 4.13 garantem que
{λi ; λ ∈ R} ⊂ ρ(A ), pois do Teorema de Hille-Yosida (Teorema 2.29), segue que o operador A é
fechado. Para esse caso, mostraremos que um número infinito de autovalores de A se aproxima do
eixo imaginário e, isto é:

limsup
λ∈R, |λ|→∞

∥(iλI −A )−1∥L (H) =+∞.

Dessa forma, novamente pelo Teorema de Gearhart (Teorema 2.41), conclui-se que o problema (4.35)
não é exponencialmente estável.
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Considere o operador auxiliar A : D(A) ⊂ H → H , definido por:

A


u

φ

ψ

=


−auxx −τ(φ−u)

1

ρ1

[−k(φx +ψ)x +τ(φ−u)
]

1

ρ2

[−bψxx +k(φx +ψ)
]

 , (4.111)

onde H = [L2(0,L)]2 ×L2∗(0,L) e D(A) = [H 2(0,L)∩H 1
0 (0,L)]2 × [H 2

N (0,L)∩H 1∗(0,L)].
Inicialmente note que A é um operador positivo, e portanto, seus autovalores são números

reais positivos. De fato, se X = (u,φ,ψ), então:

〈AX , X 〉H = a∥ux∥2 +τ∥φ−u∥2 +b∥ψx∥2 +k∥φx +ψ∥2 ≥ 0,

onde, para X = (u,φ,ψ) e X̃ = (ũ, φ̃,ψ̃), tem-se:

〈X , X̃ 〉H = 〈u,ũ〉+ρ1〈φ, φ̃〉+ρ2〈ψ, ψ̃〉.

Alémdisso, como H 1
0 (0,L) e H 1∗(0,L) estão compactamente imersos em L2(0,L), do Teorema de

Rellich-Kondrachov (Teorema 1.28), segue que D(A)
comp
,→ H . Portanto, o operador A tem resolvente

compacto. Assim, pelo Teorema Espectral para Operadores Autoadjuntos com Resolvente Compacto
(Teorema A.11), existe um sequência de autovalores reais positivos (

λ2
n

)
n∈N para A, tendendo ao

infinito e correspondente a uma base ortonormal de autovetores (Xn)n∈N = (un ,φn ,ψn)n∈N em H .
Isto é:

lim
n→∞λ

2
n =+∞ e AXn =λ2

n Xn ; ∀n ∈N. (4.112)

Considere o vertor

Un =
(

1

iλn
un ,un , (ϕ1)n ,

1

iλn
φn ,φn , (ϕ2)n ,

1

iλn
ψn ,ψn , (ϕ3)n

)
,

onde un , φn , ψn são as componentes do vetor Xn e

(ϕ1)n(y) = p(y)

y2 +η+ iλn
un , (ϕ2)n(y) = q(y)

y2 +ζ+ iλn
φn e (ϕ3)n(y) = r (y)

y2 +ξ+ iλn
ψn . (4.113)

Note queUn ∈ D(A ).
Seja Wn = (( f1)n , (g1)n , (h1)n , ( f2)n , (g2)n , (h2)n) ∈H tal que (iλn −A )Un =Wn . Em termos
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das suas componentes, temos:
iλn

1

iλn
un −un = ( f1)n , (4.114)

iλnun − a

iλn
(un)xx − τ

iλn
(φn −un)+γ1

∫
R

p(y)(ϕ1)n(y)d y = (g1)n , (4.115)
(y2 +η+ iλn)(ϕ1)n(y)−p(y)un = (h1)n(y), (4.116)

iλn
1

iλn
φn −φn = ( f2)n , (4.117)

iρ1λnφn − k

iλn

(
(φn)x +ψn

)
x +

τ

iλn
(φn −un)+γ2

∫
R

q(y)(ϕ2)n(y)d y = ρ1(g2)n , (4.118)
(y2 +ζ+ iλn)(ϕ2)n(y)−q(y)φn = (h2)n(y), (4.119)

iλn
1

iλn
ψn −ψn = ( f3)n , (4.120)

iρ2λnψn − b

iλn
(ψn)xx + k

iλn

(
(φn)x +ψn

)+γ3

∫
R

r (y)(ϕ3)n(y)d y = ρ2(g3)n , (4.121)
(y2 +ξ+ iλn)(ϕ3)n(y)− r (y)ψn = (h3)n(y). (4.122)

Das Equaões (4.114), (4.117) e (4.120), segue que
( f1)n = ( f2)n = ( f3)n = 0; ∀n ∈N. (4.123)

Por outro lado, como η,ζ,ξ> 0, aplicando as expressões em (4.113) nas equações (4.116), (4.119) e
(4.122) respectivamente, obtemos:

(h1)n(y) = (y2 +η+ iλn)
p(y)

y2 +η+ iλn
un −p(y)un = p(y)un −p(y)un = 0; ∀n ∈N (4.124)

e
(h2)n(y) = q(y)φn −q(y)φn = 0 e (h3)n(y) = r (y)ψn − r (y)ψn = 0, ∀n ∈N. (4.125)

Agora comoλ2
n é autovalor para o operador Auxiliar A definido em (4.111) (veja expresão (4.112)),

temos que: 

−a(un)xx −τ(φn −un) =λ2
nun ,

−k
(
(φn)x +ψn

)
x +τ(φn −un) = ρ1λ

2
nφn ,

−b(ψn)xx +k
(
(φn)x +ψn

)= ρ2λ
2
nψn .

Multiplicando cada equação do sistema anterior, por 1/(iλn), obtemos:

− a

iλn
(un)xx − τ

iλn
(φn −un) =−iλnun ,

− k

iλn

(
(φn)x +ψn

)
x +

τ

iλn
(φn −un) =−iρ1λnφn ,

− b

iλn
(ψn)xx + k

iλn

(
(φn)x +ψn

)=−iρ2λnψn .

(4.126)
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Finalmente, aplicando as respectivas equações do sistema (4.126) e as expresões (4.113) nas equações
(4.116), (4.119) e (4.122), obtemos:

(g1)n = γ1

∫
R

[p(y)]2

y2 +η+ iλn
un = γ1C (α,η, iλn)un ; ∀n ∈N. (4.127)

(g2)n = γ2

ρ1

∫
R

[q(y)]2

y2 +ζ+ iλn
φn d y = γ2

ρ1
C (β,ζ, iλn)φn ; ∀n ∈N. (4.128)

(g3)n = γ3

ρ2

∫
R

[r (y)]2

y2 +ξ+ iλn
ψn d y = γ3

ρ2
C (θ,ξ, iλn)ψn ; ∀n ∈N. (4.129)

Do Lema 4.6, segue que C (ω,δ, iλn) =C1 (δ+ iλn)ω−1; ∀ λn ̸= 0 e δ≥ 0.
Portanto, das equações (4.127)–(4.129), temos:

∥(g1)n∥ ≤ C̃1
∥un∥(

η+|λn |
)1−α , ∥(g2)n∥ ≤ C̃2

∥φn∥
(ζ+|λn |)1−β e ∥(g3)n∥ ≤ C̃3

∥ψn∥
(ξ+|λn |)1−θ , (4.130)

onde
C̃1 = γ1C1, C̃2 = γ2C1

ρ1
e C̃3 = γ3C1

ρ2
.

Como lim
n→∞λ

2
n =+∞ (Ver (4.112)) e 0 <α,β,θ < 1, de (4.130) segue

lim
n→∞∥(g1)n∥ = 0, lim

n→∞∥(g2)n∥ = 0 e lim
n→∞∥(g3)n∥ = 0. (4.131)

Por fim, como (Xn)n∈N = (un ,φn ,ψn)n∈N é uma base ortonormal de vetores em H , temos que
∥Xn∥2 = ∥un∥2 +ρ1∥φn∥2 +ρ2∥ψn∥2 = 1. Assim, das Desigualdade de Poincaré (Teorema 1.17) e da
desigualdade (4.38), segue que:

∥Un∥2
H ≥ a∥(un)x∥2 +b∥(ψn)x∥2 +k∥(φn)x +ψn∥2

≥ a

L2
∥un∥2 + b

4L2
∥ψn∥2 +k∥(φn)x +ψn∥2

≥ a

L2
∥un∥2 + b

2L2
∥ψn∥2 + k̃L2∥φn∥2

≥ C4
(∥un∥2 +ρ1∥φn∥2 +ρ2∥ψn∥2)=C4; ∀n ∈N,

onde
k̃ = min

{
b

4L2
,

k

2

}
e C4 = min

{
a

L2
,

k̃L2

ρ1
,

b

2L2ρ2

}
.

Portanto, dos limites em (4.131), temos:
limsup

λ∈R, |λ|→∞
∥(iλI −A )−1∥L (H) ≥ sup

n∈N
∥(iλn I −A )−1∥L (H)

≥ sup
n∈N

∥(iλn I −A )−1Wn∥H

∥Wn∥H

≥ lim
n→∞

∥Un∥H

∥Wn∥H

≥ lim
n→∞

p
C4

∥(g1)n∥+ρ1∥(g2)n∥+ρ2∥(g3)n∥
=+∞.
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4.3.3 Estabilidade Polinomial

Teorema 4.16
Seja A o operador definido em (4.34) e suponha que η,ζ,ξ > 0. O C0–semigrupo de contrações
{e tA }t≥0 é polinomialmente estável (veja Definição 2.37). Mais precisamente, seU0 ∈ D(A ), então
existe uma constante M > 0 tal que:

∥U (t )∥H = ||e tA U0∥H ≤ M

t
1

2−2min{α,β,θ}

∥U0∥D(A ); ∀U0 ∈ D(A ),

ondeU : [0, t ] →H é a solução do problema (4.35).
Demonstração. Sejam λ ∈R e W = { f1, g1,h1, f2, g2,h2, f3, g3,h3} ∈H . Considere a equação resol-
vente

(λi I −A )U =W (4.132)
Do item (b) da Proposição 4.13, existe um vetorU = (u, v,ϕ1,ψ, w,ϕ2,ψ, z,ϕ3) ∈ D(A ) satisfazendo
a equação resolvente (4.132), e portanto, satisfazendo o sistema (4.83)–(4.91).

Tomando o produto interno de (iλI −A )U comU em H , obtemos
λi |U |2H −〈AU ,U 〉H = 〈W,U 〉H . (4.133)

Tomando a parte real da Equação (4.133) e aplicando a desigualdade de Cauchy-Schwarz, obtemos:
Re(−〈AU ,U 〉H ) = Re (〈W,U 〉H ) ≤ |〈W,U 〉H | ≤ ∥U∥H ∥W ∥H . (4.134)

Usando a expressão (4.41), obtemos:
γ1

∫
R

(y2 +η)∥ϕ1(y)∥2
L2(0,L)d y +γ2

∫
R

(y2 +ζ)∥ϕ2(y)∥2
L2(0,L)d y +γ3

∫
R

(y2 +ξ)∥ϕ3(y)∥2
L2(0,L)d y

≤ ∥U∥H ∥W ∥H . (4.135)
Por outro lado, das equações (4.85), (4.88) e (4.91), segue que:

p(y)|v | ≤ (y2 +η+|λ|)|ϕ1(y)|+ |h1(y)| (4.136)
q(y)|w | ≤ (y2 +ζ+|λ|)|ϕ2(y)|+ |h2(y)| (4.137)
r (y)|z| ≤ (y2 +ξ+|λ|)|ϕ3(y)|+ |h3(y)|. (4.138)

Multiplicando a equação (4.136) por (
y2 +η+|λ|)−1

p(y), obtemos:(
y2 +η+|λ|)−1

[p(y)]2|v | ≤ p(y)|ϕ1(y)|+ (
y2 +η+|λ|)−1

p(y)|h1(y)|. (4.139)
Integrando com relação à variável y em R, e aplicando a desigualdade de Cauchy-Schwarz, temos:∫

R

|y |2α−1|v |
y2 +η+|λ|d y ≤

∫
R
|y | 2α−1

2 |ϕ1(y)| d y +
∫
R

|y | 2α−1
2 |h1(y)|

y2 +η+|λ| d y

≤
(∫
R

|y |2α−1

y2 +η d y

)1/2 (∫
R
|(y2 +η)|ϕ1(y)|2 d y

)1/2

+
(∫
R

|y |2α−1

(y2 +η+|λ|)2
d y

)1/2 (∫
R
|h1(y)|2 d y

)1/2

.
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Portanto
C (α,η, |λ|) · |v | ≤√

C (α,η,0)

(∫
R

(y2 +η)|ϕ1(y)|2d y

)1/2

+
√

D(α,η, |λ|)
(∫
R
|h1(y)|2d y

)1/2

, (4.140)
onde

C (α,η, |λ|) =
∫
R

|y |2α−1d y

|y |2 +η+|λ| , C (α,η,0) =
∫
R

|y |2α−1d y

|y |2 +η e D(α,η, |λ|) =
∫
R

|y |2α−1d y

(|y |2 +η+|λ|)2

são constantes (veja o Lema 4.5).
Aplicando a desigualdade de Young (Proposição A.3) em (4.140), obtemos:

[C (α,η, |λ|)]2|v |2 ≤
[√

C (α,η,0)

(∫
R

(y2 +η)|ϕ1(y)|2d y

)1/2

+
√

D(α,η, |λ|)
(∫
R
|h1(y)|2d y

)1/2
]2

≤ 2C (α,η,0)
∫
R

(y2 +η)|ϕ1(y)|2d y +2D(α,η, |λ|)
∫
R
|h1(y)|2d y. (4.141)

Do Lema 4.5, obtemos:
C (α,η, |λ|) =

∫
R

|y |2α−1d y

y2 +η+|λ| =C1(η+|λ|)α−1 ≤C1|λ|α−1; ∀λ ̸= 0 (4.142)
e

D(α,η, |λ|) =
∫
R

|y |2α−1d y

(y2 +η+|λ|)2
=C2(η+|λ|)α−2 ≤C2|λ|2α−2; ∀|λ| > 1, (4.143)

Usando (4.143) e (4.142) em (4.141), obtemos:
(C1)2|λ|2α−2|v |2 ≤C3

(∫
R

(y2 +η)|ϕ1(y)|2d y

)
+2C2|λ|2α−2

(∫
R
|h1(y)|2d y

)
; ∀|λ| > 1,

onde C3 = 2C (α,η,0).
Então

|v |2 ≤C |λ|2−2α
(∫
R

(y2 +η)|ϕ1(y)|2d y

)
+C

(∫
R
|h1(x, y)|2d y

)
; ∀|λ| > 1, (4.144)

onde C = max{C3/(C1)2,2C2/(C1)2}.
Integrando a expressão (4.144) com respeito a variável x, de 0 a L, obtém-se:∫ L

0
|v |2d x ≤C |λ|2−2α

∫ L

0

∫
R

(y2 +η)|ϕ1(y)|2d y d x +C
∫ L

0

∫
R
|h1(x, y)|2d y d x. (4.145)

Aplicando a desigualdade (4.135) na expressão (4.145), obtemos:∫ L

0
|v |2d x ≤C |λ|2−2α∥U∥H ∥W ∥H +C∥W ∥2

H ; ; ∀|λ| > 1 (4.146)
De maneira totalmente análoga, podemos começar com as equações (4.137) e (4.138) e obter:∫ L

0
|w |2d x ≤C |λ|2−2β∥U∥H ∥W ∥H +C∥W ∥2

H ; ∀|λ| > 1 (4.147)∫ L

0
|z|2d x ≤C |λ|2−2θ∥U∥H ∥W ∥H +C∥W ∥2

H ; ∀|λ| > 1 (4.148)
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Agora, multiplicando a equação (4.84) por u e integrando de 0 a L com respeito a variável x,
obtemos:

λi
∫ L

0
vud x −a

∫ L

0
uxxud x −τ

∫ L

0
(φ−u)ud x +γ1

∫ L

0
u

∫
R

p(y)ϕ1(y)d yd x =
∫ L

0
g1ud x.

por outro lado, de (4.83), segue que −λi u = f1 + v , e portanto:
−a

∫ L

0
uxxud x −τ

∫ L

0

∫ L

0
(φ−u)ud x =

∫ L

0
|v |2d x −γ1

∫ L

0
u

∫
R

p(y)ϕ1(y)d yd x

+
∫ L

0
f1vd x +

∫ L

0
g1ud x.

Por fim, integrando por partes, obtemos:
a

∫ L

0
|ux |2d x −τ

∫ L

0
(φ−u)ud x =

∫ L

0
|v |2d x −γ1

∫ L

0
u

∫
R

p(y)ϕ1(y)d yd x

+
∫ L

0
f1vd x +

∫ L

0
g1ud x. (4.149)

Agora. multiplicando (4.87) por φ e (4.90) por ψ, e, usando as equações (4.86) e (4.89) respec-
tivamente, de forma análoga, obtemos:

k
∫ L

0
(φx +ψ)φxd x +τ

∫ L

0
(φ−u)φd x = ρ1

∫ L

0
|w |2d x −γ2

∫ L

0
φ

∫
R

q(y)ϕ2(y)d yd x

+ρ1

∫ L

0
f2wd x +ρ1

∫ L

0
g2φd x. (4.150)

e
b

∫ L

0
|ψx |2d x +k

∫ L

0
(φx +ψ)ψd x = ρ2

∫ L

0
|z|2d x −γ3

∫ L

0
ψ

∫
R

r (y)ϕ3(y)d yd x

+ρ2

∫ L

0
f3zd x +ρ2

∫ L

0
g3ψd x. (4.151)

Somando as equações (4.149), (4.150) e (4.151), obtemos:
a

∫ L

0
|ux |2d x +b

∫ L

0
|ψx |2d x +τ

∫ L

0
|φ−u|2d x +k

∫ L

0
|φx +ψ|2d x

≤
∫ L

0
|v |2d x +ρ1

∫ L

0
|w |2d x +ρ2

∫ L

0
|z|2d x +γ1

∣∣∣∣∫ L

0
u

∫
R

p(y)ϕ1(y)d yd x

∣∣∣∣
+γ2

∣∣∣∣∫ L

0
φ

∫
R

q(y)ϕ2(y)d yd x

∣∣∣∣+γ3

∣∣∣∣∫ L

0
ψ

∫
R

r (y)ϕ3(y)d yd x

∣∣∣∣
+

∣∣∣∣∫ L

0
( f1v + g1u)d x

∣∣∣∣+ρ1

∣∣∣∣∫ L

0
( f2w + g2φ)d x

∣∣∣∣+ρ2

∣∣∣∣∫ L

0
( f3z + g3ψ)d x

∣∣∣∣ . (4.152)

Por outro lado, aplicando as desigualdades de Cauchy-Schwarz duas vezes, e, a desigualdade
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de Young Generalizada (Corolário A.4), obtém-se:
∣∣∣∣∫ L

0
u

∫
R

p(y)ϕ1(y)d yd x

∣∣∣∣ ≤ ∥u∥ ·
(∫ L

0

∣∣∣∣∫
R

p(y)ϕ1(y)d y

∣∣∣∣2

d x

)1/2

≤ ∥u∥ ·
[∫ L

0

(∫
R

[p(y)]2

y2 +η d y

)
·
(∫
R

(y2 +η)|ϕ1(y)|2d y

)
d x

]1/2

= ∥u∥ ·
(∫
R

[p(y)]2

y2 +η d y

)1/2

·
(∫ L

0

∫
R

(y2 +η)|ϕ1(y)|2d yd x

)1/2

≤ ε1

(∫
R

[p(y)]2d y

y2 +η
)
∥u∥2 +C (ε1)

∫ L

0

∫
R

(y2 +η)|ϕ1(y)|2d yd x.

onde ε1 é um número positivo a escolher.
Portanto, da desigualdade de Poincaré, obtemos:∣∣∣∣∫ L

0
u

∫
R

p(y)ϕ1(y)d yd x

∣∣∣∣≤ L2ε1C (α,η,0)∥ux∥2 +C (ε1)
∫ L

0

∫
R

(y2 +η)|ϕ1(y)|2d yd x. (4.153)

Analogamente, obtém-se as seguintes estimativas:∣∣∣∣∫ L

0
φ

∫
R

q(y)ϕ2(y)d yd x

∣∣∣∣≤ L2ε2C (β,ζ,0)∥φx∥2 +C (ε2)
∫ L

0

∫
R

(y2 +ζ)|ϕ2(y)|2d yd x (4.154)
e ∣∣∣∣∫ L

0
ψ

∫
R

r (y)ϕ3(y)d yd x

∣∣∣∣≤ 4L2ε3C (θ,ξ,0)∥ψx∥2 +C (ε3)
∫ L

0

∫
R

(y2 +ξ)|ϕ3(y)|2d yd x (4.155)

Além disso, note que:
γ1L2ε1C (α,η,0)∥ux∥2 +γ2L2ε2C (β,ζ,0)∥φx∥2 +4γ3L2ε3C (θ,ξ,0)∥ψx∥2 ≤ γ1L2ε1C (α,η,0)∥ux∥2

+2γ2L2ε2C (β,ζ,0)∥φx +ψ∥2 +8γ2L4C (β,ζ,0)∥ψx∥2 +4γ3L2ε3C (θ,ξ,0)∥ψx∥2 (4.156)
Assim, usando as estimativas (4.153), (4.154), (4.155) e (4.156) em (4.152), obtemos:

a∥ux∥2 +b∥ψx∥2 +τ∥φ−u∥2 +k∥φx +ψ∥2 ≤ ∥v∥2 +ρ1∥w∥2 +ρ2∥z∥2 + a

2
∥ux∥2

+C (ε1)γ1

∫ L

0

∫
R

(y2 +η)|ϕ1(y)|2d yd x + k

2
∥φx +ψ∥2 +C (ε2)γ2

∫ L

0

∫
R

(y2 +ζ)|ϕ2(y)|2d yd x

+ b

2
∥ψx∥2 +C (ε3)γ3

∫ L

0

∫
R

(y2 +ξ)|ϕ3(y)|2d yd x +
∣∣∣∣∫ L

0
f1vd x

∣∣∣∣+ ∣∣∣∣∫ L

0
g1ud x

∣∣∣∣
+ρ1

∣∣∣∣∫ L

0
f2wd x

∣∣∣∣+ρ1

∣∣∣∣∫ L

0
g2φd x

∣∣∣∣+ρ2

∣∣∣∣∫ L

0
f3zd x

∣∣∣∣+ρ2

∣∣∣∣∫ L

0
g3ψd x

∣∣∣∣ ,

onde
ε1 = a

2L2γ1C (α,η,0)
, ε2 = min

{
k

4L2γ2C (β,ζ,0)
,

b

32L4γ2C (β,ζ,0)

}
e ε3 = b

16L2γ3C (θ,ξ,0)
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Agrupando os termos semelhantes, utilizando a desigualdade de Poincaré e a desigualdade
(4.38), obtemos:

a

2
∥ux∥2d x + b

2
∥ψx∥2 +τ∥φ−u∥2 + k

2
∥φx +ψ∥2 ≤ ∥v∥2 +ρ1∥w∥2 +ρ2∥z∥2

+C (ε1)γ1

∫ L

0

∫
R

(y2 +η)|ϕ1(y)|2d yd x +C (ε2)γ2

∫ L

0

∫
R

(y2 +ζ)|ϕ2(y)|2d yd x

+C (ε3)γ3

∫ L

0

∫
R

(y2 +ξ)|ϕ3(y)|2d yd x +L∥( f1)x∥∥v∥+L∥g1∥∥ux∥

+Lρ1∥( f2)x∥∥w∥+Lρ1∥g2∥∥φx∥+2Lρ2∥( f3)x∥∥z∥+2Lρ2∥g3∥∥ψx∥. (4.157)
Agora, como y2 +δ> δ> 0, temos

γ j∥ϕ j∥L2(R;L2(0,L)) ≤
γ j

δ

∫ L

0

∫
R

(y2 +δ)|ϕ j (y)|2d yd x,

inserindo ∥U∥2 e aplicando a estimativa (4.157), obtemos:
∥U∥2

H ≤ 2

(
a

2
∥ux∥2d x + b

2
∥ψx∥2 +τ∥φ−u∥2 + k

2
∥φx +ψ∥2

)
+∥v∥2 +ρ1∥w∥2 +ρ2∥z∥2

+γ1∥ϕ1∥2
L2(R;L2(0,L)) +γ2∥ϕ2∥2

L2(R;L2(0,L)) +γ3∥ϕ2∥2
L2(R;L2(0,L))

≤ 3∥v∥2 +3ρ1∥w∥2 +3ρ2∥z∥2 +
(
2C (ε1)+ 1

η

)
γ1

∫ L

0

∫
R

(y2 +η)∥ϕ1∥2d yd x

+
(
2C (ε2)+ 1

ζ

)
γ2

∫ L

0

∫
R

(y2 +ζ)|ϕ2(y)|2d yd x +
(
2C (ε3)+ 1

ξ

)
γ3

∫ L

0

∫
R

(y2 +ξ)|ϕ3(y)|2d yd x

+L∥( f1)x∥∥v∥+L∥g1∥∥ux∥+Lρ1∥( f2)x + f3∥∥w∥+Lρ1∥g2∥∥φx +ψ∥+2L2ρ1∥( f3)x∥∥w∥
+2L2ρ1∥g2∥∥ψx∥+2Lρ2∥( f3)x∥∥z∥+2Lρ2∥( f3)x∥∥z∥. (4.158)
Finalmente, aplicando as desigualdades (4.135), (4.146), (4.147) e (4.148) na expressão (4.158),

obtemos:
∥U∥2

H ≤ 3C |λ|2−2α∥U∥H ∥W ∥H +3C∥W ∥2
H +3Cρ1|λ|2−2β∥U∥H ∥W ∥H +3Cρ1∥W ∥2

H

+3Cρ2|λ|2−2θ∥U∥H ∥W ∥H +3Cρ2∥W ∥2
H + C̃1∥U∥H ∥W ∥H + C̃2∥W ∥2

H

≤ 3C̃1|λ|2−2min{α,β,θ}∥U∥H ∥W ∥H + C̃2∥U∥H ∥W ∥H + C̃3∥W ∥2
H ,

onde |λ| > 1, C̃1 = max{3C ,3Cρ1,3Cρ2}, C̃2 = max
{

2C (ε1)+ 1
η ,2C (ε2)++1

ζ ,2C (ε3)++1
ξ

} e
C̃3 = max

{
L

a
,

L

k
,

2L2

b
,

2L

b

}
.

Aplicando a desigualdade de Young Generalizada para ε=1/3, obtém-se:
∥U∥2

H ≤ 1

2
∥U∥2

H + 9C̃1
2

2
|λ|4−4min{α,β,θ}∥W ∥2

H + 1

3
∥U∥2

H +C (1/3)(C̃2)2∥W ∥2
H + C̃3∥W ∥2

H

Logo
∥U∥2

H ≤ C̃ |λ|4−4min{α,β,θ}∥W ∥2
H ; ∀|λ| > 1,

onde C̃ = max
{

27C̃1
2
,6C (1/3)(C̃2)2,6C̃3

}.
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Então:
∥U∥H ≤

√
C̃ |λ|2−2min{α,β,θ}∥W ∥H ;∀|λ| > 1.

Assim, da equação resolvente (4.132), segue que:
∥U∥H

∥W ∥H
= ∥(λi I −A )−1W ∥H

∥W ∥H
≤

√
C̃ |λ|2−2min{α,β,θ}.

Portanto:
1

|λ|2−2min{α,β,θ}
∥(λi I −A )−1∥L (H ) ≤

√
C̃ . (4.159)

Como o operador A é gerador infinitesimal de um C0–semigrupo de contrações, do Teorema
de Hille-Yosida (Teorema 2.29), temos que A é um operador fechado. Assim, da Proposição 4.10
e do item (b) da Proposição 4.13 segue que σ(A )∩ {λi ; λ ∈ R} =;. Então o eixo imaginário está
contido no conjunto resolvente do operador A (isto é, {λi ; λ ∈R} ⊂ ρ(A )). Portanto, a estimativa
4.159 nos permite aplicar o Teorema de Borichev-Tomilov (Teorema 2.39) e concluir que:

∥U (t )∥H = ||e tA U0∥H ≤ M

t
1

2−2min{α,β,θ}

∥U0∥D(A ); ∀U0 ∈ D(A ),

onde M > 0 é uma constante.
Teorema 4.17
Seja A o operador definido em (4.34) e suponha que η= 0 ou ζ= 0 ou ξ= 0. O C0–semigrupo de
contrações {e tA }t≥0 é polinomialmente estável sobre os pontos do conjunto D(A )∩A (H ). Mais
precisamente, seU0 ∈ D(A )∩A (H ), então existe C > 0 tal que:

∥U (t )∥H = ∥e tA U0∥H ≤ C

t
1

max{1,2−2min{α,β,θ}}

∥U0∥D(A ); ∀U0 ∈ D(A )∩A (H ) e t > 0.

ondeU : [0, t ] →H é a solução do problema (4.35).
Demonstração. Se η= 0 ou ζ= 0 ou ξ= 0, das Proposições 4.10 e 4.12, e do item (a) da Proposição
4.13, segue que σ(A )∩ {λi ∈C; λ ∈R} = {0}. Assim, pretendemos aplicar o Teorema de Batty-Chill-
Tomilov (Teorema 2.40). Com efeito. Tomando γ= 2−2min{α,β,θ} > 0, da desigualdade (4.159),
segue que:

∥(λi I −A )−1∥L (H ) ≤ C̃ |λ|γ ∼O
(|λ|γ) quando λ→+∞. (4.160)

Por outro lado, do Lema 4.5, obtemos:
C (ω,δ, |λ|) =

∫
R

|y |2ω−1d y

y2 +δ+|λ| =C1(δ+|λ|)ω−1 ≤C1|λ|ω−1; ∀λ ̸= 0 (4.161)
e

D(ω,δ, |λ|) =
∫
R

|y |2α−1d y

(y2 +δ+|λ|)2
=C2(δ+|λ|)ω−2 ≤C2|λ|−2; ∀|λ| < 1. (4.162)
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Utilizando as desigualdades (4.161) e (4.162) para ω=α,β,θ e δ= η,ζ,ξ; procedendo de forma
análoga a demonstração do Teorema 4.16 (Ver desigualdades (4.141)–(4.146)), obtemos:

∥v∥2 ≤C |λ|2−2α∥U∥H ∥W ∥H +C |λ|−2α∥W ∥2
H ; 0 < |λ| < 1,

∥w∥2 ≤C |λ|2−2β∥U∥H ∥W ∥H +C |λ|−2β∥W ∥2
H ; 0 < |λ| < 1,

∥z∥2 ≤C |λ|2−2θ∥U∥H ∥W ∥H +C |λ|−2θ∥W ∥2
H ; 0 < |λ| < 1.

Agora, basta continuar procedendo de maneira similar a demostração do Teorema 4.16. Nesse
caso, obtemos:

∥U∥2
H ≤ C̃

(
|λ|4−4max{α,β,θ} +|λ|−2max{α,β,θ}

)
∥W ∥2

H ; 0 < |λ| < 1, .

Como α,β,θ < 1, temos que 4−4max{α,β,θ} > 0. Portanto, fazendo |λ|→ 0, temos:
∥U∥2

H ≤ C̃
(
|λ|4−4max{α,β,θ} +|λ|−2max{α,β,θ}

)
∥W ∥2

H ≤ (
ε+ C̃

) |λ|−2max{α,β,θ}∥W ∥2
H

≤ (
ε+ C̃

) |λ|−2∥W ∥2
H ,

para ε> 0 suficientemente pequeno.
Então:

∥U∥H ≤
√(

ε+ C̃
)|λ|−1∥W ∥H , para |λ|→ 0.

Assim, da equação resolvente (4.132), segue que:
∥(λi I −A )−1W ∥H

∥W ∥H
= ∥U∥H

∥W ∥H
≤

√(
ε+ C̃

)|λ|−1 ∼O
(|λ|−σ)

, para |λ|→ 0,

onde σ= 1.
Portanto:

∥(λi I −A )−1∥L (H ) ∼O
(|λ|−σ)

, para |λ|→ 0.. (4.163)
O operador A é gerador infinitesimal de um C0–semigrupo de contrações. Então do Teorema

de Hille-Yosida (Teorema 2.29), temos que A é um operador fechado. Como η= 0 ou ζ= 0 ou ξ= 0,
das Proposições 4.10 e 4.12, e do item (a) da Proposição 4.13, segue que σ(A )∩ {λi ∈C; λ ∈R} = {0}.
Assim as estimativas (4.160) e (4.163) nos permite aplicar o Teorema de Batty-Chill-Tomilov (Teorema
2.40) e concluir que existe uma constante C > 0 tal que:

∥U (t )∥H = ∥e tA U0∥H ≤ C

t
1

max{1,2−2min{α,β,θ}}

∥U0∥D(A ); ∀U0 ∈ D(A )∩A (H ) e t > 0.

As taxas de decaimento polinomial estabelecidas nos Teoremas 4.16 e 4.17 elucidam a influência
das ordens de amortecimento fracionário α,β,θ na dinâmica de dissipação de energia do sistema
de ponte. O expoente de decaimento é inversamente proporcional a min{α,β,θ}, indicando que
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valores menores deste mínimo resultam em taxas de decaimento mais lentas (amortecimento mais
fraco), enquanto valores maiores levam a uma dissipação de energia mais rápida (amortecimento
mais forte).

Em contraste, o amortecimento clássico de ordem inteira (α=β= θ = 1) tipicamente induz
decaimento exponencial, significativamente mais rápido que o polinomial. É crucial destacar que o
amortecimento viscoso convencional, como operador diferencial, exibe um comportamento estrita-
mente local, seu efeito depende apenas do estado instantâneo do sistema, desconsiderando seu
histórico vibracional. Em oposição, o amortecimento fracionário, governado por um operador inte-
gral, possui não-localidade inerente e efeitos de memória. Esta propriedade permite capturar mais
precisamente mecanismos globais de dissipação de energia, tornando-o particularmente adequado
para modelar materiais viscoelásticos e sistemas estruturais complexos como pontes. Enquanto o
amortecimento de ordem inteira fornece uma resposta instantânea, o fracionário incorpora todo o
histórico dinâmico do sistema, gerando padrões de dissipação mais fisicamente realistas, embora
com taxas de decaimento mais lentas.

As ordens fracionáriasα,β,θ estão intrinsecamente ligadas às propriedades dememória e here-
ditariedade domaterial. Um valor menor do que min{α,β,θ} corresponde a efeitos dememória mais
acentuados (retenção prolongada de energia), enquanto valores maiores indicam comportamento de
amortecimento mais instantâneo. Em síntese, min{α,β,θ} serve como indicador-chave da eficiência
do amortecimento no sistema de ponte: valores menores resultam em decaimento energético mais
lento (amortecimento menos eficaz), enquanto valores maiores potencializam a dissipação. Estes
resultados alinham-se com a noção bem estabelecida de que o amortecimento fracionário interpola
entre respostas puramente elásticas (sem dissipação) e totalmente viscosas (amortecimento forte),
fornecendo um arcabouço mais abrangente para modelar dinâmicas estruturais complexas.
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Capítulo 5

Sobre ummodelo abstrato e não-linear de ponte
suspensa do tipo Kirchhoff com amortecimento
interno fracionário

Além do clássico modelo de vigas de Timoshenko, um dos modelos mais relevantes na teoria
de vigas foi introduzido em 1876 por Kirchhoff (KIRCHOOF, 1876). Esse modelo descreve as vibrações
transversais não lineares de uma corda tensionada e é caracterizado pela seguinte equação integro-
diferencial:

wt t (x, t )−m

(∫
Ω
|∇w(x, t )|2d x

)
∆w(x, t ) = f (x, t ); x ∈Ω e t > 0. (5.1)

A Equação (5.2) possui ampla aplicação em engenharia estrutural, particularmente na mo-
delagem de pontes suspensas. Nesse contexto, ela descreve as vibrações do cabo principal, cujo
vão é sustentado por cabos de ligação. A função u = u(x, t ) representa o deslocamento vertical do
cabo principal, enquanto w = w(x, t ) corresponde à deflexão da linha média da viga em relação à
sua configuração de referência. Assume-se que os cabos de suspensão comportam-se como molas
elásticas lineares com rigidez τ> 0. O termo não local m

(∫
Ω |∇u|2d x

)
∆u está associado à variação

da tensão na viga devido à sua extensibilidade, um fenômeno crucial na análise de estruturas sob
cargas dinâmicas.

A boa colocação do problema (5.2) com condições de contorno de Dirichlet tem sido extensiva-
mente estudada na literatura. Trabalhos seminais, como os de (AROSIO, 1993; AROSIO; GARAVALDI,
1991; POKHOZHAEV, 1985), estabeleceram resultados fundamentais sobre existência, unicidade e
regularidade de soluções. Recentemente, pesquisas têm se concentrado nos efeitos de diferentes
mecanismos de amortecimento em sistemas de vigas de Kirchhoff. Por exemplo, (CHENG; DONG;
REGAN, 2022) investigou a estabilização de vigas em movimento axial, empregando o método de
aproximação de Faedo-Galerkin para analisar soluções sob amortecimento não linear com atraso
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temporal. Adicionalmente, utilizando técnicas de Lyapunov, demonstrou-se estabilidade exponencial
para o sistema em malha fechada. Em outra abordagem, (FEREIRA et al., 2022) obteve resultados de
estabilidade exponencial e polinomial para uma equação de Kirchhoff com expoentes variáveis e
atraso, explorando a desigualdade de Komornik.

Modelos não lineares baseados na teoria de Kirchhoff têm sido amplamente aplicados na
análise de pontes suspensas, onde o deck é modelado como uma viga extensível. Nesse sentido,
(PEREIRA; RAPOSO; CATTAI, 2022) estudou a existência e unicidade de soluções globais, bem como a
estabilidade exponencial, para um sistema acoplado de vigas de Kirchhoff com amortecimento fraco
e uma fonte logarítmica:

ut t +∆2u −ω∆ut t +M
(|∇u|2 +|∇v |2) (−∆u)+ut = |u|p−2u ln |u|k ,

vt t +∆2v −ω∆ut t +M
(|∇u|2 +|∇v |2) (−∆v)+ vt = |v |p−2v ln |v |k

u = ∂u

∂ν
= 0 e v = ∂v

∂ν
= 0, sobre ∂Ω× (0,+∞)

u(x,0) = u0(x), ut (x,0) = u1(x), v(x,0)− v0 e v(x,0) = v1(x).

Um aspecto central no estudo de sistemas não lineares é a análise de atratores globais. Nessa
direção, (AOUADI, 2020) investigou a existência de atratores para um sistema termoelástico não
linear com inércia rotacional e atraso temporal:

ut t −ω∆ut t +∆2u −M
(∫
Ω |∇u|2d x

)
∆u +γ∆θ+γ1ut +γ2ut (x, t −τ(t ))+ f (u) = h(x),

θt −∆θ−γ∆ut = 0,

u =∆u = θ = 0, sobre ∂Ω× (0,+∞),

u(x,0) = u0(x), ut (x,0) = u1(x), θ(x,0) = θ0(x),

ut (x, t ) = f0(x, t ), x ∈Ω× (−τ(0),0).

Nesse modelo u representa o deslocamento vertical da placa, enquanto θ é a variação de
temperatura do valor de referência de equilíbrio. A função não linear f e carga estática h satisfazem
hipóteses adequadas, e τ(t ) é um atraso variável. Utilizando o método de Galerkin, (AOUADI, 2020)
demonstrou a existência de soluções globais e a compacidade de atratores, independentemente da
inércia rotacional. Além disso, estabeleceu-se a dimensão fractal finita dos atratores sob condições
específicas para as constantes γ1 e γ2.

Destacamos queMa Tu fu e Narciso em (MA; NARCISO, 2010) estudaram a existência de atrator
global para o Equação de vigas de Kirchhoff com damping friccional não-linear:

ut t (x, t )+∆2u(x, t )−m
(∥∇u(t )∥2)∆u(x, t )+ f (u(x, t ))+ g (ut (x, t )) = h(x); x ∈Ω e t > 0. (5.2)

Em um contexto estocástico, (QIN; DU; LIN, 2017) explorou a existência de atratores aleatórios
para equações de ponte suspensa do tipo Kirchhoff com amortecimento forte e ruído branco. Os
autores provaram a existência e unicidade de soluções, além de estabelecerem a existência de
atratores globais para o sistema dinâmico associado.
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Inspirados pelos trabalhos de (PEREIRA; RAPOSO; CATTAI, 2022; AOUADI, 2020; QIN; DU; LIN,
2017; MA; NARCISO, 2010) e pelos resultados obtidos no Capítulo 4 desta tese, propomos investigar
a existência de soluções e atratores globais para um sistema não linear de ponte suspensa, no
qual o deck é modelado pela teoria de vigas de Kirchhoff com amortecimento fracionário. Mais
precisamente, consideramos o seguinte sistema:

ut t −∆u +|u|ρ1 −τ(w −u)+ c1∂
α,η
t u = f , sobre Ω× (0,+∞), (5.3)

wt t +∆2w −m

(∫
Ω
|∇w |2d x

)
∆w +|w |ρ2 w +τ(w −u)+ c2∂

β,ζ
t w = g , sobre Ω× (0,+∞), (5.4)

u = 0 e w = ∂w

∂ν
= 0, sobre ∂Ω× (0,+∞), (5.5)

u(x,0) = u0(x), ut (x,0) = u1(x), w(x,0) = w0(x) e wt (x,0) = w1(x), sobre Ω. (5.6)

onde Ω ⊂ RN é um conjunto aberto limitado bem regular com fronteira ∂Ω, t ≥ 0 é a variável de
tempo, x ∈Ω a variável espacial, ν é o vetor normal unitário em ∂Ω, exterior à Ω, c j > 0 e ∂ω,δ

t é o
operador derivada fracionária de Caputo exponencialmente modificada de ordem ω e peso δ.

A Equação (5.3) descreve as vibrações do cabo principal do qual o vão da ponte é suspenso
pelos cabos de ligação, a Equação (5.4) representa a vibração do vão da ponte na direção vertical, a
função u = u(x, t ) mede o deslocamento vertical do cabo principal e a função w = w(x, t ) representa
a deflexão para baixo da linhamédia da viga no plano vertical em relação à configuração de referência.
Presume-se que os cabos de suspensão sejam molas elásticas lineares com rigidez padrão τ > 0.
O termo não-local m

(∫
Ω |∇u|2d x

)
∆u está relacionado à variação de tensão na viga devido à sua

extensibilidade.
Assumiremos as seguintes hipóteses técnicas:

ρ1 > 1, se N ∈ {1,2} e 1 < ρ1 ≤ N

N −2
, se N ≥ 3. (5.7)

ρ2 > 0, se N ∈ {1,2} e 0 < ρ2 ≤ 2

N −2
, se N ≥ 3. (5.8)

m : [0,+∞) → [0,+∞] é uma função crescente de classe C 1. (5.9)

f , g ∈ L2(Ω) não dependem da variável temporal. (5.10)

Aplicando a Proposição 4.4, podemos reformular o problema (5.3)–(5.6) no seguinte sistema



136
Capítulo 5. Sobre um modelo abstrato e não-linear de ponte suspensa do tipo Kirchhoff com amortecimento interno

fracionário

ampliado equivalente:
ut t −∆u +|u|ρ1 −τ(w −u)+γ1

∫
R

p(y)ϕ1(y)d y = f , (5.11)
(ϕ1)t (y)+ (y2 +η)ϕ1(y)−p(y)ut = 0, (5.12)

wt t +∆2w −m

(∫
Ω
|∇w |2d x

)
∆w +|w |ρ2 w +τ(w −u)+γ2

∫
R

q(y)ϕ2(y)d y = g , (5.13)
(ϕ2)t (y)+ (

y2 +ζ)ϕ2(y)−q(y)wt = 0, (5.14)
u|∂Ω = 0, w|∂Ω = 0 e ∂w

∂ν

∣∣∣
∂Ω

= 0, (5.15)
u(x,0) = u0(x), ut (x,0) = u1(x), w(x,0) = w0(x), e wt (x,0) = w1(x), (5.16)

ϕ1(x,0, y) = 0 e ϕ2(x,0, y) = 0, (5.17)
onde x ∈Ω, t > 0, y ∈R, p(y) = |y | 2α−1

2 , q(y) = |y | 2β−1
2 , γ1 = c1

Γ(α)Γ(1−α)
e γ2 = c2

Γ(β)Γ(1−β)
.

Este capítulo está dividido em duas seções. Na primeira, utilizamos a teoria de semigrupos de
operadores lineares limitados, juntamente com os resultados de existência e unicidade de solução
para o problema abstrato de Cauchy não linear apresentados no Capítulo 2, a fim de demonstrar a
existência e unicidade de solução forte local para o problema (5.3)–(5.6). Em seguida, por meio de
estimativas de energia, mostramos que essa solução é, na realidade, globalmente definida. Além
disso, a partir de estimativas envolvendo a norma das derivadas da solução, obtemos resultados de
regularidade que reforçam a robustez da análise.

Na segunda seção, com base na teoria de semigrupos de operadores não lineares contínuos de-
senvolvida na primeira parte do Capítulo 3, demonstramos que o semigrupo associado ao problema é
gradiente e assintoticamente compacto, o que garante a existência de um atrator global caracterizado
pelas soluções estacionárias do sistema. Mostramos ainda que esse semigrupo é assintoticamente
quase estável, propriedade que conduz a duas consequências relevantes: a dimensão fractal do
atrator é finita e as soluções do problema apresentam melhor regularidade.

Os resultados apresentados neste capítulo foram aceitos para publicação no periódico Journal
of Evolution Equations, conforme o artigo (JESUS et al., 2025).

5.1 Boa-Colocação

Nesta seção, reescreveremos o problema (5.11)–(5.17) na forma de um problema abstrato
de Cauchy não linear e mostraremos que o operador correspondente à parte linear é gerador
infinitesimal de um C0-semigrupo de contrações. Em seguida, provaremos que o operador que
descreve a parte não linear é localmente Lipschitz, demodo que, aplicando os resultados de existência
e unicidade apresentados na segunda seção do Capítulo 2, concluiremos que o problema (5.11)–(5.17),
e portanto o problema (5.3)–(5.6) admite solução local.
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Na sequência, deduziremos a energia total do sistema e, a partir de estimativas envolvendo
seus termos, demonstraremos que a norma da solução permanece limitada em função do tempo t ,
o que confirma que a solução é globalmente definida. Finalmente, utilizando estimativas adicionais
da norma da derivada da solução, obteremos regularidade para a solução forte global obtida.

5.1.1 Formulação do Semigrupo da Parte Linear e Existência de Solução Local

Queremos agora reescrever o problema (5.11)–(5.17) como um problema abstrato de Cauchy.
Para isso, introduzimos a função vetorialU = (u, w, v,ψ,ϕ1,ϕ2), em que ut = v e wt =ψ.

Assim, temos: {
U ′(t )−AU (t ) = F (U (t )); t > 0,

U (0) =U0,
(5.18)

ondeU0 = (u0, w0,u1, w1,0,0), A : D(A ) ⊂H →H é o operador linear definido por:

AU =



v

ψ

∆u +τ(w −u)−γ1

∫
R

p(y)ϕ1(y)d y

−∆2w −τ(w −u)−γ2

∫
R

q(y)ϕ2(y)d y

−(y2 +η)ϕ1(y)+p(y)v

−(y2 +ζ)ϕ2(y)+q(y)w,


, (5.19)

F : H →H é a aplicação definida por:

F (U ) =



0

0

−|u|ρ1 + f

m
(∫
Ω |∇w |2d x

)
∆w −|w |ρ2 w + g

0

0


, (5.20)

H = H 1
0 (Ω)×H 2

0 (Ω)× [
L2(Ω)

]2 × [
L2(R;L2(Ω))

]2 (5.21)
e

D(A ) =



(u, w, v,ψ,ϕ1,ϕ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ H 2(Ω)∩H 1
0 (Ω),

w ∈ H 4(Ω)∩H 2
0 (Ω),

v ∈ H 1
0 (Ω)

ψ ∈ H 2
0 (Ω)

ϕ1,ϕ2 ∈ L2(R;L2(Ω)),

|y |ϕ j ∈ L2(R;L2(Ω))( j = 1,2),

−(y2 +η)ϕ1 +p(y)v ∈ L2(R;L2(Ω)),

−(y2 +ζ)ϕ2 +q(y)ψ ∈ L2(R;L2(Ω)).



, (5.22)
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Observe que D(A ) é denso em H . Além disso, (H ,〈· , ·〉H ) é um espaço de Hilbert, com
∥U∥2

H
= 〈U ,U 〉H , onde

〈U , Ũ 〉H = 〈∇u,∇ũ〉L2(Ω) +〈v, ṽ〉L2(Ω) +〈∆w,∆w̃〉L2(Ω) +〈ψ,ψ̃〉L2(Ω) +τ〈w −u, w̃ − ũ〉L2(Ω)

+ γ1〈ϕ1, ϕ̃1〉L2(R;L2(Ω)) +γ2〈ϕ2, ϕ̃2〉L2(R;L2(Ω)), (5.23)
paraU = (u, w, v,ψ,ϕ1,ϕ2) e Ũ = (ũ, w̃ , ṽ ,ψ̃,ϕ̃1,ϕ̃2).
Observação 5.1
Para simplificar a notação no que segue, indicaremos o produto interno e a norma de L2(Ω) simples-
mente por 〈·, ·〉 e ∥ ·∥.
Proposição 5.2
O operador linear A : D(A ) ⊂ H → H definido em (5.19) é o gerador infinitesimal de um C0-
semigrupo (de operadores lineares limitados) de contrações sobre H .

Demonstração. Segundo o item (i) do Teorema de Lummer-Phillips (Teorema (2.31)), devemos mos-
trar que o operador A é dissipativo e maximal. SejaU = (u, w, v,ψ,ϕ1,ϕ2) ∈ D(A ). Então:

〈AU , U 〉H =
∫
Ω
∇v ·∇u d x +

∫
Ω
∆u · v d x +τ

∫
Ω

(w −u)v d x −γ1

∫
R

∫
Ω

p(y)ϕ1(y)v d x d y

+
∫
Ω
∆ψ ·∆w d x −

∫
Ω
∆2w ·ψ d x −τ

∫
Ω

(w −u)ψ d x

−γ2

∫
R

∫
Ω

q(y)ϕ2(y)ψ d x d y +τ
∫
Ω

(ψ− v)(w −u) d x

−γ1

∫
R

∫
Ω

(y2 +η)|ϕ1(y)|2 d x d y +γ1

∫
R

∫
Ω

p(y)ϕ1(y)v d x d y

−γ2

∫
R

∫
Ω

(y2 +ζ)|ϕ2(y)|2d x d y +γ2

∫
Ω

q(y)ϕ2(y)ψd x d y.

ComoU ∈ D(A ), segue que v ∈ H 1
0 (Ω) e ψ ∈ H 2

0 (Ω). Utilizando a Fórmula de Green, temos:
∫
Ω
∆uv d x =−

∫
Ω
∇u ·∇v d x e ∫

Ω
∆2w ·ψ d x =

∫
Ω
∆w ·∆ψ d x.

Simplificando os termos semelhantes, obtemos:
〈AU , U 〉H =

∫
Ω

[
∇v ·∇u −∇v ·∇u

]
d x +τ

∫
Ω

[(ψ− v)(w −u)− (ψ− v)(w −u)]d x∫
Ω

[∆ψ ·∆w −∆ψ ·∆w]d x +γ1

∫
R

∫
Ω

p(y)[vϕ1(y)− vϕ1(y)]d x d y

−γ1

∫
R

∫
Ω

(y2 +η)|ϕ1(y)|2d x d y +γ2

∫
R

∫
Ω

q(y)[ψϕ2(y)−ψϕ2(y)]d x d y

−γ2

∫
R

∫
Ω

(y2 +ζ)|ϕ2(y)|2d x d y.
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Logo:
〈AU , U 〉H = 2i

∫
Ω

Im[∇v∇u]d x +2iτ
∫
Ω

Im[(ψ− v)(w −u)]d x

+2i
∫
Ω

Im
[
∆ψ ·∆w

]
d x +2iγ1

∫
R

∫
Ω

p(y)Im
[

vϕ1(y)
]

d x d y

−γ1

∫
R

∫
Ω

(y2 +η)|ϕ1(y)|2d x d y +2iγ2

∫
R

∫
Ω

q(y)Im
[
ψϕ2(y)

]
d x d y

−γ2

∫
R

∫
Ω

(y2 +ζ)|ϕ2(y)|2d x d y.

Finalmente, tomando a parte real, temos:
Re〈AU , U 〉H =−γ1

∫
R

∫
Ω

(y2 +η)|ϕ1(y)|2d xd y −γ2

∫
R

∫
Ω

(y2 +ζ)|ϕ2(y)|2d xd y ≤ 0. (5.24)
Portanto, o operador A é dissipativo.

Mostraremos agora que A é um operador maximal. Para tal, iremos provar que, dado W ∈H ,
existe um vetorU ∈ D(A ) tal que (I −A )U =W . Isto equivale a resolução do seguinte sistema de
equações:

u − v = f1, (5.25)
v −∆u −τ(w −u)+γ1

∫
R

p(y)ϕ1(y)d y = g1, (5.26)
ϕ1(y)+ (y2 +η)ϕ1(y)−p(y)v = h1(y), (5.27)

w −ψ= f2, (5.28)
ψ+∆2w +τ(w −u)+γ2

∫
R

q(y)ϕ2(y)d y = g2, (5.29)
ϕ2(y)+ (y2 +η)ϕ2(y)−q(y)ψ= h2(y), (5.30)

onde W = ( f1, f2, g1, g2,h1,h2) eU = (u, w, v,ψ,ϕ1,ϕ2).
De (5.25) e (5.27), segue que:

v = u − f1 e ψ= w − f2. (5.31)
Substituindo (5.31) nas equações (5.27) e (5.30) respectivamente, obtemos:

ϕ1(y) = h1(y)

y2 +η+1
− p(y) f1

y2 +η+1
+ p(y)u

y2 +η+1
(5.32)

ϕ2(y) = h2(y)

y2 +ζ+1
− q(y) f2

y2 +ζ+1
+ q(y)w

y2 +ζ+1
. (5.33)

Aplicando o Lema 4.5 às expressões (5.32) e (5.33), obtemos:
γ1

∫
R

p(y)ϕ1(y)d y = γ1
[
H1(x,α,η,1)+C (α, η,1)(u − f1)

]
, (5.34)

γ2

∫
R

q(y)ϕ2(y)d y = γ2
[
H2(x,β,ζ,1)+C (β, ζ,1)(w − f2)

]
, (5.35)
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Aplicando as expressões (5.31), (5.34) e (5.35) nas equações (5.26) e (5.29) respectivamente,
temos:

u −∆u −τ(w −u)+γ1C (α, η,1)u = f1 + g1 +γ1C (α, η,1) f1 −γ1H1(x,α,η,1), (5.36)
w +∆2w +τ(w −u)+γ2C (β, ζ,1)w = f2 + g2 +γ2C (β, ζ,1) f2 −γ2H2(x,β,ζ,1). (5.37)

Multiplicando as equações (5.36) e (5.37) por ũ ∈ H 1
0 (Ω) e w̃ ∈ H 2

0 (Ω) respectivamente, inte-
grando sobre x em Ω e, em seguida, aplicando a Fórmula de Green, obtém-se o seguinte sistema
equivalente: 

C1

∫
Ω

uũd x +
∫
Ω
∇u∇ũd x −τ

∫
Ω

(w −u)ũd x =
∫
Ω

F1ũd x,

C2

∫
Ω

w w̃d x +
∫
Ω
∆w∆w̃d x +τ

∫
Ω

(w −u)w̃d x =
∫
Ω

F2w̃d x,
(5.38)

onde os coeficientes são dados por:
C1 = 1+γ1C (α, η,1) e C2 = 1+γ2C (β, ζ,1),

e os termos do lado direito são:
F1 = [1+γ1C (α,η,1)] f1 + g1 −γ1H1(x,α,η,1) e F2 = [1+γ2C (β,ζ,1)] f2 + g2 −γ2H2(β,ζ,1).

Assim, temos que F j ∈ L2(Ω) ( j = 1,2), uma vez que, pelo Lema 4.5, H j (x,ω,δ,1) ∈ L2(Ω).
Agora, observe que o sistema (5.38) é equivalente ao problema variacional de encontrar um

vetor (u, w) ∈ H 1
0 (Ω)×H 2

0 (Ω) tal que
B((u, w), (ũ, w̃)) =L (ũ, w̃); ∀(ũ, w̃) ∈ H 1

0 (Ω)×H 2
0 (Ω), (5.39)

onde B :
[
H 1

0 (Ω)×H 2
0 (Ω)

]× [
H 1

0 (Ω)×H 2
0 (Ω)

]−→C é a forma sesquilinear definida por:
B((u, w), (ũ, w̃)) = C1

∫
Ω

uũd x +C2

∫
Ω

w w̃d x +
∫
Ω
∇u∇ũd x +

∫
Ω
∆w∆w̃d x

+τ
∫
Ω

(w −u)(w̃ − ũ)d x,

e L : H 1
0 (Ω)×H 2

0 (Ω) −→C é a forma antilinear definida por:
L (ũ, w̃) =

∫
Ω

F1ũd x +
∫
Ω

F2w̃d x.

Primeiramente, note que B é contínua. De fato, se (u, w) , (ũ, w̃) ∈ H 1
0 (Ω)×H 2

0 (Ω), então, das
desigualdade de Cauchy-Schwarz e de Poincaré (Teorema 1.17 e Teorema 1.20), temos:

|B ((u, w) , (ũ, w̃))| ≤C1 |〈u, ũ〉|+C2 |〈w, w̃〉|+ |〈∇u,∇ũ〉|+ |〈∆w,∆w̃〉|+τ |〈w −u, w̃ − ũ〉|
≤ C̃1∥∇u∥∥∇ũ∥+ C̃2∥∆w∥∥∆w̃∥+T ∥∆w∥∥∇ũ∥+T ∥∇u∥∥∆w̃∥
≤C · ∥(u, w)∥H 1

0 (Ω)×H 2
0 (Ω)∥(ũ, w̃)∥H 1

0 (Ω)×H 2
0 (Ω),
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onde C̃1 =C 2(C1 +τ)+1, C̃2 =C 2
0 (C2 +τ)+1, T = τCC0 e C̃ = max{C̃1,C̃2,C̃3,T }.

Agora mostraremos que B é coerciva. Para (u, w) ∈ H 1
0 (Ω)×H 2

0 (Ω), da desigualdade de Young
(Proposição A.3), segue que:

∥(u, w)∥2
H 1

0 (Ω)×H 2
0 (Ω)

= (∥∇u∥+∥∆w∥)2

≤ 2∥∇u∥2 +2∥∆w∥2

≤ C1∥u∥2 +C2∥w∥2 +2∥∇u∥2 +2∥∆w∥2 +τ∥w −u∥2

≤ C ·B((u, w), (u, w))

onde C = max{C1,C2,τ,2}.
Por fim, dado (ũ, w̃) ∈ H 1

0 (Ω)×H 2
0 (Ω), temos:

|L (ũ, w̃)| = |〈F1, ũ〉|+ ∣∣〈F2, φ̃〉∣∣≤C∥F1∥∥∇ũ∥+C0 · ∥F2∥∥∆w̃∥ ≤ C̃ · ∥(u, w)∥2
H 1

0 (Ω)×H 2
0 (Ω)

,

onde C̃ = ·max{C∥F1∥,C0∥F2∥}.
Portanto, do Teorema de Lax-Milgram, existe uma única solução (u, w) ∈ H 1

0 (Ω)×H 2
0 (Ω) para

o problema variacional (5.39).
Como g1, g2 ∈ L2(Ω), pela regularidade do sistema de equações: (5.26) e (5.29), segue que

u ∈ H 2(Ω) e w ∈ H 4(Ω). Além disso, como f1 ∈ H 1
0 (Ω) e f2 ∈ H 2

0 (Ω), definindo v e ψ como as
expressões dadas em (5.31), segue que v ∈ H 1

0 (Ω) e ψ ∈ H 2
0 (Ω). Por outro lado, h1, h2 ∈ L2(R; L2(Ω)).

Assim, definindo ϕ1(y) e ϕ2(y) pelas respectivas expressões dadas em (5.34) e (5.35), é evidente
que |y |ϕ1 ∈ L2(R; L2(Ω)), |y |ϕ2 ∈ L2(R; L2(Ω)), −(

y2 +η)
ϕ1 +p(y)v ∈ L2(R; L2(Ω)) e −(

y2 +ζ)ϕ2 +
q(y)ψ ∈ L2(R; L2(Ω)).

PortantoU = (u, w, v,ψ,ϕ1,ϕ2) ∈ D(A ), e é solução do sistema (5.25)–(5.30). Isto é, satisfaz
(I −A )U =W . Portanto A é maximal. Logo, do Teorema de Lummer-Phillips (Teorema 2.31) segue
que o operador A é gerador infinitesimal de um C0–semigrupo de contrações {e tA }t≥0 sobre o
espaço de Hilbert H .
Proposição 5.3
O operador não linear F : H →H definida em (5.20) é localmente Lipschitz.
Demonstração. Inicialmente defina Φ : R→ R e Ψ : R→ R, por Φ(s) = |s|ρ1 e Ψ(s) = |s|ρ2 s. Como
ρ1 > 1 e ρ2 > 0 (ver hipóteses (5.7) e (5.8)), temos que Φ,Ψ ∈C 1(R), com

Φ′(s) = ρ1|s|ρ1−1 e Ψ′(s) = (ρ2 +1)|s|ρ2 ; ∀s ∈R. (5.40)
De fato, para ρ1 > 1 e ρ2 > 0, temos que Φ′(s) eΨ′(s) são dadas pelas expressões em (5.40), para
todo s ̸= 0. Resta apenas mostrar que Φ′ eΨ existem e são contínuas no ponto s = 0. Note que:

Φ′(s) = ρ1sρ1−1 e Ψ′(s) = (ρ2 +1)sρ2 , s > 0,
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Φ′(s) =−ρ1(−s)ρ1−1 e Ψ′(s) =−(ρ2 +1)(−s)ρ2 , se s < 0.

Assim:
Φ′(0) = lim

h→0

Φ(h)−Φ(0)

h
= lim

h→0

|h|ρ1

h
= 0, para ρ1 > 1,

Ψ′(0) = lim
h→0

Ψ(h)−Ψ(0)

h
= lim

h→0
|h|ρ2 = 0, para ρ2 > 0.

Como Φ ∈C 1(R), dados s1, s2 ∈R, do Teorema do Valor médio, existe s0 ∈R tal que:
|Φ(s1) =Φ(s2)| ≤ |Φ′(s0)||s2 − s1|,

onde s0 = s1 +θ(s2 − s1), com 0 < θ < 1.
Então ∣∣|s2|ρ1 −|s1|ρ1

∣∣ ≤ ρ1|s0|ρ1−1|s2 − s1|
= ρ1|s1 +θ(s2 − s1)|ρ1−1|s2 − s1| (5.41)

Agora, sejam u, ũ ∈ H 1
0 (Ω). fazendo s1 = ũ e s2 = u, de (5.41), segue que:∣∣|u|ρ1 −|ũ|ρ1

∣∣≤ ρ1|ũ +θ(u − ũ)|ρ1−1|u − ũ| ≤ ρ1 (|ũ|+ |u|+ |ũ|)ρ1−1 |u − ũ|
≤ ρ1 (2|ũ|+2|u|)ρ1−1 |u − ũ|
≤ ρ12ρ1−1 (|ũ|+ |u|)ρ1−1 |u − ũ|
≤ ρ12ρ1−12ρ1−1 (|ũ|ρ1−1 +|u|ρ1−1) |u − ũ|.

Portanto:
|Φ(u)−Φ(ũ)| = ∣∣|u|ρ1 −|ũ|ρ1

∣∣≤ 22(ρ1−1)ρ1
(|ũ|ρ1−1 +|u|ρ1−1) |u − ũ|. (5.42)

De maneira análoga, como Ψ ∈ C 1(R), dados s1, s2 ∈ R, do Teorema do Valor médio, existe
s0 ∈R tal que:∣∣|s2|ρ2 s2 −|s1|ρ2 s1

∣∣≤ ρ1|s0|ρ1−1|s2 − s1| ≤ (ρ2 +1)|s1 +θ(s2 − s1)|ρ2 |s2 − s1|,

onde s0 = s1 +θ(s2 − s1), com 0 < θ < 1.
Portanto, fazendo s1 = w̃ ∈ H 2

0 (Ω) e s2 = w ∈ H 2
0 (Ω), obtém-se:

|Ψ(w)−Ψ(w̃)| = ∣∣|w |ρ2 w −|w̃ |ρ2 w̃
∣∣ ≤ (ρ2 +1) |w̃ +θ(w − w̃)|ρ2 |w − w̃ |

≤ 22ρ2 (ρ2 +1)
(|w̃ |ρ2 +|w |ρ2

) |w − w̃ |. (5.43)
Para N = 3, temos que 1 < ρ1 ≤ N

N −2
e 0 < ρ2 ≤ 2

N −2
(hipóteses (5.7) e (5.8)). Então:

2 ≤ 2ρ1 ≤ 2N

N −2
e 2 ≤ 2(ρ2 +1) ≤ 2

(
2

N −2
+1

)
= 2N

N −2
,
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do Corolário 1.26, tem-se as seguintes imersões contínuas:
H 1

0 (Ω) ,→ L2ρ1 (Ω) e H 2
0 (Ω) ,→ H 1

0 (Ω) ,→ L2(ρ2+1)(Ω) (5.44)
Observe que os itens (b) e (c) do Teorema 1.25 garantem as imersões (5.44), para o caso N = 2

e N = 1 respectivamente.
Como

ρ1 −1

2ρ1
+ 1

2ρ1
+ 1

2
= 1 e ρ2

2(ρ2 +1)
+ 1

2(ρ2 +1)
+ 1

2
= 1,

aplicando a Desigualdade de Hölder (Proposição A.5), em (5.42) e (5.43), segue que:∣∣∣∣∫
Ω

(|u|ρ1 −|ũ|ρ1
)
φ

∣∣∣∣d x ≤ 22(ρ1−1)ρ1

(∫
Ω
|u|ρ1−1|u − ũ|φ d x +

∫
Ω
|ũ|ρ1−1|u − ũ|φ d x

)
≤

22(ρ1−1)ρ1

[(∫
Ω
|u|2ρ1 d x

) ρ1−1
2ρ1 +

(∫
Ω
|ũ|2ρ1 d x

) ρ1−1
2ρ1

](∫
Ω
|u − ũ|2ρ1 d x

) 1
2ρ1

(∫
Ω
|φ|2d x

) 1
2

e ∣∣∣∣∫
Ω

(|w |ρ2 w −|w̃ |ρ2 w
)

z

∣∣∣∣d x ≤ 22ρ2 (ρ2 +1)

(∫
Ω
|w̃ |ρ2 |w − w̃ |z d x +

∫
Ω
|w |ρ2 |w − w̃ |z d x

)
≤

22ρ2 (ρ2 +1)

[(∫
Ω
|w̃ |2(ρ2+1)d x

) ρ2
2(ρ2+1) +

(∫
Ω
|w |2(ρ2+1)d x

) ρ2
2(ρ2+1)

](∫
Ω
|w − w̃ |2(ρ2+1)d x

) 1
2(ρ2+1) ·

(∫
Ω
|z|2d x

) 1
2

,

para toda função φ e z em L2(Ω).
Assim, tomando R > 0 tal que ∥u∥H 1

0 (Ω),∥ũ∥H 1
0 (Ω) < R e ∥w∥H 2

0 (Ω),∥w̃∥H 2
0 (Ω) < R, das imersões

(5.44), para toda função, φ e z em L2(Ω), obtemos:
∣∣〈|u|ρ1 −|ũ|ρ1 ,φ〉∣∣ =

∣∣∣∣∫
Ω

(|u|ρ1 −|ũ|ρ1
)
φ

∣∣∣∣d x

≤ 22(ρ1−1)ρ1

(
∥u∥ρ1−1

L2ρ1 (Ω)
+∥ũ∥ρ1−1

L2ρ1 (Ω)

)
∥u − ũ∥L2ρ1 (Ω)∥φ∥

≤ 22(ρ1−1)ρ1C1

(
∥u∥ρ1−1

H 1
0 (Ω)

+∥ũ∥ρ1−1

H 1
0 (Ω)

)
∥u − ũ∥H 1

0 (Ω)∥φ∥
≤ 22ρ1−1ρ1C1Rρ1−1∥u − ũ∥H 1

0 (Ω)∥φ∥, (5.45)
onde C1 é a constante da imersão H 1

0 (Ω) ,→ L2ρ1 (Ω), e

∣∣〈|w |ρ2 w −|w̃ |ρ2 w̃ ,φ〉∣∣ =
∣∣∣∣∫
Ω

(|w |ρ2 w −|w̃ |ρ2 w̃
)

z

∣∣∣∣d x

≤ 22ρ2 (ρ2 +1)
(
∥w |ρ2

L2(ρ2+1)(Ω)
+∥w̃∥ρ2

L2(ρ2+1)(Ω)

)
∥w − w̃∥L2(ρ2+1)(Ω)∥z∥

≤ 22ρ2 (ρ2 +1)C2

(
∥w∥ρ2

H 2
0 (Ω)

+∥w̃∥ρ2

H 2
0 (Ω)

)
∥w − w̃∥H 2

0 (Ω)∥z∥
≤ 22ρ2+1(ρ2 +1)C2Rρ2∥w − w̃∥H 2

0 (Ω)∥z∥ (5.46)
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onde C2 é a constante da imersão H 2
0 (Ω) ,→ L2(ρ2+1)(Ω).

Por outro lado, da desigualdade de Cauchy-Schwarz, da hipótese (5.9) e do Teorema do Valor
Médio, segue que:

∣∣m (∥∇w̃∥2)〈∆w̃ , z〉−m
(∥∇w∥2)〈∆w, z〉∣∣≤∣∣m (∥∇w̃∥2)〈∆(w̃ −w), z〉∣∣+ ∣∣[m

(∥∇w̃∥2)−m
(∥∇w∥2)]〈∆w, z〉∣∣≤

max
0≤s≤R

m(s)∥w̃ −w∥H 2
0 (Ω)∥z∥+ max

0≤s≤R
|m′(s)| ∣∣∥∇w̃∥2 −∥∇w∥2

∣∣∥w∥H 2
0 (Ω)∥z∥ ≤

max
0≤s≤R

m(s)∥w̃ −w∥H 2
0 (Ω)∥z∥+ max

0≤s≤R
|m′(s)|∣∣∥∇w̃∥+∥∇w∥∣∣∣∣∥∇w̃∥−∥∇w∥∣∣∥w∥H 2

0 (Ω)∥z∥ ≤

max
0≤s≤R

m(s)∥w̃ −w∥H 2
0 (Ω)∥z∥+ max

0≤s≤R
|m′(s)|[∥∇w̃∥+∥∇w∥]∥∇w̃ −∇w∥∥w∥H 2

0 (Ω)∥z∥.

Assim, da imersão H 2
0 (Ω) ,→ H 1

0 (Ω), existe uma constante C3 > 0 tal que:
∣∣m (∥∇w̃∥2)〈∆w̃ , z〉−m

(∥∇w∥2)〈∆w, z〉∣∣≤
max

0≤s≤R
m(s)∥w̃ −w∥H 2

0 (Ω)∥z∥+ max
0≤s≤R

|m′(s)|C3

[(
∥w̃∥H 2

0 (Ω) +∥w∥H 2
0 (Ω)

)
∥w∥H 2

0 (Ω)

]
∥w̃ −w∥H 2

0 (Ω)∥z∥

≤ max
0≤s≤R

m(s)∥w̃ −w∥H 2
0 (Ω)∥z∥+2C3R2 max

0≤s≤R
|m′(s)|w̃ −w∥H 2

0 (Ω)∥z∥. (5.47)
Agora, obeserve que, de (5.45), (5.46) e (5.47), temos:

∥|u|ρ1 −|ũ|ρ1∥(L2(Ω))′ ≤ 22ρ1−1ρ1C1Rρ1−1∥ũ −u∥H 1
0 (Ω), (5.48)

e
∥∥m

(∥∇w̃∥2)∆w̃ −|w̃ |ρ2 w̃ −m
(∥∇w∥2)∆w +|w |ρ2 w

∥∥
(L2(Ω))′ ≤∥∥m

(∥∇w̃∥2)∆w̃ −m
(∥∇w∥2)∆w

∥∥
(L2(Ω))′ +

∥∥|w |ρ2 w −|w̃ |ρ2 w̃
∥∥

(L2(Ω))′ ≤[
22ρ2+1(ρ2 +1)C2Rρ2 + max

0≤s≤R
m(s)+2C3R2 max

0≤s≤R

∣∣m′(s)
∣∣]∥w̃ −w∥H 2

0 (Ω). (5.49)

Dados os pontosU = (u, w, v,ψ,ϕ1,ϕ2) e Ũ = (ũ, w̃ , ṽ ,ψ̃,ϕ̃1,ϕ̃2) tais que ∥U∥H < R e ∥Ũ∥H <
R, das desigualdades (5.48) e (5.49), obtemos:

∥F (U )−F (Ũ )∥2
H = ∥|u|ρ1 −|ũ|ρ1∥2 +∥∥m

(∥∇w̃∥2)∆w̃ −|w̃ |ρ2 w̃ −m
(∥∇w∥2)∆w +|w |ρ2 w

∥∥2

= ∥|u|ρ1 −|ũ|ρ1∥(L2(Ω))′ +
∥∥m

(∥∇w̃∥2)∆w̃ −|w̃ |ρ2 w̃ −m
(∥∇w∥2)∆w +|w |ρ2 w

∥∥
(L2(Ω))′

≤C 2
4∥ũ −u∥2

H 1
0 (Ω)

+C 2
5∥w̃ −w∥2

H 2
0 (Ω)

≤C 2
(
∥ũ −u∥2

H 1
0 (Ω)

+∥w̃ −w∥2
H 2

0 (Ω)

)
, (5.50)

onde
C4 = 22ρ1−1ρ1C1Rρ1−1, C5 = 22ρ2+1(ρ2 +1)C2Rρ2 + max

0≤s≤R
m(s)+2C3R2 max

0≤s≤R

∣∣m′(s)
∣∣ e

C = max{C4,C5}.
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Portanto, de (5.50), segue que:
∥F (U )−F (Ũ )∥H ≤C

(
∥ũ −u∥2

H 1
0 (Ω)

+∥w̃ −w∥2
H 2

0 (Ω)

) 1
2 = ∥U −Ũ∥H ; ∀U ,Ũ ∈ BR (0),

onde BR (0) é a bola aberta centrada na origem e raio R do espaço H .
A Proposições 5.2 e 5.3 combinadas com o Teorema 2.22 implicam no seguinte resultado:

Teorema 5.4 (Existência de Solução Local)
Se U0 = (u0, w0,u1, w1,0,0) ∈H , então existe 0 < tmax ≤+∞, tal que o Problema de Cauchy não
linear (5.18) admite uma única solução branda (ver Definição 2.16)

U ∈C 0 ([0, tmax); H ) ,

dada por:
U (t ) = e tA U0 +

∫ t

0
e(t−s)A F (U (s)) d s;∀t ∈ [0, tmax).

SeU0 ∈ D(A ), então a solução obtida é uma solução forte (ver Definição (2.17)).

5.1.2 Existência e Unicidade de Solução Global

Observe que, da hipótese (5.9), segue que:
M ′(s) = m(s) e m(s)s ≥ M(s); ∀s ≥ 0, (5.51)

onde M(s) =
∫ τ

0
m(τ) dτ.

Proposição 5.5
A energia associada ao problema (5.11)–(5.17) é dada por:
E(t ) = 1

2

∫
Ω
|∇u(x, t )|2d x + 1

ρ1 +1

∫
Ω
|u(x, t )|ρ1+1d x + 1

2

∫
Ω
|∆w(x, t )|2d x + 1

2
M

(∫
Ω
|∇w(x, t )|2d x

)
+ 1

ρ2 +2

∫
Ω
|w(x, t )|ρ2+2d x + τ

2

∫
Ω
|(w −u)(x, t )|2d x + 1

2

∫
Ω
|ut (x, t )|2d x + 1

2

∫
Ω
|wt (x, t )|2d x

+ γ1

2

∫
R

∫
Ω
|ϕ1(x, t , y)|2d xd y + γ2

2

∫
R

∫
Ω
|ϕ2(x, t , y)|2d xd y −

∫
Ω

[
f (x)u(x, t )+ g (x)w(x, t )

]
d x,

(5.52)
e satisfaz:

d

d t
E(t ) =−γ1

∫
R

∫
Ω

(y2 +η)|ϕ1(x, t , y)|2d xd y −γ2

∫
R

∫
Ω

(y2 +ζ)|ϕ2(x, t , y)|2d xd y ≤ 0. (5.53)
Demonstração. Multiplicando a equação (5.11)por ut , integrando em relação a x sobreΩ e utilizando
as condição de bordo da função u (ver (5.15)), obtemos:

1

2

d

d t

∫
Ω
|ut |2d x + 1

2

d

d t

∫
Ω
|∇u|2d x +

∫
Ω
|u|ρ1 ut d x −τ

∫
Ω

(w −u)ut d x

+γ1

∫
Ω

ut

∫
R

p(y)ϕ1(y) d y d x =
∫
Ω

f ut d x.
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Como
d

d t

∫
Ω
|u|ρ1+1d x =

∫
Ω

(
ρ1 +1

) |u|ρ1 ut d x,

temos que:
1

2

d

d t

∫
Ω
|ut |2d x + 1

2

d

d t

∫
Ω
|∇u|2d x + 1

ρ1 +1

d

d t

∫
Ω
|u|ρ1+1d x −τ

∫
Ω

(w −u)ut d x

+γ1

∫ L

0
ut

∫
R

p(y)ϕ1(y) d y d x =
∫
Ω

f ut d x. (5.54)
Agora, multiplicando a equação (5.13) por wt , integrando em relação a x sobre Ω e utilizando

as condição de bordo da função w (ver (5.15)), obtemos:
1

2

d

d t

∫
Ω
|wt |2d x + 1

2

d

d t

∫
Ω
|∆w |2d x −m

(∫
Ω
|∇w |2d x

)∫
Ω
∆w wt d x +

∫
Ω
|w |ρ2 w wt d x

+τ
∫
Ω

(w −u)wt d x +γ2

∫
Ω

wt

∫
R

q(y)ϕ2(y) d y d x =
∫
Ω

g wt d x.

Note que:
d

d t

∫
Ω
|w |ρ2+2d x =

∫
Ω

(
ρ2 +2

) |w |ρ2 w wt d x

e
d

d t

[
M

(∫
Ω
|∇w |2d x

)]
= m

(∫
Ω
|∇w |2d x

)
d

d t

∫
Ω
|∇w |2d x = 2m

(∫
Ω
|∇w |2d x

)∫
Ω
∇w∇wt d x

= −2m

(∫
Ω
|∇w |2d x

)∫
Ω
∆w wt d x.

Portanto:
1

2

d

d t

∫
Ω
|wt |2d x + 1

2

∫
Ω
|∆w |2d x + 1

2

d

d t
M

(∫
Ω
|∇w |2d x

)
+ 1

ρ2 +2

d

d t

∫
Ω
|w |ρ2+2 d x

+τ
∫
Ω

(w −u)wt d x +γ2

∫
Ω

wt

∫
R

q(y)ϕ2(y) d y d x =
∫
Ω

g wt d x. (5.55)
Somando (5.54) e (5.55), obtemos:

1

2

d

d t

∫
Ω
|∇u|2d x + 1

ρ1 +1

d

d t

∫
Ω
|u|ρ1+1d x + 1

2

d

d t

∫
Ω
|∆w |2d x + 1

2

d

d t
M

(∫
Ω
|∇w |2d x

)
+ 1

ρ2 +2

d

d t

∫
Ω
|w |ρ2+2 d x + τ

2

d

d t

∫
Ω
|w −u|2d x + 1

2

d

d t

∫
Ω
|ut |2d x + 1

2

d

d t

∫
Ω
|wt |2d x

+γ1

∫
Ω

ut

∫
R

p(y)ϕ1(y) d y d x +γ2

∫
Ω

wt

∫
R

q(y)ϕ2(y) d y d x =
∫
Ω

[
f ut + g wt

]
d x.

Como f e g não dependem da variável t (ver hipótese (5.10)), temos que
d

d t

(
f u

)= f ut e d

d t

(
f u

)= g wt .
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Portanto
1

2

d

d t

∫
Ω
|∇u|2d x + 1

ρ1 +1

d

d t

∫
Ω
|u|ρ1+1d x + 1

2

d

d t

∫
Ω
|∆w |2d x + 1

2

d

d t
M

(∫
Ω
|∇w |2d x

)
+ 1

ρ2 +2

d

d t

∫
Ω
|w |ρ2+2 d x + τ

2

d

d t

∫
Ω
|w −u|2d x + 1

2

d

d t

∫
Ω
|ut |2d x + 1

2

d

d t

∫
Ω
|wt |2d x

+γ1

∫
Ω

ut

∫
R

p(y)ϕ1(y) d y d x +γ2

∫
Ω

wt

∫
R

q(y)ϕ2(y) d y d x = d

d t

∫
Ω

[
f u + g w

]
d x. (5.56)

Por outro lado, ao multiplicar as equações (5.12) e (5.14) por γ1ϕ1 e γ2ϕ2 respectivamente, e,
em seguida, integrar com respeito a va riável y sobre R, obtemos:

γ1

2

d

d t

∫
R
|ϕ1(y)|2d y +γ1

∫
R

(
y2 +η) |ϕ1(y)|2d y = γ1ut

∫
R

p(y)ϕ1(y) d y (5.57)
e

γ2

2

d

d t

∫
R
|ϕ2(y)|2d y +γ2

∫
R

(
y2 +ζ) |ϕ2(y)|2d y = γ2wt

∫
R

q(y)ϕ2(y) d y (5.58)
Substituindo as expressões (5.57), e (5.58) em (5.56), obtemos:

1

2

d

d t

∫
Ω
|∇u|2d x + 1

ρ1 +1

d

d t

∫
Ω
|u|ρ1+1d x + 1

2

d

d t

∫
Ω
|∆w |2d x + 1

2

d

d t
M

(∫
Ω
|∇w |2d x

)
+ 1

ρ2 +2

d

d t

∫
Ω
|w |ρ2+2 d x + τ

2

d

d t

∫
Ω
|w −u|2d x + 1

2

d

d t

∫
Ω
|ut |2d x + 1

2

d

d t

∫
Ω
|wt |2d x

+ γ1

2

d

d t

∫
R

∫
Ω
|ϕ1(y)|2d x d y + γ2

2

d

d t

∫
R

∫
Ω
|ϕ2(y)|2d x d y − d

d t

∫
Ω

[
f u + g w

]
d x

+γ1

∫
R

∫
Ω

(
y2 +η) |ϕ1(y)|2d x d y +γ2

∫
R

∫
Ω

(
y2 +ζ) |ϕ2(y)|2d x d y = 0. (5.59)

Denotando a energia E(t ) por (5.52), temos que (5.59) estabelece (5.53).
Teorema 5.6 (Existência e Unicidade de Solução Global)
Se u0 ∈ H 1

0 (Ω), w0 ∈ H 2
0 (Ω) e u1, w1 ∈ L2(Ω), o problema de valor inicial e de contorno (5.3)–(5.6),

admite uma única solução branda (u, w) com a seguinte regularidade:u ∈C 0
(
[0,+∞); H 1

0 (Ω)
)∩C 1

(
[0,+∞);L2(Ω)

)
w ∈C 0

(
[0,+∞); H 2

0 (Ω)
)∩C 1

(
[0,+∞);L2(Ω)

)
.

(5.60)

Se u0 ∈ H 2(Ω)∩H 1
0 (Ω), w0 ∈ H 4

0 (Ω)∩H 2
0 (Ω), u1 = w1 = 0, então o problema de valor inicial e

de contorno (5.3)–(5.6) admite uma única solução forte (u, w) com a seguinte regularidade local:u ∈ L∞
loc

(
0,+∞; H 2(Ω)∩H 1

0 (Ω)
)∩W 1,∞

loc

(
0,+∞; H 1

0 (Ω)
)∩W 2,∞

loc

(
0,+∞;L2(Ω)

)
w ∈ L∞

loc

(
0,+∞; H 4(Ω)∩H 2

0 (Ω)
)∩W 1,∞

loc

(
0,+∞; H 2

0 (Ω)
)∩W 2,∞

loc

(
0,+∞;L2(Ω)

) (5.61)
e a seguinte regularidade global:u ∈ L∞ (

0,+∞; H 1
0 (Ω)

)∩W 1,∞ (
0,+∞;L2(Ω)

)
w ∈ L∞ (

0,+∞; H 2
0 (Ω)

)∩W 1,∞ (
0,+∞;L2(Ω)

) (5.62)
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Demonstração. Sejam u0 ∈ H 1
0 (Ω), w0 ∈ H 2

0 (Ω) e u1, w1 ∈ L2(Ω). Então U0 = (u0, w0,u1, w1,0,0) ∈
H . Assim, do Teorema 5.4, existe 0 < tmax ≤ +∞ e uma função U ∈ C 0 ([0, tmax;H )]); U (t) =
(u(t), w(t), v(t),ψ(t),ϕ1(t),ϕ2(t)) que é uma solução branda para problema (5.20) em [0, tmax], e
portanto uma solução branda local para o problema (5.11)–(5.17). Em coordenadas, temos:u ∈C 0

(
[0, tmax); H 1

0 (Ω)
)∩C 1

(
[0, tmax);L2(Ω)

)
w ∈C 0

(
[0, tmax); H 2

0 (Ω)
)∩C 1

(
[0, tmax);L2(Ω)

)
.

(5.63)

Se casou0 ∈ H 2(Ω)∩H 1
0 (Ω), w0 ∈ H 4

0 (Ω)∩H 2
0 (Ω) eu1 = w1 = 0, temosU0 = (u0, w0,u1, w1,0,0) ∈

D(A ), onde A : D(A ) ⊂ H → H é o operador linear definido em (5.19). Assim, do Teorema 5.4,
temos que U : [0, tmax) → H ; U (t) = (u(t), w(t), v(t),ψ(t),ϕ1(t),ϕ2(t)) é uma solução forte local
para problema (5.20), e portanto uma solução forte local para o problema (5.11)–(5.17) (ver Definição
2.13). Então:

(i) U é diferenciável em quase todo ponto t ∈ [0, tmax);
(ii) Ut ∈ L1 (0, tmax;H );
(iii) U (0) = U0 = (u0, w0,u1, w1,0,0) e Ut (t) −AU (t) = F (t ,U (t )), em quase todo ponto t ∈

[0,+tmax).
Em termos das componentes, temos que: u, ut , w e wt são diferenciáveis em quase todo

ponto t ∈ [0, tmax). Além disso: 

ut ∈ L1
(
0, tmax; H 1

0 (Ω)
)

wt ∈ L1
(
0, tmax; H 2

0 (Ω)
)

ut t ∈ L1
(
0, tmax; L2(Ω)

)
wt t ∈ L1

(
0, tmax; L2(Ω)

)
.

(5.64)

Considere a energia E : [0, tmax) →R associada a essa solução. Da Proposição 5.5 temos que
E(t ) é dado por (5.52), e sua derivada E ′(t ) satisfaz (5.53). Então E(t ) ≤ E(0) para todo 0 < t < tmax,
e portanto, dadoU (t ) = (u(t ), w(t ),ut (t ), wt (t ),ϕ1(t ),ϕ2(t )) ∈ D(A ), temos:

1

2
∥U (t )∥2

H ≤ E(t )+
∫
Ω

[
f u(t )+ g w(t )

]
d x ≤ E(0)+

∫
Ω

[
f u(t )+ g w(t )

]
d x. (5.65)

Por outro lado, da desigualdade de Cauchy-Schwarz e da desigualdade de Young Generalizada
(Corolário A.4) e a desigualdade de Poincaré obtemos:∫

Ω
f ut (t ) d x ≤ ε1∥u∥2 +C (ε1)∥ f ∥2 ≤ ε1C1∥∇u∥2 +C (ε1)∥ f ∥2 (5.66)

e ∫
Ω

g wt (t ) d x ≤ ε2∥w∥2 +C (ε2)∥g∥2 ≤ ε2C2∥∆w∥2 +C (ε2)∥g∥2 (5.67)
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onde C1,C2 > 0 e ε1 e ε2 são números positivos a escolher.
Substituindo (5.66) e (5.67) em (5.65), e utilizando as Desigualdade de Cauchy-Schwarz e Young,

obtemos:
1

2
∥U (t )∥2

H −ε1C1∥∇u∥2 −ε2C2∥∆w∥2 ≤ E(0)+C (ε1)∥ f ∥2 +C (ε2)∥g∥2,

e tomando ε1 = 1/(4C1) e ε2 = 1/(4C2), obtemos:
1

2
∥U (t )∥2

H ≤ E(0)+C (ε1)∥ f ∥2 +C (ε2)∥g∥2. (5.68)
Note que M

(∥∇w∥2
) ≥ 0 para todo w ∈ H 2

0 (Ω) (ver (5.51)). Como L2ρ1 (Ω) ,→ Lρ1+1(Ω) e
L2(ρ1+1)(Ω) ,→ Lρ2+2(Ω), pois 2ρ1 > ρ1 +1 e 2(ρ2 +1) > ρ2 +2. Como u0 ∈ H 1

0 (Ω), w0 ∈ H 2
0 (Ω) e

u1, w1, f , g ∈ L2(Ω), segue que:
E(0) ≤

(
1+ C1

2

)
∥∇u0∥2 + 2

ρ1 +1
∥u0∥ρ1+1

Lρ1+1(Ω)
+

(
1+ C2

2

)
∥∆w0∥2 +M (∥∇w0∥)

+ 2

ρ2 +2
∥w0∥ρ2+2

Lρ2+2(Ω)
+τ∥w0 −u0∥2 +∥u1∥2 +∥w1∥2 + 1

2
∥ f ∥2 + 1

2
∥g∥2 <∞. (5.69)

Finalmente, de (5.68) e (5.69), existe constante C3 > 0 tal que:
1

2
∥U (t )∥2

H ≤ E(0)+C (ε0)∥ f ∥2 +C (ε2)∥g∥2 ≤C3; ∀0 < t < tmax. (5.70)
De (5.70), segue que:

lim
t→tmax

∥U (t )∥2
H ≤ 2C3 <∞. (5.71)

Assim, o limite (5.71) e o Teorema 2.20, garantem que tmax =+∞.
Em resumo, dadas as funções u0 ∈ H 1

0 (Ω), w0 ∈ H 2
0 (Ω) e u1, w1 ∈ L2(Ω), existe uma única

solução branda (u, w) satisfazendo (5.60). Agora, se u0 ∈ H 2(Ω)∩ H 1
0 (Ω), w0 ∈ H 4

0 (Ω)∩ H 2
0 (Ω),

u1 = w1 = 0, então (u, w) é uma solução forte, e portanto, as funções u, ut , w , wt são diferenciáveis
em quase todo ponto t ≥ 0, e 

ut ∈ L1
(
0,+∞; H 1

0 (Ω)
)

wt ∈ L1
(
0,+∞; H 2

0 (Ω)
)

ut t ∈ L1
(
0,+∞; L2(Ω)

)
wt t ∈ L1

(
0,+∞; L2(Ω)

)
.

(5.72)

Além disso, a estimativa (5.70) combinada com (5.72), garantem as seguintes regularidade:

u ∈ L∞ (
0,+∞; H 1

0 (Ω)
)

w ∈ L∞ (
0,+∞; H 2

0 (Ω)
)

ut ∈ L∞ (
0,+∞; L2(Ω)

)∩L1
(
0,+∞; H 1

0 (Ω)
)

wt ∈ L∞ (
0,+∞; L2(Ω)

)∩L1
(
0,+∞; H 2

0 (Ω)
)

ut t ∈ L1
(
0,+∞; L2(Ω)

)
wt t ∈ L1

(
0,+∞; L2(Ω)

)
.

(5.73)
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Para obter uma melhor regularidade, derive as equações do sistema (5.11)–(5.14) em relação a
variável t . Assim, obtemos:

ut t t −∆ut +ρ1|u|ρ1−1ut −τ(wt −ut )+γ1

∫
R

p(y)(ϕ1)t (y)d y = 0, (5.74)

wt t t +∆2wt −2m′ (∥∇w∥2)〈∇w,∇wt 〉∆w −m
(∥∇w∥2)∆wt +ρ2|w |ρ2−1wt w +|w |ρ2 wt

+τ(wt −ut )+γ2

∫
R

q(y)(ϕ2)t (y)d y = 0, (5.75)
(ϕ1)t t (y)+ (y2 +η)(ϕ1)t (y)−p(y)ut t = 0, (5.76)
(ϕ2)t t (y)+ (y2 +ζ)(ϕ2)t (y)−q(y)wt t = 0. (5.77)

Multiplicando as equações (5.74) e (5.75) por ut t e wt t , respectivamente, em seguida somando-as,
integrando em relação à variável x sobre Ω, e utilizando as condições de contorno (5.15), obtemos:

1

2

d

d t
∥ut t∥2 + 1

2

d

d t
∥wt t∥2 + 1

2

d

d t
∥∇ut∥2 + 1

2

d

d t
∥∆wt∥2 + τ

2

d

d t
∥wt −ut∥2

+γ1

∫
Ω

ut t

∫
R

p(y)(ϕ1)t (y)d y +γ2

∫
Ω

wt t

∫
R

q(y)(ϕ2)t (y)d y

=−ρ1

∫
Ω
|u|ρ1−1ut ut t d x − (ρ2 +1)

∫
Ω
|w |ρ2 wt wt t d x +2m′ (∥∇w∥2)〈∇w,∇wt 〉〈∆w, wt t 〉

+m
(∥∇w∥2)〈∆wt , wt t 〉. (5.78)

Multiplicando as equações (5.76) e (5.77) por γ1(ϕ1)t e γ2(ϕ2)t , respectivamente, e substituindo-as
em (5.78), obtém-se:
1

2

d

d t
∥ut t∥2 + 1

2

d

d t
∥wt t∥2 + 1

2

d

d t
∥∇ut∥2 + 1

2

d

d t
∥∆wt∥2 + τ

2

d

d t
∥wt −ut∥2 + γ1

2

d

d t
∥(ϕ1)t∥2

L2(R;L2(Ω))

+ γ2

2

d

d t
∥(ϕ2)t∥2

L2(R;L2(Ω))

=+2m′ (∥∇w∥2)〈∇w,∇wt 〉〈∆w, wt t 〉+m
(∥∇w∥2)〈∆wt , wt t 〉−ρ1

∫
Ω
|u|ρ1−1ut ut t d x

− (ρ2 +1)
∫
Ω
|w |ρ2 wt wt t d x −γ1

∫
R

(y2 +η)∥(ϕ1)t (y)∥2d y −γ2

∫
R

(y2 +ζ)∥(ϕ2)t (y)∥2d y (5.79)
Como m : [0,+∞) → [0,+∞) é de classe C 1, existe C4 > 0 tal que 2m′ (∥∇w |) ≤C4. Assim, da

estimativa (5.70) e da desigualdade de Young, tem-se:
2m′ (∥∇w |)〈∇wt ,∇w〉〈∆w, wt t 〉 ≤C4〈∆wt , w〉〈∆w, wt t 〉 ≤ C4∥∆wt∥ ·∥w∥ ·∥∆w∥ ·∥wt t∥

≤ 4C3C4∥∆wt∥ ·∥wt t∥
≤ C5

2

(∥wt t∥2 +∥∆wt∥2) , (5.80)
onde C5 = 4C3C4.

Analogamente, obtém-se uma constante C6 > 0 tal que
m

(∥∇w∥2)〈∆w, wt t 〉 ≤ C6

2

(∥wt t∥2 +∥∆wt∥2) . (5.81)
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Por outro lado, como ρ1 −1

2ρ1
+ 1

2ρ
+ 1

2
= 1, da Desigualdade de Hölder (Proposição (A.5)), da

estimativa (5.70), da imersão H 1
0 (Ω) ,→ L2ρ1 (Ω) e da desigualdade de Young, obtemos:

−ρ1

∫
Ω
|u|ρ1−1ut ut t d x ≤ ρ1∥u∥ρ1−1

L2ρ1 (Ω)
∥ut∥L2ρ1 (Ω)∥ut t∥ ≤ ρ1(2C3)

ρ1−1
2 (C1)ρ1∥∇ut∥ ·∥ut t∥

≤ C7

2

(∥ut t∥2 +∥∇ut∥2) , (5.82)
onde C1 é a constante da imersão H 1

0 (Ω) ,→ L2ρ1 (Ω) e C7 = ρ1(2C3)
ρ1−1

2 (C1)ρ1 .
Analogamente, obtém-se uma constante C8 > 0 tal que:

(ρ2 +1)
∫
Ω
|w |ρ2 wt wt t d x ≤ (ρ2 +1)∥w∥ρ2

L2(ρ2+1)(Ω)
∥wt∥L2(ρ2+1)(Ω)∥wt t∥

≤ C8

2

(∥wt t∥2 +∥∆wt∥2) . (5.83)
Agora, das desigualdades (5.79), (5.80), (5.81), (5.82) e (5.83), obtemos:

d

d t
∥Ut (t )∥2

H ≤ (1+C7)∥ut t∥2 + (1+C5 +C6 +C8)∥wt t∥2 +C7∥∇ut∥+ (C5 +C6 +C8)∥∆wt∥2

+τ∥wt −ut∥2 +γ1∥(ϕ1)t∥2
L2(R;L2(Ω)) +γ2∥(ϕ2)t∥2

L2(R;L2(Ω)) ≤C9∥Ut (t )∥2
H , (5.84)

onde C9 = max{1+C7,1+C5 +C6 +C8} e U (t ) = (u(t ), w(t )ut (t ), wt (t ),ϕ1(t ),ϕ2(t )).
Agora, dado T > 0 arbitrário, integre a desigualdade (5.84) de 0 a t ≤ T . Assim, obtemos:

∥Ut (t )∥2
H ≤ ∥ut t (0)∥+∥wt t (0)∥2 +∥∆ut (0)∥2 +∥∆wt (0)∥2 +τ∥w(0)−u(0)∥2

+γ1∥(ϕ1)t (0)∥2
L2(R;L2(Ω)) +γ2∥(ϕ2)t (0)∥2

L2(R;L2(Ω)) +C9

∫ t

0
∥Ut (s)∥2

H d s, (5.85)
para todo 0 < t ≤ T .

Como u1 = ut (0) = u1 = 0 e wt (0) = w1 = 0, temos que:
∥∇ut (0)∥2 = ∥∇u1∥2 = 0 <∞ e ∥∆wt (0)∥2 = ∥∆w1∥2 = 0 <∞. (5.86)

Além disso, temos
∥wt (0)−ut (0)∥2 = ∥w1 −u1∥2 = 0 <∞. (5.87)

Fazendo t = 0 nas equações (5.12) e (5.14), e usando as condições iniciais em (5.17), obtemos:
(ϕ1)t (0, y) = p(y)u1 = 0 e (ϕ2)t (0, y) = q(y)w1 = 0; ∀y ∈R.

Portanto
γ1∥(ϕ1)t (0)∥2

L2(R);L2(Ω) = 0 <∞ e γ2∥(ϕ2)t (0)∥2
L2(R);L2(Ω) = 0 <∞ (5.88)

Por outro lado, fazendo t = 0 na equação (5.11), obtemos:
∥ut t (0)∥ ≤ ∥u0∥ρ1

L2ρ1(Ω) +∥∆u0∥+τ∥w0 −u0∥+∥ f ∥ := C̃1 <∞, (5.89)
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uma vez que f ∈ L2(Ω), u0 ∈ H 2(Ω)∩H 1
0 (Ω), w0 −u0 ∈ L2(Ω) e H 1

0 (Ω) ,→ L2ρ1 (Ω).
Procedendo de maneira análoga, com a equação (5.13), obtemos:

∥wt t (0)∥ ≤ m
(∥∇w0∥2)∥∆w0∥+∥w0∥ρ2+1

L2(ρ2+1)(Ω) +∥∆2w0∥+τ∥w0 −u0∥+∥g∥ := C̃2 <∞, (5.90)
pois g ∈ L2(Ω), w0 ∈ H 4(Ω)∩H 2

0 (Ω), w0 −u0 ∈ L2(Ω) e H 2
0 (Ω) ,→ L2ρ1 (Ω).

Assim, utilizando as estimativas (5.86)–(5.90) em (5.85), obtemos:
∥Ut (t )∥2

H ≤C10 +C9

∫ t

0
∥Ut (s)∥2

H d s; ∀0 < t ≤ T, (5.91)
onde C10 = (C̃1)2 + (C̃2)2.

Finalmente, aplicando o Lema de Gronwall (Proposição (A.7)), na estimativa (5.91), segue que:
∥Ut (t )∥2

H ≤C10eC9t ≤C10eC9T <∞; ∀0 < t ≤ T, (5.92)
e portanto: 

ut ∈ L∞
loc

(
0,+∞; H 1

0 (Ω)
)

wt ∈ L∞
l oc

(
0,+∞; H 2

0 (Ω)
)

ut t ∈ L∞
loc

(
0,+∞; L2(Ω)

)
wt t ∈ L∞

loc

(
0,+∞; L2(Ω)

)
.

(5.93)

Por outro lado, como∣∣∣∣∫
R

p(y)ϕ1(t , y) d y

∣∣∣∣ ≤
(∫
R

[p(y)]2

y2 +η d y

)1/2

·
(∫
R

(y2 +η)|ϕ1(t , y)|2d y

)1/2

= √
C (α,η.0)

(∫
R

(y2 +η)|ϕ1(t , y)|2d y

)1/2

,

e ∫
R

(y2 +η)∥ϕ1(t , y)∥2d y ≤ ∥(y2 +η)ϕ1(t )+p(y)ut (t )∥2
L2(R;L2(Ω)) = ∥(ϕ1)t (t )∥2

L2(R;L2(Ω),

temos que:
γ1

∥∥∥∥∫
R

p(y)ϕ(t , y) d y

∥∥∥∥2

≤ γ1C (α,η,0)
∫
R

(y2 +η)∥ϕ1(t , y)∥2d y

≤ γ1C (α,η,0)∥(ϕ1)t (t )∥2
L2(R;L2(Ω)

≤ 2C (α,η,0)∥Ut (t )∥2
H

≤ 2C (α,η,0)C10eC9T <∞; (5.94)
para todo 0 < t ≤ T .

De maneira análoga, obtemos:
γ2

∥∥∥∥∫
R

q(y)ϕ2(t , y) d y

∥∥∥∥2

≤ 2C (β,ζ,0)C10eC9T <∞; ∀0 < t ≤ T. (5.95)
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Assim, das Equações (5.11) e (5.13), e das estimativas (5.65), (5.70), (5.92), (5.94) e (5.95), obte-
mos:

∥∆u(t )∥ ≤ ∥ut t (t )∥+∥u(t )∥ρ1

L2ρ1 (Ω)
+τ∥(w −u)(t )∥+

∥∥∥∥∫
R

p(y)ϕ1(t , y) d y

∥∥∥∥+∥ f ∥2 <∞, (5.96)
para todo 0 < t < T , e

∥∆2w(t )∥ ≤ ∥wt t (t )∥+m
(∥∇w∥2)∥∆w∥+∥w(t )∥ρ2+1

L2(ρ2+1)(Ω)
+τ∥(w −u)(t )∥

+γ2

∥∥∥∥∫
R

q(y)ϕ2(t , y) d y

∥∥∥∥+∥g∥2 <∞. (5.97)
para todo 0 < t < T

Por fim, das regularidades obtidas em (5.73) e (5.93) e das estimativas (5.96) e (5.97), obtemos
que a solução forte global (u, w) do problema (5.3)–(5.6) possui as seguintes regularidades:

u ∈ L∞
loc

(
0,+∞; H 2(Ω)∩H 1

0 (Ω)
)∩L∞ (

0,+∞; H 1
0 (Ω)

)
w ∈ L∞

loc

(
0,+∞; H 4(Ω)∩H 2

0 (Ω)
)∩L∞ (

0,+∞; H 2
0 (Ω)

)
ut ∈ L∞

l oc

(
0,+∞; H 1

0 (Ω)
)∩L∞ (

0,+∞; L2(Ω)
)∩L1

(
0,+∞; H 1

0 (Ω)
)

wt ∈ L∞
loc

(
0,+∞; H 2

0 (Ω)
)∩L∞ (

0,+∞; L2(Ω)
)∩L1

(
0,+∞; H 2

0 (Ω)
)

ut t ∈ L∞
loc

(
0,+∞; L2(Ω)

)∩L1
(
0,+∞; L2(Ω)

)
wt t ∈ L∞

loc

(
0,+∞; L2(Ω)

)∩L1
(
0,+∞; L2(Ω)

)
(5.98)

De (5.98) segue as regularidades em (5.61) e em (5.62).

5.2 Existência de Atrator Global

Nesta seção, investigamos a existência de um atrator global associado ao sistema (5.3)–(5.6), o
qual, como mostrado anteriormente, pode ser reformulado no contexto de um problema de Cauchy
não linear. Para tanto, empregamos a teoria de semigrupos de operadores contínuos, considerando
a evolução no espaço de fase H definida pelo semigrupo {T (t )}t≥0 associado ao problema.

Demonstramos que {T (t )}t≥0 possui a propriedade de ser compactamente assintótico. Além
disso, mostramos que o sistema admite uma função de Lyapunov natural, construída a partir da
energia associada aomodelo, a qual decresce ao longo das trajetórias. Essa função desempenha papel
central para caracterizar o semigrupo como gradiente, permitindo assim uma descrição mais fina da
dinâmica assintótica. Tal estrutura, além da existência de atrator global, garante, em particular, que
o atrator global tem dimensão fractal finita e coincide com a união das instáveis de seus equilíbrios.

Outro ponto relevante é a análise da quase-estabilidade das trajetórias, a qual fornece estima-
tivas que, combinadas com o caráter dissipativo do sistema, asseguram que as soluções não apenas
permanecem em conjuntos limitados, mas também convergem assintoticamente em sentido forte,
obtendo assim uma melhor regularidade para as soluções.
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5.2.1 Formulação do Semigrupo Não Linear

O sistema (5.11)–(5.17) é equivalente ao seguinte problema de Cauchy:{
Ut =F (U ) ; t > 0

U (0) =U0

, (5.99)
onde F := (A +F ) : D(A ) ⊂H →H é o operador não linear definido por:

F (U ) =



v

ψ

∆u +τ(w −u)−γ1

∫
R

p(y)ϕ1(y)d y −|u|ρ1 + f

−∆2w −τ(w −u)−γ2

∫
R

q(y)ϕ2(y)d y +m

(∫
Ω
|∇w |2d x

)
∆w −|w |ρ2 + g

−(y2 +η)ϕ1(y)+p(y)v

−(y2 +ζ)ϕ2(y)+q(y)w,


, (5.100)

onde (H ,〈·, ·〉) é o espaço de fase definido em (5.21)–(5.23),A : D(A ) ⊂H →H é o operador linear
defnido em (5.19), F : H →H o operador não linear definido em (5.20), D(A ) é o conjunto definido
em (5.22),U = (u, w, v,ψ,ϕ1,ϕ2) eU0 = (u0, w0,u1, w1,0,0).

O Teorema 5.4 e a estimativa (5.71)garante que para cadaU0 ∈H , o problema (5.19), e portanto,
o problema (5.99), admite uma única solução brandaU ∈C 0 ([0,+∞);H ) dada por:

U (t ) = e tA U0 +
∫ t

0
e(t−s)A F (U (s)) d s.

Em termos das componentes u e w da soluçãoU , temos as seguintes regularidades:u ∈C 0
(
[0,+∞); H 1

0 (Ω)
)∩C 1

(
[0,+∞);L2(Ω)

)
w ∈C 0

(
[0,+∞); H 2

0 (Ω)
)∩C 1

(
[0,+∞);L2(Ω)

) (5.101)

Defina o semigrupo de operadores contínuos {T (t )}t≥0 pondo:
T (t ) : H −→ H

U0 7−→ U (t ) = e tA U0 +
∫ t

0
e(t−s)A F (U (s)) d s. (5.102)

EntãoU ∈C 0 ([0,+∞);H ) tal que
U (t ) = T (t )U0 = e tA U0 +

∫ t

0
e(t−s)A F (U (s)) d s,

é a única solução brando do problema (5.99).

5.2.2 Existência de Atrator Global

Proposição 5.7
Se η,ζ> 0, então 0 semigupo {T (t )}t≥0 definido em (5.102) é compactamente assintótico (em parti-
cular é assintoticamente suave).
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Demonstração. Seja B ⊂H um subconjunto limitado e sejamU0,V0 ∈ B ;U0 = (u0, w0,u1, w1,0,0)

e V0 = (v0, z0, v1, z1,0,0). Considere as solução brandas U : [0,+∞) → H e V : [0,+∞) → H ;
U (t ) = (u(t ), w(t ),ut (t ), wt (t ),ϕ1(t ),ϕ2(t )) e V (t ) = (v(t ), z(t )vt (t ), zt (t ),ϕ3(t ),ϕ4(t )) do problema
de Cauchy (5.99) para os dados iniciaisU0 e V0 respectivamente.

Observe que, X =U −V = (Φ,Ψ,Φt ,Ψt ,ϕ̃1,ϕ̃2) é solução branda do seguinte problema:
Φt t −∆Φ+|u|ρ1 −|v |ρ1 −τ(Ψ−Φ)+γ1

∫
R

p(y)ϕ̃1(y)d y = 0, (5.103)
(ϕ̃1)t (y)+ (y2 +η)ϕ̃1(y)−p(y)φt = 0, (5.104)

Ψt t +∆2Ψ−m

(∫
Ω
|∇w |2d x

)
∆w +m

(∫
Ω
|∇z|2d x

)
∆z +|w |ρ2 w −|z|ρ2 z

+ τ(Ψ−Φ)+γ2

∫
R

q(y) ϕ̃2(y)d y = 0, (5.105)
(ϕ̃2)t (y)+ (

y2 +ζ)ϕ̃2(y)−q(y)ψt = 0, (5.106)
Φ|∂Ω = 0, Ψ|∂Ω = 0 e ∂Ψ

∂ν

∣∣∣
∂Ω

= 0, (5.107)
Φ(x,0) = (u0 − v0)(x), e Φt (x,0) = (u1 − v1)(x), (5.108)
Ψ(x,0) = (w0 − z0)(x) eΨt (x,0) = (w1 − z1)(x), (5.109)

ϕ̃1(x,0, y) = 0 e ϕ̃2(x,0, y) = 0, (5.110)
Multiplicando o sistema (5.103)–(5.106) pelas funções Φt , ϕ̃1,Ψt e ϕ̃2 respectivamente, proce-

dendo de forma similar a demonstração da Proposição 5.5, e utilizando as condições de fronteira em
(5.107), obtemos:

1

2

d

d t
∥Φt∥2 + 1

2

d

d t
∥Ψt∥2 + 1

2

d

d t
∥∇Φ∥2 + 1

2

d

d t
∥∆Ψ∥2 + τ

2

d

d t
∥Ψ−Φ∥2 + γ1

2

d

d t
∥ϕ̃1∥2

L2(R;L2(Ω))

+ γ2

2

d

d t
∥ϕ̃2∥2

L2(R;L2(Ω)) +〈|u|ρ1 −|v |ρ1 ,Φt 〉+〈|w |ρ2 w −|z|ρ2 z,Ψt 〉−m
(∥∇w∥2)〈∆w,Ψt 〉

+m
(∥∇z∥2)〈∆z,Ψt 〉+γ1

∫
R

(y2 +η)∥ϕ̃1(y)∥2d y +γ2

∫
R

(y2 +ζ)∥ϕ̃2(y)∥2d y = 0. (5.111)
Note que:

d

d t

[
m

(∥∇w∥2)∥∇Ψ∥2]=−2m
(∥∇w∥2)〈∆Ψ,Ψt 〉−2m′ (∥∇w∥2)〈∆w, wt 〉∥∇Ψ∥2

= 2m
(∥∇w∥2)〈∆z,Ψt 〉−2m

(∥∇w∥2)〈∆w,Ψt 〉−2m′ (∥∇w∥2)〈∆w, wt 〉∥∇Ψ∥2. (5.112)
Defnindo o funcional energia:

E (t ) = 1

2
∥Φt (t )∥2 + 1

2
∥Ψt (t )∥2 + 1

2
∥∇Φ(t )∥2 + 1

2
∥∆Ψ(t )∥2 + τ

2
∥Ψ(t )−Φ(t )∥2

+ γ1

2
∥ϕ̃1(t )∥2

L2(R;L2(Ω)) +
γ2

2
∥ϕ̃2(t )∥2

L2(R;L2(Ω)) +
1

2

[
m

(∥∇w(t )∥2)∥∇Ψ(t )∥2] , (5.113)
e substituindo (5.112) em (5.111), obtemos:

d

d t
E (t ) =−〈|u|ρ1 −|v |ρ1 ,Φt 〉−〈|w |ρ2 w −|z|ρ2 z,Ψt 〉+

[
m

(∥∇w∥2)−m
(∥∇z∥2)]〈∆z,Ψt 〉

+m′ (∥∇w∥2)〈∆w, wt 〉∥∇Ψ∥2 −γ1

∫
R

(y2 +η)∥ϕ̃1(y)∥2d y −γ2

∫
R

(y2 +ζ)∥ϕ̃2(y)∥2d y. (5.114)
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Das estimavas (5.45) e (5.46), e da Desigualdade de Young, obtemos:∣∣〈|u|ρ1 −|v |ρ1 ,Φt 〉
∣∣ ≤ C3∥Φ∥ ·∥Φt∥

≤ (C3)2

2
∥Φ∥2 + 1

2
∥Φt∥2 (5.115)

e ∣∣〈|w |ρ2 w −|z|ρ2 z,Ψt 〉
∣∣ ≤ C4∥∇Ψ∥ ·∥Ψt∥

≤ (C4)2

2
∥∇Ψ∥2 + 1

2
∥Ψt∥2, (5.116)

ondeC3 = 22ρ1−1ρ1C1Rρ1−1 eC4 = 22ρ2+1(ρ2+1)C2Rρ2 , ondeC1 é a constante da imersão H 1
0 (Ω) ,→

L2ρ1 (Ω), onde C2 é a constante da imersão H 2
0 (Ω) ,→ L2(ρ2+1)(Ω).

Como m é de Classe C 1 (ver (5.9)), segue que
m′ (∥∇w∥2)〈∆w, wt 〉∥∇Ψ∥2 ≤ (C5)2∥∇Ψ∥2. (5.117)

Além disso:
[
m

(∥∇w∥2)−m
(∇z∥2)〈∆z,Ψt 〉

] ≤ C6∥∇Ψ∥ ·∥Ψt∥ ≤ 1

2
∥∇Ψ∥2 + (C6)2

2
∥Ψt∥2

≤ (C7)2

2
∥∇Ψ∥2 + (C6)2

2
∥Ψt∥2. (5.118)

Agora, substuindo as expressões (5.115), (5.116), (5.117) e (5.118) em (5.114), obtemos:

d

d t
E (t ) ≤ (C3)2

2
∥Φ∥2 + 1

2
∥Φt∥2 + (C4)2

2
∥∇Ψ∥2 + 1

2
∥Ψt∥2 + (C7)2

2
∥∇Ψ∥2 + (C6)2

2
∥Ψt∥2+

(C5)2∥∇Ψ∥2 −γ1

∫
R

(y2 +η)∥ϕ̃1(y)∥2d y −γ2

∫
R

(y2 +ζ)∥ϕ̃2(y)∥2d y. (5.119)
Por outro lado, como

γ1

4

d

d t

∫
R
|ϕ̃1(y)|2d y + γ1

2

∫
R

(
y2 +η)∥ϕ̃1(y)∥2d y = γ1

2
Φt

∫
R

p(y)ϕ̃1(y) d y

e
γ2

4

d

d t

∫
R
|ϕ̃2(y)|2d y + γ2

2

∫
R

(
y2 +ζ)∥ϕ̃2(y)∥2d y = γ2

2
Ψt

∫
R

q(y)ϕ̃2(y) d y,

aplicando as estimativas:∫
Ω
Φt

∫
R

p(y)ϕ̃1(y)d yd x ≤ ε1C (α,η,0)∥Φt∥2 +C (ε1)
∫
Ω

∫
R

(y2 +η)|ϕ̃1(y)|2d yd x

e ∫
Ω
Ψt

∫
R

q(y)ϕ̃2(y)d yd x ≤ ε2C (β,ζ,0)∥Ψt∥2 +C (ε2)
∫
Ω

∫
R

(y2 +ζ)|ϕ̃2(y)|2d yd x,
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na desigualdade (5.119), obtemos:
1

2

d

d t
E (t )+ C8

2

(
γ1

∫
R

(y2 +η)∥ϕ̃1(y)∥2d y +γ2

∫
R

(y2 +ζ)∥ϕ̃2(y)∥2d y

)
+ 1

2

(∥Φt∥2 +∥Ψt∥2)
≤ C9

2

(∥Φ∥2 +∥∇Ψ∥2) (5.120)
C8 = max{1+C (ε1),1+C (ε2)}, ε1 = 2/[γ1C (α,η,0)], ε2 = [2+ (C6)2]/[γ2C (β,ζ,0)] e
C9 = max{(C3)2, (C4)2 + (C5)2 + (C7)2}.

Integrando a expressão (5.120) de t a t +1, obtemos:
1

2
E (t +1)− 1

2
E (t )+ C8

2

∫ t+1

t

(
γ1

∫
R

(y2 +η)∥ϕ̃1(y)∥2d y +γ2

∫
R

(y2 +ζ)∥ϕ̃2(y)∥2d y

)
d t

+ 1

2

∫ t+1

t

(∥Φt∥2 +∥Ψt∥2)d t ≤ C9

2

∫ t+1

t

(∥Φ∥2 +∥∇Ψ∥2)d t .

Portanto
C8

2

∫ t+1

t

(
γ1

∫
R

(y2 +η)∥ϕ̃1(y)∥2d y +γ2

∫
R

(y2 +ζ)∥ϕ̃2(y)∥2d y

)
d t + 1

2

∫ t+1

t

(∥Φt∥2 +∥Ψt∥2)d t

≤ 1

2
E (t )− 1

2
E (t +1)+ C9

2

∫ t+1

t

(∥Φ∥2 +∥∇Ψ∥2)d t . (5.121)
Agora, definindo:

F (t ) =
(
E (t )−E (t +1)+C9

∫ t+1

t

(∥Φ∥2 +∥∇Ψ∥2)d t .

)1/2

, (5.122)
onde C9 :=C9(B) depende apenas da limitação uniforme dos dados iniciais no conjunto B .

De (5.121), obtemos:∫ t+1

t

(
γ1

∫
R

(y2 +η)∥ϕ̃1(y)∥2d y +γ2

∫
R

(y2 +ζ)∥ϕ̃2(y)∥2d y

)
d t +

∫ t+1

t

(∥Φt∥2 +∥Ψt∥2)d t

≤ 1

C10
[F (t )]2, (5.123)

onde C10 = min{C8/2,1/2}.
Assim, do Teorema do Valor Médio para integrais, existem t1 ∈ [t + t +1/4] e t2 ∈ [t +3/4, t +1]

tais que:
γ1

∫
R

(y2 +η)∥ϕ̃1(ti , y)∥2d y +γ2

∫
R

(y2 +ζ)∥ϕ̃2(ti , y)∥2d y +∥Φt (ti )∥2 +∥Ψt (ti )∥2

≤ 4

C10
[F (t )]2; ∀i = 1,2. (5.124)

Por outro lado, multiplicando as equações (5.103) e (5.105) por Φ= u − v eΨ= w − z respecti-
vamente, integrando por partes e utilizando as condições de fronteira (5.107), obtemos:

d

d t
〈Φt ,Φ〉−∥Φt∥2 +∥∇Φ∥2 +

∫
Ω

(|u|ρ1 −|v |ρ1
)
Φ d x −τ〈Ψ−Φ,Φ〉

+γ1

∫
Ω
Φ

∫
R

p(y)ϕ̃1(y)d y d x = 0 (5.125)
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e
d

d t
〈Ψt ,Ψ〉−∥Ψt∥2 +∥∆Ψ∥2 −m

(∥∇w∥2)〈∆w,Ψ〉+m
(∥∇z∥2)〈∆z,Ψ〉

+
∫
Ω

(|w |ρ2 w −|z|ρ2 z
)
Ψ d x +τ〈Ψ−Φ,Ψ〉+γ2

∫
Ω
Ψ

∫
R

q(y)ϕ̃2(y)d y d x = 0 (5.126)
Como

m
(∥∇w∥2)∥Ψ∥2 =−m

(∥∇w∥2)〈∆Ψ,Ψ〉 =−m
(∥∇w∥2)〈∆w,Ψ〉+m

(∥∇w∥2)〈∆z,Ψ〉,

somando as expressões (5.125) e (5.126), obtemos:
∥∇Φ∥2 +∥∆Ψ∥2 +τ∥Ψ−Φ∥2 +m

(∥∇w∥2)∥∇Ψ∥2 =− d

d t
〈Φ,Φt 〉− d

d t
〈Ψ,Ψt 〉

+∥Φt∥2 +∥Ψt∥2 + [
m

(∥∇w∥2)−m
(∥∇z∥2)]〈∆z,Ψ〉+〈|v |ρ1 −|u|ρ1 ,Φ〉+〈|w |ρ2 w −|z|ρ2 z,Ψ〉

−γ1

∫
Ω
Φ

∫
R

p(y)ϕ̃1(y)d y d x −γ2

∫
Ω
Ψ

∫
R

q(y)ϕ̃2(y)d y d x. (5.127)
Como∫

Ω
Φ

∫
R

p(y)ϕ̃1(y)d yd x ≤ ε3C (α,η,0)∥Φ∥2 +C (ε3)
∫
Ω

∫
R

(y2 +η)|ϕ̃1(y)|2d yd x

e ∫
Ω
Ψ

∫
R

q(y)ϕ̃2(y)d yd x ≤ ε4C (β,ζ,0)∥Ψ∥2 +C (ε4)
∫
Ω

∫
R

(y2 +ζ)|ϕ̃2(y)|2d yd x,

das expressões (5.115), (5.116), (5.118) e (5.127), segue que:
2E (t ) ≤− d

d t
〈Φ,Φt 〉− d

d t
〈Ψ,Ψt 〉+∥Φt∥2 +∥Ψt∥2 + (C7)2

2
∥∇Ψ∥2 + (C6)2

2
∥Ψt∥2 + (C3)2

2
∥Φ∥2

+ 1

2
∥Φt∥2 + (C4)2

2
∥∇Ψ∥2 + 1

2
∥Ψt∥2 +C (ε3)∥Φ∥2 +C (ε4)∥Ψ∥2 +γ1ε3

∫
R

(y2 +η)∥ϕ̃1(y)∥2d y

+γ2ε4

∫
R

(y2 +ζ)∥ϕ̃2(y)∥2d y +γ1∥ϕ̃1(t )∥2
L2(R;L2(Ω)) +γ2∥ϕ̃2(t )∥2

L2(R;L2(Ω)).

Agora, como y2 +η≥ η> 0 e y2 +ζ≥ ζ> 0, para todo y ∈R, então
∥ϕ̃1∥L2(R;L2(Ω)) ≤

1

η

∫
R

(y2 +δ)∥ϕ̃1(y)∥2
L2(Ω)d y d x.

e
∥|ϕ̃2∥L2(R;L2(Ω)) ≤

1

ζ

∫
R

(y2 +ζ)∥|ϕ̃1(y)∥2
L2(Ω)d y d x.

Assim , da desigualdade de Poincaré, obtemos:
2E (t ) ≤− d

d t
〈Φ,Φt 〉− d

d t
〈Ψ,Ψt 〉+ 3

2
∥Φt∥2 + 3+ (C6)2

2
∥Ψt∥2 + (C3)2 +2C (ε3)

2
∥Φ∥2

+ (C7)2 + (C4)2 +2C̃ (ε4)

2
∥∇Ψ∥2 + 2γ1

η

∫
R

(y2 +η)∥ϕ̃1(y)∥2d y + 2γ2

ζ

∫
R

(y2 +ζ)∥ϕ̃2(y)∥2d y,

onde ε3 = 1/η e ε2 = 1/ζ.
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Portanto
E (t ) ≤−1

2

d

d t
〈Φ,Φt 〉− 1

2

d

d t
〈Ψ,Ψt 〉+C11

(∥Φ∥2 +∥∇Ψ∥2)
+C12

(
∥Φt∥2 +|Ψt∥2 +γ1

∫
R

(y2 +η)∥ϕ̃1(y)∥2d y +γ2

∫
R

(y2 +ζ)∥ϕ̃2(y)∥2d y

)
, (5.128)

onde
C11 = max

{
(C3)2 +2C (ε3)

4
,

(C7)2 + (C4)2 +2C̃ (ε4)

4
,

1

η
,

1

ζ

}
e C12 = max

{
3

4
,

3+ (C6)2

4

}
.

Agora, integrando na variável s de t1 a t2, obtemos:∫ t2

t1

E (s)d s ≤−1

2
〈Φ,Φt 〉

∣∣∣s=t2

s=t1

− 1

2
〈Ψ,Ψt 〉

∣∣∣s=t2

s=t1

+C11

∫ t2

t1

(∥Φ∥2 +∥∇Ψ∥2)d s

+C12

∫ t2

t1

(
∥Φt∥2 +|Ψt∥2 +γ1

∫
R

(y2 +η)∥ϕ̃1(y)∥2d y +γ2

∫
R

(y2 +ζ)∥ϕ̃2(y)∥2d y

)
d s (5.129)

Da desigualdade de Poincaré, obtemos ∥Φ(ti )∥ ≤ 1p
C
∥∇Φ(ti )∥ e ∥Ψ(ti )∥ ≤ 1p

C0
∥∆Ψ(ti )∥, e portanto,

da Desigualdade de Caucy-Schwarz, obtemos:
2∑

j=1
|〈Φ,Φs〉(ti )|+

2∑
j=1

|〈Ψ,Ψs〉(ti )| ≤ 1p
C

2∑
j=1

∥∇Φ(ti )∥ ·∥Φs(ti )∥+ 1p
C0

2∑
j=1

∥∆Ψ(ti )∥ ·∥Ψs(ti )∥,

e como t1, t2 ∈ [t , t +1], passando o supremo, obtemos:
2∑

j=1
|〈Φ,Φs〉(ti )|+

2∑
j=1

|〈Ψ,Ψs〉(ti )| ≤ 1p
C

(
|Φs(t1)|+ |Φs(t2)|

)
sup

t≤s≤t+1
|∇Φ(s)|

+ 1p
C0

(
|Ψs(t1)|+ |Ψs(t2)|

)
sup

t≤s≤t+1
|∆Ψ(s)|

≤ 4p
C ·C10

F (t ) sup
t≤s≤t+1

|∇Φ(s)|+ 4p
C0 ·C10

F (t ) sup
t≤s≤t+1

|∆Ψ(s)|, (5.130)
pois, utilizando da estimativa (5.124), segue que ∥Φt (ti )∥ ≤ 2p

C10
F (t ) e ∥Ψt (ti )∥ ≤ 2p

C10
F (t ).

Por tanto, aplicando as estimativas (5.123) e (5.130), na desigualdade (5.129), obtemos:∫ t2

t1

E (s) d s ≤ 2p
C ·C10

F (t ) sup
t≤s≤t+1

∥∇Φ∥+ 2p
C0 ·C10

F (t ) sup
t≤s≤t+1

∥∆Ψ∥+ C12

C10
[F (t )]2

+C11

∫ t2

t1

(∥Φ∥2 +∥∇Ψ∥2)d s,

e portanto∫ t2

t1

E (s) d s ≤C13F (t ) sup
t≤s≤t+1

√
E (s)+ C12

C10
[F (t )]2 +C11

∫ t2

t1

(∥Φ∥2 +∥∇Ψ∥2)d s, (5.131)
onde C13 = max{2/

p
C0 ·C10,2/

p
C ·C10}.

Aplicando a desigualdade de Young generalizada em (5.131), obtemos:∫ t2

t1

E (s) d s ≤+C (ε5)[F (t )]2 +ε5 sup
t≤s≤t+1

E (s)+C11

∫ t2

t1

(∥Φ∥2 +∥∇Ψ∥2)d s.
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Pelo Teorema do Valor Médio para integrais, existe t0 ∈ [t1, t2] tal que:
E (t0) = 1

t2 − t1

∫ t2

t1

E (s),d s.

Como (t2 − t1 ≥ 1
2 ), deduzimos que

E (t0) ≤ 2
∫ t2

t1

E (s),d s.

Combinando as duas desigualdades, obtemos
E (t0) ≤ 2C (ε5)[F (t )]2 +2ε5 sup

t≤s≤t+1
E (s)+2C11

∫ t2

t1

(|Φ|2 +|∇Ψ|2)d s. (5.132)
Por outro lado, a partir de (5.122), temos que E (t) ≤ E (t +1)+ [F (t)]2. Isso significa que a

variação da energia entre os instantes t e t +1 é controlada pela quantidade [F (t)]2, juntamente
com o termo integral.

Agora, como t0 ∈ [t , t +1], segue que o máximo de E (s) no intervalo [t , t +1] não pode ultra-
passar o valor em t0 somado a essa correção. Mais precisamente, para todo s ∈ [t , t +1], podemos
estimar:

E (s) ≤ E (t0)+ [F (t )]2 +C9

∫ t+1

t

(|Φ|2 +|∇Ψ|2)d s.

Tomando o supremo sobre todos s ∈ [t , t +1], obtemos, portanto:
sup

t≤s≤t+1
E (s) ≤ E (t0)+ [F (t )]2 +C9

∫ t+1

t

(∥Φ∥2 +∥∇Ψ∥2)d s. (5.133)
Agora, tomando ε5 = 1/4 e substituindo a expressão (5.132) em (5.133), temos:

sup
t≤s≤t+1

E (s) ≤C14[F (t )]2 +C15

∫ t+1

t

(∥Φ∥2 +∥∇Ψ∥2)d s,

onde C14 = 4C (1/4)+2 e C15 = 4C11 +2C9.
Dado t∗ > 0, de (5.122), obtemos:
sup

t≤s≤t+1
E (s) ≤C14 (E (t )−E (t +1))+C15 sup

0≤σ≤t∗

∫ σ+1

σ

(∥Φ∥2 +∥∇Ψ∥2)d s; ∀0 ≤ t ≤ t∗ (5.134)
Assim, de (5.113), (5.134) e do Lema de Nakao (Lema A.13), segue que:

1

2
∥X (t )∥2

H ≤ E (t ) ≤C16e−θt +C15 sup
0≤σ≤t∗

∫ σ+1

σ

(∥Φ∥2 +∥∇Ψ∥2)d s; ∀0 ≤ t ≤ t∗, (5.135)
onde

C16 = 1+C14

C14
sup

0≤s≤1
E (s) e θ = lnC16.

Finalmente, dado ε > 0, escolha uma número real t∗ > 0 suficientemente grande, tal que
p

C16e− θ
2 t∗ < ε, e defina:

ft∗ : B0 ×B0 −→ R

(U0,V0) 7−→ CB0 sup
0≤σ≤t∗

(∫ σ+1

σ

(∥u − v∥2 +∥∇w −∇z∥2)d s

)1/2

, (5.136)
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ondeU0 = (u0, w0,u1, w1,0,0), V0 = (v0, z0, v1, z1,0,0), CB0 =
p

C15, B0 é a bola fechada centrada na
origem e raiop

2C3 com respeito a norma do espaço H e C3 > 0 é a constante obtida na estimativa
(5.70).

Observe que, de (5.135), segue que, dado ε> 0, existe t∗ := t∗(ε,B0) tal que:
∥T (t∗)U0 −T (t∗)V0∥H = ∥U (t∗)−V (t∗)∥H = ∥X (t∗)∥H ≤ ε+ ft∗ (U0,V0) ; ∀U0,V0 ∈ B0. (5.137)

Assim, diante da Proposição 3.26, resta apenas mostrar que ft∗ é uma função contrativa sobre
B0 ×B0 (Definição 3.25). Com efeito, seja (Un)n∈N ⊂ B0; Un = ((u0)n , (w0)n , (u1)n , (w1)n ,0,0) uma
sequência de valores iniciais em B0. Queremos mostrar que existe uma subsequência (Unk ) de
(Un)n∈N tal que:

lim
k→∞

lim
l→∞

ft∗
(
Unk ,Unl

)= 0. (5.138)
Como B0 é limitado e invariante sob {T (t)}t≥0, as solução (

un , wn , (ut )n , (wt )n , (ϕ1)n , (ϕ2)n
)

são uniformemente limitadas em H . Em particular(un)n∈N ⊂C 0
(
[0,+∞); H 1

0 (Ω)
)∩C 1

(
[0,+∞);L2(Ω)

)
(wn)n∈N ⊂C 0

(
[0,+∞); H 2

0 (Ω)
)∩C 1

(
[0,+∞);L2(Ω)

)
.

são sequências limitadas nos respectivos espaços (ver (5.60)).
Por outro lado, a imersão compacta de H 2

0 (Ω) em H 1
0 (Ω) e de H 1

0 (Ω) em L2(Ω) implica que as
seguintes imersões:C 0

(
[0, t∗); H 1

0 (Ω)
)∩C 1

(
[0, t∗);L2(Ω)

)
,→C 0

(
[0, t∗);L2(Ω)

)
C 0

(
[0, t∗); H 2

0 (Ω)
)∩C 1

(
[0, t∗);L2(Ω)

)
,→C 0

(
[0, t∗); H 1

0 (Ω)
) (5.139)

são compactas para cada t∗ > 0.
Assim, como a expressão de ft∗ não dependem das componentes (ϕ1)n e (ϕ2)n , as imersões

compactas em(5.139)garante a existência de uma subsequência (
unk , wnk , (ut )nk , (wt )nk , (ϕ1)nk , (ϕ2)nk

)
de (

un , wn , (ut )n , (wt )n , (ϕ1)n , (ϕ2)n
) satisfazendo o limite (5.138).

Proposição 5.8
O semigrupo {T (t )}t≥0 associado ao problema (5.99) é gradiente
Demonstração. Afirmamos que Φ : H →R, definido por Φ(U0) = E (t ), onde E (t ) é a energia associ-
ada ao problema (5.99) dada em (5.52) é uma função de Lyapunov estrita para o semigrupo {T (t )}t≥0,
e portanto {T (t )}t≥0 é um semigrupo gradiente (ver Definição 3.27). De fato, da Proposição 5.5 segue
que

d

d t
E(t ) =−γ1

∫
R

∫
Ω

(y2 +η)|ϕ1(x, t , y)|2d xd y −γ2

∫
R

∫
Ω

(y2 +ζ)|ϕ2(x, t , y)|2d xd y. (5.140)
Como E(t ) =Φ(T (t )U0), de (5.140), temos que aplicação t 7−→Φ (T (t )U0) é não crescente.
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Agora, suponha que Φ(T (t)U0) =Φ(U0) para todo t ≥ 0. Então E(t) é constante e de (5.140)
segue queϕ1 =ϕ2 = 0. Assim, das Equações (5.12)e (5.14)segue queut = 0 e wt = 0, respectivamente.
Isto é, u e w são funcões constantes com respeito a variável t . Nesse caso, temos:

T (t )U0 =U0 = (u0, w0,0,0,0,0); ∀t ≥ 0,

o que completa a prova.
Teorema 5.9
Se η,ζ> 0, então o semigrupo {T (t )}t≥0 associado ao problema (5.99) e definido em (5.102) possui
um atrator global com dimensão fractal finita em H e caracterizada pela variedade instável M u(N )

do conjunto de soluções estacionárias:
N =

{
(u, w,0,0,0,0) ∈H

∣∣∣∣∣ −∆u +|u|ρ1 −τ(w −u) = f ,

∆2w −m
(∫
Ω |∇w |2d x

)
∆w +|w |ρ2 w +τ(w −u) = g .

}
,

Demonstração. As Proposições 5.7 e 5.8 garantem que o semigrupo {T (t )}t≥0 é gradiente assinto-
ticamente suave. Assim, segundo o Teorema 3.28, para garantir a existência de atrator devemos
mostrar que:

(i) A função de Lyapunov Φ : H →R é limitada por cima sobre qualquer subconjunto limitado de
H .

(ii) O conjunto ΦR = {U ∈H ; Φ (U ) < R} é limitado, qualquer que seja R > 0.
(iii) O conjunto dos pontos fixos (ou estacionários) N = {U ∈H / T (t )U =U ; ∀t > 0} é limitado.

Da Proposição 5.8, temos que Φ(U ) = E(t), para todo dado inicial U ∈ H . Seja B ⊂ H um
conjunto limitado. Considere a solução branda do problema (5.99) dada por:

(u(t ), w(t ),ut (t ), wt (t ),ϕ1(t ),ϕ2(t )) = T (t )U ,

ondeU = (u0, w0,u1, w1,0,0) ∈ B .
Seja C3 > 0 a constante dada no estimativa (5.70). Então

∥T (t )U∥H ;= ∥(u(t ), w(t ),ut (t ), wt (t ),ϕ1(t ),ϕ2(t ))∥H ≤
√

2C3; ∀t ≥ 0,

Portanto Φ : H → R é limitada sobre o conjunto B0, onde B0 é a bola fechada centrada na
origem e com raiop

2C3 com respeito a norma do espaço H , o que prova (i).
Para provar a afirmação (ii), comparamos a expressão (5.52) da energia E(t ) com a norma de

H dada em (5.23). Assim, dado R > 0 eU ∈ΦR = {U ∈H ; Φ(U ) < R}, temos:
E(t ) = 1

2
∥U (t )∥2

H + 1

ρ1 +1
∥u(t )∥ρ1+1

Lρ1+1(Ω)
+ 1

2
M

(∥∇w(t )∥2)+ 1

ρ2 +2
∥w(t )∥ρ2+2

Lρ2+2(Ω)

−
∫
Ω

[
f (x)u(x, t )+ g (x)w(x, t )

]
d x,
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Assim, das desigualdades cauchy schwarz, Young e Poincaré, segue que
E(t ) ≥ 1

2
∥U (t )∥2

H −K1ε1∥∇u∥2 −C (ε1)∥ f ∥2 −K2ε2∥∆w∥2 −C (ε2)∥g∥2, (5.141)
onde K1,K2 > 0 são constantes obitdas com a desigualdade de Poicaré, e, ε1,ε2 são constantes
positivas a determinar.

Fazendo ε1 = 1/(4K1) e ε2 = 1/(4K2) em (5.141), obtemos:
E(t ) ≥ 1

4
∥U (t )∥2

H −C
(∥ f ∥2 +∥g∥2) ,

onde C = min{C (ε1),C (ε2)}.
Portanto

∥U (t )∥2
H ≤ 4E(t )+4C

(∥ f ∥2 +∥g∥2)= 4Φ (U (t ))+4C
(∥ f ∥2 +∥g∥2)< C̃

(
R +∥ f ∥2 +∥g∥2)<∞,

onde C̃ = max{4,4C }.
Finalmente, provaremos a afirmação (iii). SejaU ∈H , tal que

U (t ) = T (t )U = (u, w,0,0,0,0); ∀t ≥ 0.

Em termos das coordenadas, temos:
−∆u +|u|ρ1 −τ(w −u) = f , (5.142)

∆2w −m

(∫
Ω
|∇w |2d x

)
∆w +|w |ρ2 w +τ(w −u) = g , (5.143)

(u)|∂Ω = 0, (w)|∂Ω = 0 e ∂w

∂ν

∣∣∣
∂Ω

= 0, (5.144)
Multiplicando as equações (5.142) e (5.132) por u e w respectivamente, integrando em x ∈Ω e

aplicando as condições de fronteira (5.144), obtemos:
∥U (t )∥2

H = ∥∇u∥2 +∥∆w∥2 +τ∥w −u∥2

≤ − 1

ρ1 +1
∥u∥ρ1+1

Lρ1+1(Ω)
− 1

ρ2 +2
∥w∥ρ2+2

Lρ2+2(Ω)
−m

(∥∇w∥2)∥∇w∥2 +〈 f ,u〉+〈g , w〉

≤ K1ε3∥∇u∥2 +C (ε3)∥ f ∥2 +K2ε4∥∆w∥2 +C (ε4)∥g∥2.

Logo
∥U∥2 ≤C0

(∥ f ∥2 +∥g∥2) ,

onde C0 = 2max{C (ε3),C (ε4)}, ε3 = 1/(2K1) e ε4 = 1/(2K2).
Portanto, do Teorema 3.28 o semigrupo {T (t)}t≥0 admite um atrator global dado por A =

M u(N ), onde M u(N ) é a variedade não estável proveniente de N como o conjunto de todos os
U ∈H tal que exista uma trajetória completa γ= {U (s); s ∈R} satisfazendo:

U (0) =U e lim
s→−∞di stH (U (s),N ) = 0.
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Além disso, considereU = (u, w,ut , wt ,ϕ1,ϕ2) e V = (v, z, vt , zt ,ϕ3,ϕ4) soluções do problema
(5.99), comU (0) =U0 ∈H e V (0) =V0 ∈H . Da estimativa (5.135) segue que:

∥T (t )U0 −T (t )V0∥2
H = |U (t )−V (t )∥H

≤ 2+2C14

C14
e−θt∥U0 −V0∥H +C15 sup

0≤σ≤t∗

∫ σ+1

σ

(∥Φ∥2 +∥∇Ψ∥2)d s.

Portanto o semigrupo {T (t )}t≥0 é quase-estável (ver Definição 3.29). Com efeito, como as soluçõesU

eV dependem continuamente dos dados iniciaisU0 eV0 respectivamente, basta tomar Y = [L2(Ω)]2,
X = H 1

0 (Ω)×H 2
0 (Ω), Z = [

L2
(
R;L2(Ω)

)]2, H =H ,

c(t ) =C15, b(t ) = 2+2C14

C14
e−θt e ηX =

∫ σ+1

σ

(
∥ ·∥2

L2(Ω) +∥·∥H 1
0 (Ω)

)
d s.

Portanto, do Teorema 3.30 segue que A=M u(N ) tem dimensão fractal finita.
Corolário 5.10 (Regularidade)
Se u0 ∈ H 1

0 (Ω), w0 ∈ H 2
0 (Ω) e u1, w1 ∈ L2(Ω) a solução branda (u, w) do Problema (5.11)–(5.17),

satisfaz: 

u ∈C 0
(
0,+∞; H 1

0 (Ω)
)∩C 1

(
0,+∞; L2(Ω)

)
w ∈C 0

(
0,+∞; H 2

0 (Ω)
)∩C 1

(
0,+∞; L2(Ω)

)
ut ∈ L∞ (

0,+∞; H 1
0 (Ω)

)∩W 1,∞ (
0,+∞; L2(Ω)

)
wt ∈ L∞ (

0,+∞; H 2
0 (Ω)

)∩W 1,∞ (
0,+∞; L2(Ω)

)
Demonstração. Do Teorema 5.9 segue que o semigrupo {T (t )}t≥0 admite atrator globalA e é quase-
estável sobre A. Assim, basta combinar o Teorema 3.31 com o Teorema 5.6.

Neste capítulo conseguimos estabelecer a existência de um atrator global A para o semigrupo
não linear {T (t )}t≥0 associado ao sistema (5.3)-(5.6), sob a formulação equivalente (5.99), no caso em
que os pesos fracionários η e ζ são estritamente positivos. As Proposições 5.7 e 5.8 asseguraram que
o semigrupo é compactamente assintótico e gradiente, o que nos permitiu recorrer ao Teorema de
Lasiecka para concluir queA existe, é invariante, e é precisamente a união das variedades instáveis do
conjunto de pontos estacionários (isto é, A=M u(N )). A demonstração do teorema 5.9 completou
essa linha de construção, com a verificação de que a função de Lyapunov é adequada, os pontos fixos
são limitados e a estrutura de quase estabilidade garante a finitude da dimensão fractal. Por fim, no
corolário, mostramos que as soluções que pertencem ao atrator ou convergem a ele apresentam
regularidade adicional, estendendo a solução branda a uma “solução forte global” com estimativas
nas derivadas.

Contudo, mesmo tendo alcançado esses resultados centrais, permanecem algumas questões
abertas e aspectosmais refinados do comportamento assintótico que não abordamos completamente
no presente capítulo, como por exemplo a questão da existência de atrator global para o caso em
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que η= 0 ou ζ= 0. A seguir discuto os principais aspectos remanescentes e possíveis direções para
investigações futuras.

Um ponto delicado e frequentemente desejável em análise de atratores é a obtenção de taxas
de atração explícitas, isto é, estimativas quantitativas de como a distância de uma órbita a A decai
com o tempo. No contexto clássico de problemas lineares ou fortemente dissipativos, é comum
obter decaimento exponencial, o que permite a definição de um atrator exponencial: um conjunto
que atrai todas as órbitas em tempo assintótico com taxa exponencial e tem dimensão fractal finita,
possivelmente maior que a do atrator global, mas que fornece controle mais forte da convergência.

No presente modelo, porém, não exploramos explicitamente se o semigrupo admite um
atrator exponencial. Os argumentos utilizados para provar a existência do atrator global e a quase
estabilidade baseiam-se em estimativas que garantem decaimento “mais lento” (por exemplo,
integrando em intervalos de unidade e usando a função F (t ), conforme (5.135)). Assim, não temos
uma estimativa exponencial clara da distância entre T (t )U0 e A. Em geral, em sistemas hiperbolo-
parabólicos ou semilineares com memória ou não linearidades fortes, não se espera decaimento
exponencial.

Portanto, em trabalhos futuros, vale explorar se é possível construir um atrator exponencial
para este sistema, encontrando decomposições “contrativa + compacta” que permitam estimativas
exponenciais, seguindo métodos clássicos. Se isso falhar, tentar formular e provar a existência um
atrator com taxa polinomial de atração em algum sentindo.
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Capítulo 6

Sobre ummodelo não autônomode equação de
onda com condição de fronteira acústica e sobe
o efeito de amortecimento interno não linear e
amortecimento do tipo derivada fracionária na
fronteira.

Além dos modelos clássicos de vibrações estruturais, um dos temas que despertou grande
interesse na teoria de equações de evolução foi a introdução das chamadas condições de contorno
acústicas. Esse conceito foi inicialmente proposto por Beale e Rosencrans (BEALE; ROSENCRANS,
1974), no estudo da equação da onda sujeita a condições de contorno derivadas de modelos de
propagação acústica em meios com fronteiras reativas localmente.

O ponto de partida consiste em considerar um domínio preenchido por um fluido em repouso,
sujeito a pequenas perturbações irrotacionais. A fronteira do domínio, em vez de ser tratada como
rígida ou perfeitamente absorvente, é modelada como uma coleção de osciladores harmônicos
independentes, que reagem ao excesso de pressão como molas amortecidas. Essa formulação
conduz a um sistema acoplado entre a equação da onda no interior do domínio e uma equação
diferencial ordinária que descreve o deslocamento normal da superfície.

Na modelagem de Beale e Rosencrans (BEALE; ROSENCRANS, 1974), a função u = u(x, t)

representa o deslocamento do fluido no interior do domínio, satisfazendo a equação da onda
ut t −∆u = 0. Na fronteira, introduziu-se uma função δ(ξ, t) para descrever a oscilação vibratória
independente. Essa oscilação satisfaz a equação:

mδt t +dδt +kδ=−ρut ,

onde m é a massa por unidade de área da fronteira, d a resistividade do material, k a constante da
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mola e ρ a densidade não perturbada do gás.
Além disso, a continuidade da velocidade normal entre o gás e a fronteira impõe a condição:

δt (ξ, t ) =−∂u

∂ν
(ξ−νδ(ξ, t ), t ),

onde ∂u

∂ν
denota a derivada normal exterior de u.

A análise apresentada em (BEALE; ROSENCRANS, 1974) mostrou que o operador associado
ao sistema é maximal dissipativo, garantindo que o problema de Cauchy é bem posto segundo o
Teorema de Lumer–Phillips. Posteriormente, Beale (BEALE, 1976) aprofundou a investigação espectral
do gerador do semigrupo associado a essas condições de contorno. Diferentemente dos problemas
clássicos de contorno da equação da onda, cujo resolvente é compacto e o espectro consiste apenas
em autovalores discretos, verificou-se que, neste caso, o espectro contém sempre parte essencial.
Esse fenômeno está diretamente ligado à dependência explícita da condição de contorno em relação
ao parâmetro espectral. Em particular, para coeficientes constantes, demonstrou-se a existência
de sequências de autovalores que se acumulam no espectro essencial, revelando uma estrutura
espectral significativamente mais complexa.

A partir desses trabalhos pioneiros, Frota e Goldstein (FROTA; GOLDSTEIN, 2000) estenderam
a análise para equações de onda não lineares com condições de contorno acústicas. Eles provaram
a existência e unicidade de soluções globais para uma ampla classe de problemas, consolidando a
relevância do modelo e ampliando sua aplicação para equações não lineares de Kirchhoff e Carrier.
Por meio de uma formulação em termos de semigrupos, mostraram que o sistema é regido por um
semigrupo de contrações em um espaço de Hilbert de quatro componentes, incorporando tanto as
variáveis internas quanto o deslocamento da fronteira.

Mais precisamente, Frota e Goldstein (FROTA; GOLDSTEIN, 2000) consideraram um domínio
Ω⊂Rn , aberto, limitado e com fronteira regular, dividida em Γ := Γ0 ∪Γ1, e estudaram o seguinte
sistema: 

ut t −M
(∫
Ω |u|2d x

)
∆u +C |ut |γut = 0; sobre Ω× (0,T ),

f δt t + gδt +hδ=−ρut ; sobre Γ1 × (0,T ),

u = 0; sobre Γ0 × (0,T ),

δt = ∂u

∂ν
; sobre Γ1 × (τ,+∞),

u(x,τ) = u0
τ(x), ut (x,τ) = u1

τ(x); sobre Ω,

obtendo existência e unicidade de solução forte.
No que se refere ao comportamento assintótico, Frigeri (FRIEGERI, 2010) investigou equações

de onda fracamente amortecidas com condições de contorno acústicas, estabelecendo a existência
de conjuntos absorventes e de um atrator global no espaço de fases, com regularidade adicional e,
notavelmente, a existência de atratores exponenciais. O problema estudado por Frigeri (FRIEGERI,
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2010) foi 

ut t −∆u +u + f (u)+ cut = 0; sobre Ω× (0,+∞),

δt t +δ+dδt =−ut ; sobre ∈ Γ× (0,+∞),

δt = ∂u

∂ν
; sobre Γ× (0,+∞),

u(x,0) = u0(x), ut (x,0) = u1(x); x ∈Ω,

δ(ξ,0) = δ0(ξ), δt (ξ,0) = δ1(ξ); ξ ∈ Γ,

com N = 3.
Ma e Souza (MA; SOUZA, 2017) analisaram a versão não-autônoma do problema, na qual forças

externas dependem explicitamente do tempo:

ut t −∆u +u + f (u)+ cut = h; sobre Ω× (0,+∞),

δt t +δ+dδt =−ut ; sobre ∈ Γ× (0,+∞),

δt = ∂u

∂ν
; sobre Γ× (0,+∞),

u(x,0) = u0(x), ut (x,0) = u1(x); x ∈Ω,

δ(ξ,0) = δ0(ξ), δt (ξ,0) = δ1(ξ); ξ ∈ Γ.

(6.1)

demonstrando a existência de um processo de evolução bem posto e de um atrator pullback minimal
no contexto de bacias de atração generalizadas. Essa abordagem permite tratar não linearidades
críticas e analisar a semicontinuidade superior de atratores quando a perturbação não-autônoma
tende a zero, constituindo uma extensão natural das análises de Frigeri (FRIEGERI, 2010).

Por outro lado, Tomás Caraballo e colaboradores (CARABALL et al., 2010) estudaram uma
equação de onda não linear e não-autônoma, com dependência temporal via o coeficiente do
amortecimento friccional:

ut t −∆u + f (u)+β(t )ut = 0,

onde β : R→ (0+∞) é uma função adequada. Mais recentemente, Miranda, Raposo e Freitas
(MIRANDA; RAPOSO; FREITAS, 2025) investigaram a existência de atrator global e exponencial para
um modelo não linear autonômo de ponte suspensa, incluindo amortecimentos do tipo não linear.

Em síntese, as condições de contorno acústicas introduzidas em (BEALE; ROSENCRANS, 1974;
BEALE, 1976) e posteriormente desenvolvidas em (FROTA; GOLDSTEIN, 2000; FRIEGERI, 2010; MA;
SOUZA, 2017) constituem ummodelomatemático rico e desafiador, com aplicações tanto em acústica
teórica quanto na análise qualitativa de equações de evolução não lineares. Inspirado pelo modelo
não-autônomo (6.1) estudado em (MA; SOUZA, 2017), pela dependência temporal introduzida em
(CARABALL et al., 2010) e pelo amortecimento friccional não linear de (MIRANDA; RAPOSO; FREITAS,
2025), o presente capítulo investiga a existência de atrator pullback para uma equação de onda com
fronteira acústica, sujeita a um amortecimento friccional interno não linear e um amortecimento
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fracionário na fronteira, ambos com coeficientes dependentes do tempo:
ut t (x, t )−∆u(x, t )+u(x, t )+ f (u(x, t ))+ c(t )g (ut (x, t )) = h(x, t ); (x, t ) ∈Ω× (τ,+∞), (6.2)

δt t (ξ, t )+δ(ξ, t )+d(t )∂α,η
t δ(ξ, t ) =−(ut )|Γ(ξ, t ); (ξ, t ) ∈ Γ× (τ,+∞), (6.3)

δt (ξ, t ) = ∂u

∂ν
(ξ, t ); (ξ, t ) ∈ Γ× (τ,+∞), (6.4)

u(x,τ) = u0
τ(x), ut (x,τ) = u1

τ(x); x ∈Ω, (6.5)
δ(ξ,τ) = δ0

τ(ξ), δt (ξ,τ) = δ1
τ(ξ); ξ ∈ Γ, (6.6)

ondeΩ⊂RN é um conjunto aberto limitado bem regular com fronteira Γ := ∂Ω, t ≥ τ é a variável de
tempo (com τ ∈R fixo), x ∈Ω e ξ ∈ Γ representam as variáveis espaciais do interior e da fronteira
de Ω respectivamente, ν é o vetor normal unitário em Γ, exterior à Ω, e ∂α,η

t é o operador derivada
fracionária de Caputo exponencialmente modificada de ordem 0 <α< 1 e peso η≥ 0.

Assumiremos as seguintes hipóteses técnicas:
(i) c,d : [τ,+∞) → R são funções de classe C 1, tais que, existem constantes c0,c1,d0,d1 > 0

satisfazendo:
c(t ) ≥ c0, −c1 ≤ c ′(t ) ≤ 0, d(t ) ≥ d0 e −d1 ≤ d ′(t ) ≤ 0; ∀t ≥ τ. (6.7)

(ii) f ∈C 1(R), e existe uma constante C > 0 tal que:
| f ′(u)| ≤C (1+|u|ρ−1); ∀u ∈R, (6.8)

onde ρ = 3, se N ∈ {1,2} e 1 ≤ ρ ≤ N

N −2
, se N ≥ 3.

(iii) Existem constantes m f > 0 e 0 <β< 1 tais que:
F (u) ≥−β

2
u2 −m f e f (u)u −F (u) ≥−β

2
u2 −m f ; ∀u ∈R, (6.9)

onde F (u) = ∫ u
τ f (s) d s.

(iv) g ∈C 1(R) satisfazendo g (0) = 0, e existe constante m > 0 tal que
m ≤ g ′(v); ∀v ∈R (6.10)

(v) h ∈ L2
l oc

(
R;L2(Ω)

) e existe σ0 > 0 (à ser fixado) de modo que∫ 0

−∞
eσ0s∥h(s)∥2

L2(Ω) d s <∞,

e consequentemente: ∫ t

−∞
e−σ0(t−s)∥h(s)∥2

L2(Ω) d s <∞; ∀t ∈R. (6.11)
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−2 −1 1 2 3 4 5

1

2

3

4

c(τ) = 3.0

−c1 ≤ c ′(t ) ≤ 0

Condição para α:
0 <α≤ c1

c0C

Exemplo numérico:
• c0 = 1.0, C = 2.0 ⇒ c(τ) = c0(1+C ) = 3.0

• c1 = 0.5

• α≤ 0.5
2 = 0.25 (escolhemos α= 0.25)

t

c(t )

Função c(t ) com c(t ) ≥ c0 e −c1 ≤ c ′(t ) ≤ 0

c(t ) = c0 + (c0C )e−α(t−τ)

c(τ)− c0 = c0C

c0 = 1.0

C = 2.0

α= 0.25

Aplicando a Proposição 4.4, podemos reformular o problema (6.2)–(6.6)no seguinte sistema ampliado
equivalente:

ut t (x, t )−∆u(x, t )+u(x, t )+ f (u(x, t ))+ c(t )g (ut (x, t )) = h(x, t ); x ∈Ω e t > τ, (6.12)
δt t (ξ, t )+δ(ξ, t )+γ(t )

∫
R

p(y)ϕ(ξ, t , y)d y =−(ut )|Γ(ξ, t ); ξ ∈ Γ, e t > τ, (6.13)
ϕt (ξ, t , y)+ (y2 +η)ϕ(ξ, t , y)−p(y)δt (ξ, t ) = 0; ξ ∈ Γ, t > τ e y ∈R, (6.14)

δt (ξ, t ) = ∂u

∂ν
(ξ, t ); ξ ∈ Γ e t > τ, (6.15)

u(x,τ) = u0
τ(x) e ut (x,τ) = u1

τ(x); x ∈Ω e y ∈R, (6.16)
δ(ξ,τ) = δ0

τ(ξ), δt (ξ,τ) = δ1
τ(ξ) e ϕ(ξ,τ, y) = 0; ξ ∈ Γ e y ∈R, (6.17)

onde p(y) = |y | 2α−1
2 e γ(t ) = d(t )

Γ(α)Γ(1−α)
.

Observe que da hipótese (6.7), segue que γ : [τ,+∞) →R e uma função de classe C 1 tal que:
γ(t ) ≥ γ0 e −γ1 ≤ γ′(t ) ≤ 0; ∀t ≥ τ, (6.18)

onde
γ j =

d j

Γ(α)Γ(1−α)
( j = 0,1).

Este capítulo está dividido em duas seções. Na primeira, utilizamos a teoria de semigrupos de
operadores lineares limitados, juntamente com a teoria dos sistemas CD de Kato, com o intuito de
demonstrar a existência e unicidade de solução forte local para o problema (6.2)–(6.6). Em seguida,
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por meio de estimativas de energia, mostramos que essa solução é, na realidade, globalmente
definida. Além disso, a partir de estimativas envolvendo a norma das derivadas da solução, obtemos
resultados de regularidade que reforçam a robustez da análise.

Na segunda seção, com base na teoria de Processo de Evolução desenvolvida na segunda
seção do Capítulo 3, mostramos a existência de um atrator pullback em um universo de atração
generalizado D. Para tal, demonstramos que o Processo associado ao problema admite uma família
de conjuntos D–pullback absorventes e é D assintoticamente compacto. Isso foi feito com hipóteses
relaxadas para a não linearidade f , quando a dimensão do domínio N ≤ 3, e condições mais restritas
para N > 3.

6.1 Boa-Colocação

Nesta seção, reescreveremos o problema (6.12)–(6.17) na forma de um problema abstrato
de Cauchy não linear e não autônomo. Mostraremos que a coleção (dependente do tempo) de
operadores que descrevem a parte linear possui domínio constante D , e que cada um deles é gerador
infinitesimal de um C0-semigrupo de contrações. Além disso, a condição de contração dessa família
de semigrupos é uniforme no tempo, ou seja, as constantes que controlam o crescimento da norma
são independentes de t .

Em seguida, verificaremos que a aplicação t 7→ A (t), que associa o instante t ao operador
linear correspondente, é Lipschitziana de [τ,+∞) em L (H ,D). Isso nos permitirá concluir que a
tripla ({A (t )}t≥τ,H ,D) constitui um sistema CD de Kato, o qual garante a existência de um processo
de evolução {P (t , s)}t≥s associado a parte linear não homogêneo do problema. Assim, obtemos a
existência de uma única solução branda para esse problema, no sentido da teoria de Kato.

Posteriormente, provaremos que o operador que descreve a parte não linear é Lipschitziano
na variável temporal t ≥ τ, uniformemente em subconjuntos limitados de H , e localmente Lipschitz
na variávelU ∈H . Além disso, como a força externa satisfaz h ∈ L2

l oc (R;L2(Ω)), poderemos aplicar
os resultados de existência e unicidade apresentados na Seção 2. Dessa forma, concluiremos que o
problema (6.12)–(6.17), e portanto também o problema (6.2)–(6.6), admite solução local.

Na sequência, introduziremos a energia total do sistema e, a partir de estimativas apropriadas,
demonstraremos que a norma da solução permanece limitada em função do tempo t . Esse resultado
implica que a solução pode ser estendida para todo t ≥ τ, garantindo a existência de solução
global. Finalmente, utilizando estimativas adicionais sobre a norma da derivada temporal da solução,
obteremos resultados de regularidade, concluindo que a solução global encontrada é, de fato, uma
solução forte.
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6.1.1 Formulação do Processo Evolutivo Linear

Queremos agora reescrever o problema (6.12)–(6.17) como um problema abstrato de Cauchy.
Para isso, introduzimos a função vetorialU = (u,δ, v, z,ϕ), em que ut = v e δt = ∂u

∂ν

∣∣∣
Γ
= z.

Assim, temos:
{

U ′(t )−A (t )U (t )+F (U (t ), t ) =G (t ); t > τ,

U (τ) =Uτ,
(6.19)

ondeUτ = (u0
τ,δ0

τ,u1
τ,δ1

τ,0); para cada t ≥ τ,

A (t ) : D(A (t )) ⊂H →H é o operador linear definido por:

A (t )U =



v

z

∆u −u

−δ−γ(t )
∫
R

p(y)ϕ(y)d y − v|Γ

−(y2 +η)ϕ(y)+p(y)z


; (6.20)

F : [τ,+∞)×H →H e G : [τ,+∞) →H são aplicações definidas por:

F (t ,U ) =



0

0

f (u)+ c(t )g (v)

0

0


e G (t ) =



0

0

h(t )

0

0


(6.21)

Observe que para o problema de Cauchy (6.19) ser equivalente ao nosso problema ampliado
(6.12)–(6.17), basta escolher um espaço de fase H conveniente e um domínio D(A (t)) tempo-
independente. Para tal, considere o seguinte espaço de fase: (H ,〈·, ·〉H ), onde

H = H 1(Ω)×L2(Γ)×L2(Ω)×L2(Γ)×L2(R;L2(Γ))

e
〈U , Ũ 〉H = 〈u, ũ〉H 1(Ω) +〈δ, δ̃〉L2(Γ) +〈v, ṽ〉L2(Ω) +〈z, z̃〉L2(Γ) +〈ϕ, ϕ̃〉L2(R;L2(Γ)).

Observe que para A (t )U ∈H , deve-se ter note que devemos ter u ∈ H 2(Ω), v ∈ H 1(Ω), δ ∈
L2(Γ) e z ∈ L2(Γ). Do Teorema de traço (Teorema 1.63) em H 2(Ω) e em H 1(Ω), tem-se u|Γ ∈ H 3/2(Γ),
∂u

∂ν
∈ H 1/2(Γ) e v|Γ = (ut )|Γ ∈ H 1/2(Γ) respectivamente. Contudo, como z = δt = ∂u

∂ν , segue que
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z ∈ H 1/2(Γ). Assim, considere o domínio constante D(A (t )) = D, para todo t ≥ τ, onde

D :=


(u,δ, v, z,ϕ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u ∈ H 2(Ω),

δ ∈ L2(Γ),

v ∈ H 1(Ω),

z ∈ H 1/2(Γ); z = ∂u
∂ν ,

ϕ ∈ L2(R;L2(Γ)); |y |ϕ,−(y2 +η)ϕ+p(y)z ∈ L2(R;L2(Γ)).


. (6.22)

Observe que D é denso em H . Agora, defina:
〈U , Ũ 〉t = 〈u, ũ〉H 1(Ω) +〈δ, δ̃〉L2(Γ) +〈v, ṽ〉L2(Ω) +〈z, z̃〉L2(Γ) + γ(t )〈ϕ, ϕ̃〉L2(R;L2(Γ))

paraU = (u,δ, v, z,ϕ) e Ũ = (ũ, δ̃, ṽ , z̃,ϕ̃) em H .
Note que, para cada t ≥ τ, (H ,〈· , ·〉t ) é um espaço de Hilbert (munido da norma ∥U∥2

t =
〈U ,U 〉t ) topologicamente equivalente ao espaço (H ,〈·, ·〉H ).
Observação 6.1
Observe que ∥ ·∥t e ∥ ·∥s são normas equivalentes em H , quaisquer que sejam t , s ≥ τ.

6.1.2 Existência de Solução Local

Proposição 6.2
Para cada t ≥ τ, o operador linear A (t ) : D ⊂H →H definido em (6.20) é gerador infinitesimal de
um C0-semigrupo (de operadores lineares limitados) de contrações {St (s)}s≥τ sobre H . Além disso,
existem constantes M ≥ 1 e ω≥ 0 independentes de t , tais que:

∥St (s)∥L (X ) ≤ Meωs ;∀t , s ≥ τ. (6.23)

Demonstração. Inicialmente, mostraremos que para cada t ≥ τ, o operador linearA (t ) é dissipativo
e maximal. SejaU = (u,δ, v, z,ϕ) ∈ D. Então para cada t ≥ τ, temos:

〈AU , U 〉t =
∫
Ω
∇v ·∇u d x +

∫
Ω

vu d x +
∫
Γ

zδdΓ+
∫
Ω
∆uv d x −

∫
Ω

uv d x +d x −
∫
Γ
δ · z dΓ

−γ(t )
∫
R

∫
Γ

p(y)ϕ(y)z dΓd y −
∫
Γ

v|Γz dΓ−γ(t )
∫
R

∫
Γ

(y2 +η)|ϕ(y)|2 dΓd y

+γ(t )
∫
Ω

p(y)ϕ(y)z dΓd y.

Como U ∈ D, segue que v ∈ H 1(Ω), z ∈ H 1/2(Γ) e z = ∂u
∂ν . Assim, utilizando a Fórmula de Green,

temos: ∫
Ω
∆uv d x =−

∫
Ω
∇u ·∇v d x +

∫
Γ

v |Γ
∂u

∂ν
dΓ=−

∫
Ω
∇u ·∇v d x +

∫
Γ

v |Γz dΓ.
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Simplificando os termos semelhantes, obtemos:
〈AU , U 〉t =

∫
Ω

[
∇v ·∇u −∇v ·∇u

]
d x +

∫
Ω

[
v ·u − v ·u

]
d x +

∫
Γ

[zv |Γ − zv |Γ]dΓ∫
Γ

[z ·δ− z ·δ]dΓ+γ(t )
∫
R

∫
Γ

p(y)[zϕ(y)− zϕ(y)]dΓd y

−γ(t )
∫
R

∫
Γ

(y2 +η)|ϕ(y)|2 dΓd y.

Logo:
〈AU , U 〉t = 2i

∫
Ω

Im[∇v∇u]d x +2i
∫
Ω

Im[vu]d x +2i
∫
Ω

Im[(zv |Γ]dΓ+2i
∫
Γ

Im
[

zδ
]

dΓ

+2iγ(t )
∫
R

∫
Γ

p(y)Im
[

zϕ(y)
]

dΓd y −γ(t )
∫
R

∫
Γ

(y2 +η)|ϕ(y)|2 dΓd y.

Finalmente, tomando a parte real, temos:
Re〈AU , U 〉t = −γ(t )

∫
R

∫
Γ

(y2 +η)|ϕ(y)|2 dΓd y

≤ −γ0

∫
R

∫
Γ

(y2 +η)|ϕ(y)|2 dΓd y ≤ 0, (6.24)
onde γ0 = d0

Γ(α)Γ(1−α)
(ver hipóteses em (6.18)).

Portanto, o operador A (t ) é dissipativo para todo t ≥ τ.
Mostraremos agora que para cada t ≥ τ, A (t ) é um operador maximal. Para tal, iremos provar

que, dado W ∈H , existe um vetorU ∈ D(A (0)) tal que (I −A (t ))U =W . Isto equivale a resolução
do seguinte sistema de equações:

u − v = f1, (6.25)
δ− z = f2, (6.26)

v −∆u +u = g1, (6.27)
z +δ+γ(t )

∫
R

p(y)ϕ(y)d y + v|Γ = g2, (6.28)
ϕ(y)+ (y2 +η)ϕ(y)−p(y)z = h(y), (6.29)

onde W = ( f1, f2, g1, g2,h) eU = (u,δ, v, z,ϕ).
De (6.25) e (6.26), segue que:

v = u − f1 e z = δ− f2. (6.30)
Substituindo a segunda equação em (6.30) na equação (6.29), obtemos:

ϕ(y) = h(y)

y2 +η+1
− p(y) f2

y2 +η+1
+ p(y)δ

y2 +η+1
. (6.31)

Aplicando o Lema 4.5 à expressão (6.31), obtemos:
γ(t )

∫
R

p(y)ϕ(y)d y = γ(t )
[
H(α,η,1)+C (α, η,1)(δ− f2)

]
, (6.32)
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onde H(α,η,1) =
∫
Γ
|H(ξ,α,η,1)|2 dΓ.

Aplicando a primeira equação de (6.30) na Equação (6.27), temos:
2u −∆u = f1 + g1, (6.33)

e substituindo a segunda equação de (6.30) e a expressão obtida em (6.32) na Equação (6.28),
obtemos:

[
2+γ(t )C (α, η,1)

]
δ+u|Γ =

[
1+γ(t )C (α, η,1)

]
f2 + g2 + ( f1)|Γ −γ(t )H(α,η,1). (6.34)

Multiplicando a equação (6.33) por ũ ∈ H 1(Ω), integrando sobre x em Ω, e, em seguida,
aplicando a Fórmula de Green e a segunda equação em (6.29), obtém-se:

2
∫
Ω

uũ d x +
∫
Ω
∇u∇ũ d x −

∫
Γ
δũ|Γ dΓ=

∫
Ω

F1(t )ũ d x −
∫
Γ

f2ũ|Γ dΓ, (6.35)
onde F1(t ) = f1 + g1.

Por outro lado, multiplicando a equação (6.34)por δ̃ ∈ L2(Γ), integrando sobre ξ emΓ, obtemos:
C (t )

∫
Γ
δδ̃dΓ+

∫
Γ

u|Γ δ̃dΓ=
∫
Γ

F2(t )δ̃dΓ, (6.36)
onde C (t ) = 2+γ(t )C (α, η,1) e F2(t ) = [1+γ(t )C (α,η,1)] f2 + g2 + ( f1)|Γ −γ(t )H(α,η,1).

Agora, observe que o sistema (6.35)–(6.36) é equivalente ao problema variacional de encontrar
um vetor (u,δ) ∈ H 1(Ω)×L2(Γ) tal que

B((u,δ), (ũ, δ̃)) =L (ũ, δ̃); ∀(ũ, δ̃) ∈ H 1(Ω)×L2(Γ), (6.37)
onde B :

[
H 1(Ω)×L2(Γ)

]× [
H 1(Ω)×L2(Γ)

]−→C é a forma sesquilinear definida por:
B((u,δ), (ũ, δ̃)) = 2

∫
Ω

uũ d x +C (t )
∫
Γ
δδ̃dΓ+

∫
Ω
∇u∇ũ d x +2i

∫
Γ

Im[u|Γ δ̃]dΓ

e L : H 1(Ω)×L2(Γ) −→C é a forma antilinear definida por:
L (ũ, w̃) =

∫
Ω

F1(t )ũ d x +
∫
Γ

F2(t )δ̃dΓ−
∫
Γ

f2ũ|Γ dΓ.

Como feito nos capítulos anteriores, nosso objetivo é aplicar o Teorema de Lax-Milgran. Para
testar a continuidade da forma sesquilinear B, analisamos termo a termo. Sejam (u,δ) ,

(
ũ, δ̃

) ∈
H 1(Ω)×L2(Γ). Note que:∣∣∣∣2∫

Ω
uũ d x

∣∣∣∣≤ 2∥u∥L2(Ω)∥ũ∥L2(Ω) ≤ 2∥u∥H 1(Ω)∥ũ∥H 1(Ω),

∣∣∣∣C (t )
∫
Γ
δδ̃dΓ

∣∣∣∣≤C (t )∥δ∥L2(Γ)∥δ̃∥L2(Γ)
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e ∣∣∣∣∫
Ω
∇u ·∇ũ d x

∣∣∣∣≤ ∥∇u∥L2(Ω)∥∇ũ∥L2(Ω) ≤ ∥u∥H 1(Ω)∥ũ∥H 1(Ω).

Além disso, observe que da continuidade da aplicação traço (ver Teorema 1.63), existe constante
C0 > 0 tal que ∥u|Γ∥L2(Γ) ≤C0∥u∥H 1(Ω). Assim, da Desigualdade de Cauchy-Schwarz segue que:∣∣∣∣2i

∫
Γ

Im[u|Γ δ̃]dΓ

∣∣∣∣≤ 2
∫
Γ
|u|Γ δ̃|dΓ≤ 2∥u|Γ∥L2(Γ)∥δ̃∥L2(Γ) ≤ 2C0∥u∥H 1(Ω)∥δ̃∥L2(Γ).

Somando as estimativas obtidas acima, temos:
|B((u,δ), (ũ, δ̃))| ≤ 3∥u∥H 1(Ω)∥ũ∥H 1(Ω) +C (t )∥δ∥L2(Γ)∥δ̃∥L2(Γ) +2C0∥u∥H 1(Ω)∥δ̃∥L2(Γ)

≤ C̃ (t )∥(u,δ)∥H 1(Ω)×L2(Γ),

onde �C (t ) = max{3,C (t ),2C0} (t fixo).
Agora mostraremos que B é coerciva. Seja (u,δ) ∈ H 1

0 (Ω)×L2(Γ). Observe que:
Re

(
2i

∫
Γ

Im[u|Γδ]d x

)
= 0.

Então
ReB((u,δ), (u,δ)) = 2∥u∥2 +C (t )∥δ∥2

L2(Γ) +∥∇u∥2
L2(Ω) ≥ C̃

(
∥u∥2

H 1(Ω) +∥δ∥2
L2(Γ)

)
= C̃∥(u,δ)∥2

H 1(Ω)×L2(Γ),

onde C̃ = min{1,C } e C = 2+γ0C (α,η,1).
Por fim, dado (ũ, w̃) ∈ H 1

0 (Ω)×H 2
0 (Ω), temos:∣∣∣∣F1(t )

∫
Ω

ũ d x

∣∣∣∣≤ ∥F1(t )∥L2(Ω)∥ũ∥L2(Ω),

∣∣∣∣∫
Γ

F2(t )δ̃d x

∣∣∣∣≤ ∥F2(t )∥L2(Γ)∥δ̃∥L2(Γ).

e ∣∣∣∣∫
Γ

f2ũ|Γ d x

∣∣∣∣≤ ∥ f2∥L2(Γ)∥ũ|Γ∥L2(Γ) ≤C0∥ f2∥L2(Γ)∥ũ∥H 1(Ω),

onde C0 > 0 é a constante da continuidade da aplicação traço em H 1(Ω).
Somando as estimativas obtidas acima, temos:

|L (ũ, δ̃)| ≤ (∥F1(t )∥L2(Ω) +C0∥ f2∥L2(Γ)

)∥ũ∥H 1(Ω) +∥F2(t )∥L2(Γ)∥δ̃∥L2(Γ) ≤ �K (t )∥(ũ, δ̃)∥H 1(Ω)×L2(Γ),

onde �K (t ) = max
{∥F1(t )∥L2(Ω) +C0∥ f2∥L2(Γ),∥F2(t )∥L2(Γ)

}.
Portanto, do Teorema de Lax-Milgram, existe uma única solução (u,δ) ∈ H 1(Ω)×L2(Γ) para o

problema variacional (6.37).
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Como f1 ∈ H 1(Ω) e f2 ∈ L2(Γ), definindo v e z como dados em (6.30), tem-se que v ∈ H 1(Ω)

e z ∈ L2(Γ). Além disso, como h ∈ L2(R; L2(Γ)), definindo ϕ(y) pela expressão dada em (6.31), é
evidente que |y |ϕ ∈ L2(R; L2(Γ)) e −(

y2 +η)
ϕ+p(y)z ∈ L2(R; L2(Ω)).

Agora, fazendo δ̃≡ 0 e ũ|Γ ≡ 0 no problema variacional (6.37) e utilizando a fórmula de Green,
obtemos:

2
∫
Ω

uũ d x −
∫
Ω
∆u · ũ d x =

∫
Ω

F1(t )ũ d x; ∀ũ ∈ H 1(Ω),

e portanto:
−∆u +2u = F1(t ). (6.38)

Como f1 ∈ H 1(Ω) e g1 ∈ L2(Ω), aplicando a Teoria de regularidade elíptica na Equação (6.38), obtemos
que u ∈ H 2(Ω). Assim, do Teorema de traço em H 2(Ω), segue que u|Γ ∈ H 3/2(Γ) e ∂u

∂ν ∈ H 1/2(Γ).
Por outro lado, fazendo ũ ≡ 0 em Ω∪Γ no problema variacional (6.38), obtemos (6.36); para

toda função δ̃ ∈ L2(Γ). Portanto
C2(t )δ+u|Γ = F2(t ). (6.39)

Note que f2, g2 ∈ L2(Γ) e u|Γ ∈ H 3/2(Γ). Como f1 ∈ H 1(Ω), do Teorema do traço, segue que ( f1)|Γ ∈
L2(Γ). Assim da Equação (6.39), segue que δ ∈ L2(Γ).

Finalmente, utilizando a fórmula de Green no problema variacional (6.37), fazendo ũ ≡ 0 em Ω

e δ̃≡ 0 em Γ, obtemos:∫
Γ

∂u

∂ν
ũ|Γ dΓ−

∫
Γ
δũ|Γ dΓ=−

∫
Γ

f2ũ|Γ dΓ; ∀ũ ∈ H 1(Ω).

Então
∂u

∂ν
−δ=− f2. (6.40)

Combinando a segunda equação em (6.30) e equação (6.40), obtemos: z = ∂u
∂ν

∣∣∣
Γ
. Assim, z ∈ H 1/2(Γ).

Portanto U = (u,δ, v, z,ϕ) ∈ D, e é solução do sistema (6.25)–(6.29). Isto é, satisfaz (I −
A (t ))U =W . Logo, A (t ) é maximal, qualquer que seja t ≥ τ.

Do do Teorema de Lummer-Phillips (Teorema 2.31) segue que, para cada t ≥ τ, o operador
A (t ) é gerador infinitesimal de umC0–semigrupo de contrações {St (s)}s≥0 sobre o espaço de Hilbert
H . Assim, para cada t ≥ τ, existe uma constante ω(t ) ≥ 0 tal que

∥St (s)∥L (X ) ≤ eω(t )s ;∀s ≥ τ.

Para finalizar a demonstração, precisamos mostrar que existe uma constante ω≥ 0 indepen-
dente de t satisfazendo (6.23). Como ∥ ·∥t e ∥ ·∥s são equivalentes, qualquer que sejam t , s ≥ τ (ver
Observação 6.1), as Observações 2.42 e 3.34 garantem que para obter (6.23), é suficiente mostrar
que, existe uma constante c > 0 tal que

∥U∥t

∥U∥s
≤ ec|t−s|; ∀t , s ≥ τ e ∀U ∈H − {0}. (6.41)
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Dado c > 0 qualquer, observe que ec|t−s| ≥ 1 para todo t , s ≥ τ. Além disso, como γ′(t ) ≤ 0 para
todo t ≥ τ (ver hipótese (6.18)). Assim, para todo t ≥ s ≥ τ, do Teorema do valor médio, existem
r ∈ (t , s) tais que:

γ(t ) = γ(s)+γ′(r )(t − s) ≤ γ(s) ≤ ec|t−s|γ(s).

Assim, dadoU = (u,δ, v, z,ϕ) ∈H , obtemos:
∥U∥2

t −∥U∥2
s ec|t−s| = (

1−ec|t−s|)(∥u∥2
H 1(Ω) +∥v∥2

L2(Ω) +∥δ∥2
L2(Γ) ++∥z∥2

L2(Γ)

)
+ (
γ(t )−γ(s)ec|t−s|)∥ϕ∥2

L2(R;L2(Γ)) ≤ 0,

e portanto, obtemos (6.41).
Proposição 6.3

d

d t
A (t ) ∈ L∞

∗ (τ,+∞;L (H ,D)) , (6.42)
onde A (t ) : D ⊂H →H é o operador linear definido por (6.20).
Demonstração. Note que:

d

d t
A (t )U =



0

0

0

−γ′(t )
∫
R

p(y)ϕ(y)d y

0


;

Então, dadoU = (u,δ, v, z,ϕ) ∈ D e t ≥ τ, tem-se∥∥∥∥ d

d t
A (t )U

∥∥∥∥2

=
∥∥∥∥γ′(t )

∫
R

p(y)ϕ(y)d y

∥∥∥∥2

L2(Γ)
= |γ′(t )|2 ·

∥∥∥∥∫
R

p(y)ϕ(y)d y

∥∥∥∥2

L2(Γ)
. (6.43)

Como −γ1 ≤ γ′(t ) ≤ 0 < γ1; para todo t ≥ τ (ver hipótese (6.18)), temos que
|γ′(t )| ≤ γ1; ∀t ≥ τ. (6.44)

Por outro lado,∥∥∥∥∫
R

p(y)ϕ(y)d y

∥∥∥∥2

L2(Γ)
≤√

C (α,η)
∥∥(y2 +η)1/2ϕ

∥∥2
L2(R;L2(Γ)) . (6.45)

Definindo ∥U∥2
D := ∥U∥2

H
+∥A(t)U∥2

H
, aplicando as estimativas (6.44) e (6.45) em (6.43),

obtemos:∥∥∥∥ d

d t
A (t )U

∥∥∥∥2

= |γ′(t )|2 ·
∥∥∥∥∫

R
p(y)ϕ(y)d y

∥∥∥∥2

L2(Γ)
≤ (γ1)2

√
C (α,η)

∥∥(y2 +η)1/2ϕ
∥∥2

L2(R;L2(Γ))

≤ C∥U∥2
D ,
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onde C = max{(γ1)2,
√

C (α,η)}.
Portanto d

d t
A (t ) ∈L (H ,D) para todo t ≥ τ, e como a constante C não depende de t , temos

(6.42).
Proposição 6.4
A aplicação F : [τ,+∞)×H →H definida em (6.21) é Lipschitziana em t ≥ τ, uniformemente em
subconjuntos limitados de H , e localmente Lipschitz sobre a variávelU ∈H .
Demonstração. Da hipótese (6.8) e do Teorema do Valor Médio, temos que:

| f (u)− f (ũ)| ≤ | f ′(u0)||u − ũ| ≤C (1+|u0|ρ−1)|u − ũ|; ∀u, ũ ∈R, (6.46)
onde ρ = 3, se N ∈ {1,2}, 1 ≤ ρ ≤ N

N −2
, se N ≥ 3 e u0 =λ0u + (1−λ0)ũ, com 0 <λ0 < 1.

Por outro lado, como g ∈C 1(R) (ver hipótese (6.10), existem constantes L,R > 0 tais que
|g (v)− g (ṽ)| ≤ L|v − ṽ |; ∀|v | < R e |ṽ | < R. (6.47)

Além disso, utilizando as hipóteses (6.7) e (6.10), obtemos:
|c(t )− c(s)| · |g (v)| = |c(t )− c(s)| · |g (v)− g (0)|

≤ c1L|t − s| · |v −0| < c1LR|t − s|; ∀t ≥ s ≥ τ e ∀|v | < R, (6.48)
SejamU = (u,δ, v, z,ϕ,φ), Ũ = (ũ, δ̃, ṽ , z̃,ϕ̃, φ̃) pontos na bola Bp

R̃
(0) ⊂H , onde R̃ = R2 ·med(Ω), e

u0 =λ0u+(1−λ0)ũ ∈ H 1(Ω), com 0 <λ0 < 1. Das imersões de Sobolev, temos que H 1(Ω) ,→ L∞(Ω),
se N = 1; H 1(Ω) ,→ L8(Ω) ,→ L4(Ω), se N = 2; e H 1(Ω) ,→ L2ρ(Ω) ,→ Lρ+1(Ω), para N ≥ 3 (Ver
Teorema 1.25 e Corolário 1.26). Então, para N = 1, temos que ∥u0∥L∞(Ω) ≤ C0∥u0∥H 1(Ω) < C0

√
R̃,

com C0 > 0. Assim, de (6.46), segue que:
∥ f (u)− f (ũ)∥2

L2(Ω) ≤C 2
∫
Ω

(1+|u0|2)2|u − ũ|2 d x

≤C 2 (
1+∥u0∥2

L∞(Ω)

)2 ∥u − ũ∥2
L2(Ω)

<C 2 [
1+2(C0)2R̃ + (C0)4(R̃)2]∥u − ũ∥2

H 1(Ω), (6.49)
uma vez que ∥u − ũ∥2

L2(Ω)
≤ ∥u − ũ∥2

H 1(Ω)
.

Para N = 2, temos ∥u∥L8(Ω) ≤ C0∥u∥H 1(Ω) < C0

√
R̃ e ∥u∥L4(Ω) ≤ C1∥u∥H 1(Ω) < C1

√
R̃, para

todo u ∈ H 1(Ω). Então, de (6.46), segue que:
∥ f (u)− f (ũ)∥2

L2(Ω) ≤C 2
∫
Ω

(1+|u0|2)2|u − ũ|2 d x

=C 2
∫
Ω
|u − ũ|2 d x +2C 2

∫
Ω
|u0|2|u − ũ|2 d x +C 2

∫
Ω
|u0|4|u − ũ|2 d x

≤C 2∥u − ũ∥2
L2(Ω) +2C 2∥u0∥2

L4(Ω)∥u − ũ∥2
L4(Ω) +C 2∥u0∥4

L8(Ω)∥u − ũ∥2
L4(Ω)

≤C 2∥u − ũ∥2
H 1(Ω) +2C 2(C1)4∥u0∥2

H 1(Ω)∥u − ũ∥2
H 1(Ω) +C 2(C1C0)2∥u0∥4

H 1(Ω)∥u − ũ∥2
H 1(Ω)

<C 2 [
1+2(C1)4R̃ + (C1C0)2(R̃)2]∥u − ũ∥2

H 1(Ω). (6.50)
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Para N ≥ 3, temos ∥u∥L2ρ(Ω) ≤C0∥u∥H 1(Ω) <C0

√
R̃ e ∥u∥Lρ+1(Ω) ≤C1∥u∥H 1(Ω) <C1

√
R̃, para

todo u ∈ H 1(Ω). Como
ρ−1

ρ+1
+ 2

ρ+1
= 1 e 2(ρ−1)

2ρ
+ 2

2ρ
= 1,

aplicando de (6.46) e da Desigualdade de Hölder (Proposição A.5), segue que:
∥ f (u)− f (ũ)∥2

L2(Ω) ≤C 2
∫
Ω

(1+|u0|ρ−1)2|u − ũ|2 d x

=C 2
∫
Ω
|u − ũ|2 d x +2C 2

∫
Ω
|u0|ρ−1|u − ũ|2 d x +C 2

∫
Ω
|u0|2(ρ−1)|u − ũ|2 d x

≤C 2∥u − ũ∥2
L2(Ω) +2C 2∥u0∥ρ−1

Lρ+1(Ω)
∥u − ũ∥2

Lρ+1(Ω) +C 2∥u0∥2(ρ−1)
L2ρ(Ω)

∥u − ũ∥2
L2ρ(Ω)

≤C 2∥u − ũ∥2
H 1(Ω) +2C 2(C1)ρ+1∥u0∥ρ−1

H 1(Ω)
∥u − ũ∥2

H 1(Ω) +C 2(C0)2ρ∥u0∥2(ρ−1)
H 1(Ω)

∥u − ũ∥2
H 1(Ω)

<C 2 [
1+2(C1)ρ+1(R̃)(ρ−1)/2 + (C0)2ρ(R̃)ρ−1]∥u − ũ∥2

H 1(Ω). (6.51)
Por outro lado, de (6.47), segue que:

∥g (v)− g (ṽ)∥2
L2(Ω) =

∫
Ω
|g (v)− g (ṽ)|2 d x ≤ L2

∫
Ω
|v − ṽ |2 d x = L2∥v − ṽ∥2

L2(Ω). (6.52)
Portanto, das estimativas (6.49)–(6.52), obtemos:

∥F (t ,U )−F (t ,Ũ )∥2
H = ∥ f (u)+ c(t )g (v)− f (ũ)− c(t )g (ṽ)∥2

L2(Ω)

≤ 2∥ f (u)− f (ũ)∥2
L2(Ω) +2c[(τ)]2∥g (v)− g (ṽ)∥2

L2(Ω)

≤ L̃
(
∥u − ũ∥2

H 1(Ω) +∥v − ṽ∥2
L2(Ω)

)
≤ L̃∥U −Ũ∥2

H ; ∀U ,Ũ ∈ Bp
R̃

(0) ⊂H e ∀t ≥ τ,

onde L̃ = max{K ,2[L · c(τ)]2} e
L̃ = 2C 2 [

1+2(C0)2R̃ + (C0)4(R̃)2] , se N = 1;

L̃ = 2C 2 [
1+2(C1)4R̃ + (C1C0)2(R̃)2] , se N = 2;

L̃ = 2C 2 [
1+2(C1)ρ+1(R̃)(ρ−1)/2 + (C0)2ρ(R̃)ρ−1] , se N ≥ 3.

Finalmente, dado t ≥ s ≥ τ e Ũ ∈ Bp
R̃

(0) ⊂H , de (6.48), segue que:
∥F (t ,U )−F (s,U )∥2

H = |c(t )− c(s)|2∥g (v)∥2
L2(Ω) = |c(t )− c(s)|2

∫
Ω
|g (v)|2 d x

≤ (C1)2L2R̃|t − s|2.

Teorema 6.5 (Existência de Solução Local)
Seja τ ∈R. SeUτ = (u0

τ,δ0
τ,u1

τ,δ1
τ,0) ∈H , então existe τ< tmax ≤+∞, tal que o Problema de Cauchy

não autônomo (6.19) admite uma única solução branda:
U ∈C 0 ([0, tmax); H ) , (6.53)
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dada por:
U (t ) = P (t ,τ)Uτ+

∫ t

τ
P (t , s) [G (s)−F (s,U (s))] d s; ∀t ∈ [τ, tmax), (6.54)

onde {P (t , s)}t≥s é o processo de evolução gerado pelo sistema CD de Kato ({A (t )}t≥τ ,H ,D).
SeUτ ∈ D e g ∈ H 1

loc (τ,+∞;L2(Ω)), então a solução obtida é uma solução forte.
Demonstração. Observe que, a terna ({A (t )}t≥τ ,H ,D) forma um sistema CD de Kato (ver Observa-
ção 3.34). De fato, Já vimos que D está imerso e é denso em H e que D(A(t )) = D , para todo t ≥ τ,
e portanto a condição (i) para ser sistema CD de Kato é satisfeita por ({A (t )}t≥τ ,H ,D). Os itens (ii)
e (iii) seguem das Proposição 6.2 e Proposição 6.3 respectivamente.

Por outro lado, da Proposição 6.4 segue que a aplicação F : [τ,+∞)×H →H definida em
(6.21) é Lipschitziana em t ≥ τ, uniformemente em subconjuntos limitados de H , e localmente
Lipschitz sobre a variável U ∈ H . Então, como h ∈ L2

loc

(
R;L2(Ω)

) ⊂ L1
loc

(
R;L2(Ω)

) (ver hipótese
(6.11)), do Corolário 2.27 e da Observação 3.34 segue que existe τ< tmax ≤+∞ e uma solução branda
U : [τ, tmax) →H do problema (6.18), satisfazendo (6.53) e (6.54).

Além disso, se Uτ ∈ D e h ∈ H 1
loc (τ,+∞;L2(Ω)) ⊂W 1,1

loc (τ,+∞;L2(Ω)), do Corolário 2.27 e da
Observação 3.34 segue que a solução obtida é uma solução forte.

6.1.3 Existência e Unicidade de Solução Global

Proposição 6.6
A energia associada ao problema (6.12)–(6.17) é dada por:

E(t ) = 1

2
∥u(t )∥2

H 1(Ω) +
1

2
∥δ(t )∥2

L2(Γ) +
1

2
∥ut (t )∥2

L2(Ω) +
1

2
∥δt∥2

L2(Γ) +
γ(t )

2
∥ϕ∥2

L2(R;L2(Γ))

+
∫
Ω

F (u(x, t ))d x, (6.55)
e satisfaz:

d

d t
E(t )−〈h(t ),ut (t )〉L2(Ω) =−c(t )〈g (ut (t )),ut (t )〉L2(Ω) −γ(t )

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y

+ γ′(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ)) ≤−mc0∥ut (t )∥2
L2(Ω) −γ0

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y ≤ 0, (6.56)

onde F (u) =
∫ u

τ
f (s)d s e γ0 = d0

Γ(α)Γ(1−α)
.

Demonstração. Multiplicando a equação (6.12)por ut , integrando em relação a x sobreΩ, utilizando
a fórmula de Green, obtemos:

1

2

d

d t

∫
Ω
|ut (t )|2 d x + 1

2

d

d t

∫
Ω
|∇u(t )|2 d x −

∫
Γ

u(t )|Γ
∂u(t )

∂ν
dΓ+ 1

2

d

d t

∫
Ω
|u(t )|2 d x

+
∫
Ω

f (u(t ))ut (t )d x + c(t )
∫
Ω

g (ut (t ))ut (t )d x =
∫
Ω

h(t )ut (t )d x.
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Como ∥u(t )∥2
H 1(Ω)

= ∥u(t )∥2
L2(Ω)

+∥∇u(t )∥2
L2(Ω)

, d

d t
F (u(t )) = f (u(t ))ut (t ) e δt (t ) = ∂u(t )

∂ν

∣∣∣
Γ
(equação

(6.15)), obtemos:
1

2

d

d t
∥ut (t )∥2

L2(Ω) +
1

2

d

d t
∥u(t )∥2

H 1(Ω) +
d

d t

∫
Ω

F (u(t ))d x −
∫
Γ

u(t )|Γδt (t )dΓ

+ c(t )
∫
Ω

g (ut (t ))ut (t )d x =
∫
Ω

h(t )ut (t )d x. (6.57)
Agora, multiplicando a equação (6.13) por δt , integrando em relação a x sobre Γ, obtemos:

1

2

d

d t
∥δt (t )∥2

L2(Γ) +
1

2

d

d t
∥δ(t )∥2

L2(Γ) +γ(t )
∫
Γ

∫
R

p(y)ϕ(t , y)δt (t )d y dΓ=−
∫
Γ

u(t )|Γδt (t )dΓ. (6.58)

Substituindo a equação (6.58) na equação (6.57), obtemos:
1

2

d

d t
∥u(t )∥2

H 1(Ω) +
1

2

d

d t
∥δ(t )∥2

L2(Γ) +
1

2

d

d t
∥ut (t )∥2

L2(Ω) +
1

2

d

d t
∥δt (t )∥2

L2(Γ) +
d

d t

∫
Ω

F (u(t ))d x

+ c(t )
∫
Ω

g (ut (t ))ut (t )d x +γ(t )
∫
Γ

∫
R

p(y)ϕ(t , y)δt (t )d y dΓ=
∫
Ω

h(t )ut (t )d x. (6.59)

Por outro lado, ao multiplicar a Equação (6.14) por γ(t)ϕ(t), e, em seguida, integrar com
respeito a variável y sobre R, obtemos:

γ(t )

2

d

d t

∫
R
|ϕ(t , y)|2 d y +γ(t )

∫
R

(
y2 +η) |ϕ(t , y)|2 d y = γ(t )δt (t )

∫
R

p(y)ϕ(t , y)d y,

e como
d

d t
γ(t )|ϕ(t )|2 = γ(t )

d

d t
|ϕ(t )|2 +γ′(t )|ϕ(t )|2,

obtemos:
d

d t

γ(t )

2

∫
R
|ϕ(t , y)|2 d y − γ′(t )

2

∫
R
|ϕ(t , y)|2 d y +γ(t )

∫
R

(
y2 +η) |ϕ(t , y)|2 d y

= γ(t )δt (t )
∫
R

p(y)ϕ(t , y)d y. (6.60)
Substituindo à expressão (6.60) em (6.59), obtemos:

1

2

d

d t
∥u(t )∥2

H 1(Ω) +
1

2

d

d t
∥δ(t )∥2

L2(Γ) +
1

2

d

d t
∥ut (t )∥2

L2(Ω) +
1

2

d

d t
∥δt (t )∥2

L2(Γ) +
d

d t

γ(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ))

+ d

d t

∫
Ω

F (u(t ))d x + c(t )
∫
Ω

g (ut (t ))ut (t )d x +γ(t )
∫
R

(
y2 +η)∥ϕ(t , y)∥2

L2(Γ) d y

=
∫
Ω

h(t )ut (t )d x + γ′(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ)). (6.61)

Observe que, das hipóteses (6.7) e (6.18), temos −c(t ) ≤−c0, −γ(t ) ≤ γ0 e γ′(t ) ≤ 0, para todo
t ≥ τ. Além disso, da hipótese (6.10) e do Teorema Valor Médio, segue que:

g (ut (t ))ut (t ) = [
g (ut (t ))− g (0)

]
ut (t ) ≥ m|ut (t )|2.
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Assim, de (6.61), obtemos:
1

2

d

d t
∥u(t )∥2

H 1(Ω) +
1

2

d

d t
∥δ(t )∥2

L2(Γ) +
1

2

d

d t
∥ut (t )∥2

L2(Ω) +
1

2

d

d t
∥δt (t )∥2

L2(Γ) +
d

d t

γ(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ))

+ d

d t

∫
Ω

F (u(t ))d x −〈h(t ),ut (t )〉L2(Ω)

= −c(t )〈g (ut (t )),ut (t )〉L2(Ω) −γ(t )+
∫
R

(
y2 +η)∥ϕ(t , y)∥2

L2(Γ) d y + γ′(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ))

≤ −mc0∥ut (t )∥2
L2(Ω) −γ0

∫
R

(
y2 +η)∥ϕ(t , y)∥2

L2(Γ) d y

Teorema 6.7 (Existência e Unicidade de Solução Global)
Se u0

τ ∈ H 1(Ω), δ0
τ ∈ L2(Γ), u1

τ ∈ L2(Ω) e δ1
τ ∈ L2(Γ), o problema de valor inicial e de contorno (6.2)–

(6.6), admite uma única solução branda (u,δ) com a seguinte regularidade:u ∈C 0
(
[τ,+∞); H 1(Ω)

)∩C 1
(
[τ,+∞);L2(Ω)

)
δ ∈C 0

(
[τ,+∞);L2(Γ)

)∩C 1
(
[τ,+∞);L2(Γ)

)
.

(6.62)

Se u0
τ ∈ H 2(Ω), δ0

τ ∈ L2(Γ), u1
τ ∈ H 1(Ω), δ1

τ = ∂u0
τ

∂ν
= 0 e h ∈ H 1

loc (τ,+∞;L2(Ω)), então o pro-
blema de valor inicial e de contorno (6.2)–(6.6) admite uma única solução forte (u,δ) com a seguinte
regularidade global: u ∈ L∞ (

τ,+∞; H 1(Ω)
)∩W 1,∞ (

τ,+∞;L2(Ω)
)

δ ∈ L∞ (
τ,+∞;L2(Γ)

)∩W 1,∞ (
τ,+∞;L2(Γ)

)
.

(6.63)

se u0
τ ∈ H 2(Ω), δ0

τ ∈ H 1/2(Γ), u1
τ ∈ H 1(Ω), δ1

τ = ∂u0
τ

∂ν
= 0, h ∈ H 1

l oc (τ,+∞;L2(Ω)) e g : R→ R é
Lipschitziana, então, além das regularidades globais em (6.63), obtemos as seguinte regularidade
local: u ∈ L∞

loc

(
τ,+∞; H 2(Ω)

)∩W 1,∞
loc

(
τ,+∞; H 1(Ω)

)∩W 2,∞
loc

(
τ,+∞;L2(Ω)

)
δ ∈ L∞

loc

(
0,+∞; H 1/2(Γ)

)∩W 1,∞
loc

(
τ,+∞; H 1/2(Γ)

)∩W 2,∞
loc

(
τ,+∞;L2(Γ)

) (6.64)

Demonstração. Sejamu0
τ ∈ H 1(Ω), δ0

τ ∈ L2(Γ),u1
τ ∈ L2(Ω) eδ1

τ ∈ L2(Γ). EntãoUτ = (u0
τ,δ0

τ,u1
τ,δ1

τ,0) ∈
H . Assim, do Teorema 6.5, existe 0 < tmax ≤ +∞ e uma função U ∈ C 0 ([0, tmax;H )]) dada por
U (t ) = (u(t ),δ(t ), v(t ), z(t ),ϕ(t )), que é uma solução branda para problema (6.19) em [τ, tmax) satis-
fazendo (6.53), e portanto uma solução branda local para o problema (6.12)–(6.17). Em termos das
coordenadas, temos: u ∈C 0

(
[0, tmax); H 1(Ω)

)∩C 1
(
[0, tmax);L2(Ω)

)
δ ∈C 0

(
[0, tmax);L2(Γ)

)∩C 1
(
[0, tmax);L2(Γ)

)
.

Se u0
τ ∈ H 2(Ω), δ0

τ ∈ L2(Γ), u1
τ ∈ H 1(Ω) e δ1

τ = ∂u0
τ

∂ν
= 0 temos Uτ = (u0

τ,δ0
τ,u1

τ,δ1
τ,0) ∈ D, onde

A (t) : D ⊂ H → H é o operador linear definido em (6.19). Supondo h ∈ H 1
loc (τ,+∞;L2(Ω)), do



6.1. Boa-Colocação 185

Teorema 6.5, temos que U : [τ, tmax) → H ; U (t) = (u(t),δ(t), v(t), z(t),ϕ(t)) é uma solução forte
local para problema (6.19), e portanto uma solução forte local para o problema (6.12)–(6.17) (ver
definições 2.13 e 2.17). Então:

(i) U é diferenciável em quase todo ponto t ∈ [τ, tmax);
(ii) Ut ∈ L1 (τ, tmax;H );
(iii) U (τ) =Uτ = (u0

τ,δ0
τ,u1

τ,δ1
τ,0) e Ut (t)−A (t)U (t)+F (t ,U (t)) = G (t), em quase todo ponto

t ∈ [τ,+tmax).
Em termos das componentes, temos que: u, ut , δ e δt são diferenciáveis em quase todo ponto

t ∈ [τ, tmax). Além disso: 

ut ∈ L1
(
τ, tmax; H 1(Ω)

)
δt ∈ L1

(
τ, tmax; L2(Γ)

)
ut t ∈ L1

(
τ, tmax; L2(Ω)

)
δt t ∈ L1

(
τ, tmax; L2(Γ)

)
Considere a energia E : [0, tmax) →R associada a essa solução. Da Proposição 6.6 temos que

E(t) é dado por (6.55), e satisfaz (6.56). Portanto, dado U (t) = (u(t),δ(t),ut (t),δt (t),ϕ(t)) ∈ D,
temos:

d

d t
E(t ) ≤ C (ε)∥h(t )∥2

L2(Ω) +ε∥ut (t )∥2
L2(Ω) −mc0∥ut (t )∥2

L2(Ω) −γ0

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y

= C (ε)∥h(t )∥2
L2(Ω) + (ε−mc0)∥ut∥2

L2(Ω) −
γ0

2

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Ω) d y

≤ C (ε)∥h(t )∥2
L2(Ω), (6.65)

onde 0 < ε< mc0.
Agora, integrando a expressão (6.65) de τ a t , obtemos:

E(t ) ≤ E(τ)+C (ε)
∫ t

τ
∥h(s)∥2

L2(Ω) d s,

e portanto, de (6.55), obtemos:
1

2
∥U (t )∥2

H +
∫
Ω

F (u(x, t ))d x ≤ 1

2
∥Uτ∥2

H +
∫
Ω

F (u0
τ(x))d x +C (ε)

∫ t

τ
∥h(s)∥2

L2(Ω) d s; (6.66)
para todo τ≤ t < tmax, ondeUτ = (u0

τ,δ0
τ,u1

τ,δ1
τ,0).

Da hipótese (6.8) segue que:
| f (u)| ≤ | f (τ)|+

∫ u

τ
f ′(s)d s ≤ | f (τ)|+C

∫ u

τ
(1+ sρ−1)d s ≤C0(1+|u|ρ) (C0 > 0),

e portanto
F (u) ≤

∫ u

τ
| f (u)| ≤C0

∫ u

τ
(1+|s|ρ)d s ≤C1(1+|u|ρ+1) (C1 > 0). (6.67)
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Assim, de (6.67), da hipótese (6.9) e da imersão H 1(Ω) ,→ Lρ+1(Ω), temos que:
−β

2
∥u∥2

H 1(Ω) −m f ·med(Ω) ≤
∫
Ω

F (u(x))d x ≤ C̃1

(
med(Ω)+∥u∥ρ+1

H 1(Ω)

)
; ∀u ∈ H 1(Ω). (6.68)

Finalmente, de (6.66) e (6.68), temos que:
1−β

2
∥U (t )∥2

H ≤ 1

2
∥U (t )∥2

H − β

2
∥u∥2

H 1(Ω)

≤−
∫
Ω

F (u(x, t )) d x − β

2
∥u∥2

H 1(Ω) +
1

2
∥Uτ∥2

H +
∫
Ω

F (u0
τ(x))d x +C (ε)

∫ t

τ
∥h(s)∥2

L2(Ω) d s

≤ m f ·med(Ω)+ 1

2
∥Uτ∥2

H + C̃1

(
med(Ω)+∥u0

τ∥ρ+1
H 1(Ω)

)
+C (ε)

∫ t

τ
∥h(s)∥2

L2(Ω) d s,

e portanto:
∥U (t )∥2

H ≤C (Uτ)+ C̃ (ε)
∫ t

τ
∥h(s)∥2

L2(Ω) d s;∀τ≤ t < tmax, (6.69)
onde

C (Uτ) = 2m f ·med(Ω)

1−β + 1

1−β∥Uτ∥2
H + 2C̃1

1−β
(
med(Ω)+∥u0

τ∥ρ+1
H 1(Ω)

) e C̃ (ε) = 2C (ε)

1−β .

Por outro lado, da hipótese (6.11) segue que:∫ t

−∞
eσ0s∥h(s)∥2

L2(Ω) d s <∞; ∀t ∈R.

Então
C̃ (ε)

∫ t

τ
∥h(s)∥2

L2(Ω) d s = C̃ (ε)
∫ t

τ
eσ0(s−s)∥h(s)∥2

L2(Ω) d s

≤ C̃ (ε) sup
s∈(τ,t )

{
e−σ0s}∫ t

−∞
eσ0s∥h(s)∥2

L2(Ω) d s

≤ C̃ (ε)C (τ)
∫ t

−∞
eσ0s∥h(s)∥2

L2(Ω) d s <∞; ∀t ≥ τ, (6.70)
onde C (τ) = sup

s∈(τ,t )

{
e−σ0s}= e−σ0τ.

Finalmente, de (6.69) e (6.70), obtemos:
∥U (t )∥2

H ≤C (Uτ)+ C̃ (ε)
∫ t

τ
∥h(s)∥2

L2(Ω) d s ≤C (Uτ,τ) ; ∀τ≤ t < tmax, (6.71)
e portanto

lim
t→tmax

∥U (t )∥2
H ≤C (Uτ,τ) <∞. (6.72)

Assim, o limite (6.72), o corolário 2.27 e a Observação 3.34, garantem que tmax =+∞.
Em resumo, dadas as funções u0

τ ∈ H 1(Ω), δ0
τ ∈ L2(Γ) e u1

τ,δ1
τ ∈ L2(Ω), existe uma única solução

branda (u,δ) satisfazendo (6.62). Agora, Se u0
τ ∈ H 2(Ω), δ0

τ ∈ L2(Γ), u1
τ ∈ H 1(Ω), δ1

τ = ∂u0
τ

∂ν
= 0 e

h ∈ H 1
loc (τ,+∞;L2(Ω)), então (u,δ) é uma solução forte. Portanto, as funções u, ut , δ, δt são

diferenciáveis em quase todo ponto t ≥ τ, e

ut ∈ L1
(
τ,+∞; H 1(Ω)

)
δt ∈ L1

(
τ,+∞; L2(Γ)

)
ut t ∈ L1

(
τ,+∞; L2(Ω)

)
δt t ∈ L1

(
τ,+∞; L2(Γ)

)
.

(6.73)
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Além disso, a estimativa (6.71) combinada com (6.73), garantem as seguintes regularidade:

u ∈ L∞ (
τ,+∞; H 1(Ω)

)
δ ∈ L∞ (

τ,+∞; L2(Ω)
)

ut ∈ L∞ (
τ,+∞; L2(Ω)

)∩L1
(
τ,+∞; H 1(Ω)

)
δt ∈ L∞ (

τ,+∞; L2(Γ)
)∩L1

(
τ,+∞; L2(Γ)

)
ut t ∈ L1

(
τ,+∞; L2(Ω)

)
δt t ∈ L1

(
τ,+∞; L2(Γ)

)
,

(6.74)

o que prova (6.63).
Para obter uma melhor regularidade, derive as equações do sistema (6.12)–(6.14) em relação a

variável t . Uma vez feito, obtemos:
ut t t (t )−∆ut (t )+ut (t )+ f ′(u(t ))ut (t )+ c(t )g ′(ut (t ))ut t (t )+ c ′(t )g (ut (t )) = ht , (6.75)

δt t t (t )+δt (t )+γ(t )
∫
R

p(y)ϕt (t , y)d y +γ′(t )
∫
R

p(y)ϕ(t , y)d y =−ut t (t ), (6.76)
ϕt t (t , y)+ (y2 +η)ϕt (t , y)−p(y)δt t (t ) = 0. (6.77)

Multiplicando as equações (6.75)e (6.76)porut t (t ) e δt t (t t ), respectivamente, integrando em relação
à variável x sobre Ω e ξ sobre Γ, respectivamente, e utilizando a condição de bordo (6.15), obtemos:

1

2

d

d t
∥ut t (t )∥2

L2(Ω) +
1

2

d

d t
∥ut (t )∥2

H 1(Ω) −
∫
Γ

(ut t )|Γ(t )δt t (t )dΓ+ c(t )
∫
Ω

g ′(ut (t ))|ut t (t )|2 d x

+ c ′(t )
∫
Ω

g (ut (t ))ut t (t )d x =
∫
Ω

ht (t )ut t (t )d x −
∫
Ω

f ′(u(t ))ut (t )ut t (t )d x (6.78)
e

1

2

d

d t
∥δt t (t )∥2

L2(Γ) +
1

2

d

d t
∥δt∥2

L2(Γ) +γ(t )
∫
R

∫
Γ

p(y)ϕt (t , y)δt t (t )dΓd y

+γ′(t )
∫
R

∫
Γ

p(y)ϕ(t , y)δt t (t )dΓd y =−
∫
Ω

(ut t )|Γ(t )δt t (t )dΓ. (6.79)
Substituindo (6.79) em (6.78), obtemos:

1

2

d

d t
∥ut t (t )∥2

L2(Ω) +
1

2

d

d t
∥δt t (t )∥2

L2(Γ) +
1

2

d

d t
∥ut (t )∥2

H 1(Ω) +
1

2

d

d t
∥δt∥2

L2(Γ)

+γ(t )
∫
R

∫
Γ

p(y)ϕt (t , y)δt t (t )dΓd y +γ′(t )
∫
R

∫
Γ

p(y)ϕ(t , y)δt t (t )dΓd y

=
∫
Ω

ht (t )ut t (t )d x −
∫
Ω

f ′(u(t ))ut (t )ut t (t ) d x − c(t )
∫
Ω

g ′(ut (t ))|ut t (t )|2 d x

− c ′(t )
∫
Ω

g (ut (t ))ut t (t )d x. (6.80)
Por outro lado, multiplicando a Equação (6.77) por γ(t )ϕt (t ), e integrando em (ξ, y) sob R×Γ,

obtemos:
γ(t )

2

d

d t
∥ϕt (t )∥2

L2(R;L2(Γ)) +γ(t )
∫
R

(y2 +η)∥ϕt (t )∥2
L2(Γ) d y = γ(t )

∫
R

∫
Ω

p(y)ϕt (t )δt t (t )dΓd y. (6.81)
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Agora, como
d

d t
γ(t )|ϕ(t )|2 = γ(t )

d

d t
|ϕ(t )|2 +γ′(t )|ϕ(t )|2,

substituindo a Equação (6.81) em (6.80), obtemos:
1

2

d

d t
∥ut t (t )∥2

L2(Ω) +
1

2

d

d t
∥δt t (t )∥2

L2(Γ) +
1

2

d

d t
∥ut (t )∥2

H 1(Ω) +
1

2

d

d t
∥δt∥2

L2(Γ) +
d

d t

γ(t )

2
∥ϕt∥2

L2(R;L2(Γ))

=
∫
Ω

ht (t )ut t (t )d x −
∫
Ω

f ′(u(t ))ut (t )ut t (t )d x − c(t )
∫
Ω

g ′(ut (t ))|ut t (t )|2 d x

− c ′(t )
∫
Ω

g (ut (t ))ut t (t )d x + γ′(t )

2
∥ϕt (t )∥2

L2(R;L2(Γ)) −γ(t )
∫
R

(y2 +η)∥ϕt (t )∥2
L2(Γ) d y

−γ′(t )
∫
R

∫
Γ

p(y)ϕ(t , y)δt t (t )dΓd y. (6.82)
Como c(t) ≥ c0, c ′(t) ≤ 0 < c1, −γ1 ≤ γ′(t) ≤ 0 < γ0 ≤ γ(t), g ′(ut (t)) ≥ m para todo t ≥ τ e

g (ut (t ))ut t (t ) = (g (ut (t ))− g (0))ut t (t ) ≥ mut (t )ut t (t ) (ver hipóteses (6.7), (6.10) e (6.18)), para todo
t ≥ τ, temos:

γ′(t )

2
∥ϕt (t )∥2

L2(R;L2(Γ)) <
γ(t )

2
∥ϕt (t )∥2

L2(R;L2(Γ)), (6.83)
−γ(t )

∫
R

(y2 +η)∥ϕt (t , y)∥2
L2(Γ) d y ≤−γ0

∫
R

(y2 +η)∥ϕt (t , y)∥2
L2(Γ) d y ≤ 0, (6.84)

−c(t )
∫
Ω

g ′(ut (t ))|ut t (t )|2 ≤−mc0∥ut t∥2
L2(Ω) ≤ 0, (6.85)

−c ′(t )
∫
Ω

g (ut (t ))ut t (t )d x ≤−mc1

∫
Ω

ut (t )ut t (t )d x ≤ mc1

2

(
∥ut (t )∥2

L2(Ω) +∥ut t (t )∥2
L2(Ω)

)
. (6.86)

Além disso, observe que, como∣∣∣∣∫
R

p(y)ϕ(t , y)d y

∣∣∣∣ ≤
(∫
R

[p(y)]2

y2 +η d y

)1/2

·
(∫
R

(y2 +η)|ϕ(t , y)|2 d y

)1/2

= √
C (α,η,0)

(∫
R

(y2 +η)|ϕ(t , y)|2 d y

)1/2

,

temos que ∥∥∥∥∫
R

p(y)ϕ(t , y)d y

∥∥∥∥2

L2(Γ)
≤C (α,η,0)

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y. (6.87)

Da Equação (6.14), segue que
1

2

d

d t
∥ϕ(t )∥2

L2(R;L2(Γ)) +
∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y −

∫
R

∫
Ω

p(y)ϕ(t , y)δt (t )dΓd y = 0,

e portanto, de (6.87) segue que:
1

2

d

d t
∥ϕ(t )∥2

L2(R;L2(Γ)) +
∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y ≤ ∥δt (t )∥L2(Γ)

∥∥∥∥∫
R

p(y)ϕ(t , y)d y

∥∥∥∥
L2(Γ)

≤√
C (α,η,0)∥δt (t )∥L2(Γ)

(∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y

)1/2

≤ C (α,η,0)

2
∥δt (t )∥2

L2(Γ) +
1

2

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y.

Então ∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y ≤ C (α,η,0)

2
∥δt (t )∥2

L2(Γ) −
1

2

d

d t
∥ϕ(t )∥2

L2(R;L2(Γ)). (6.88)
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Assim, como −γ′(t ) ≤ γ1; ∀t ≥ τ, das estimativas (6.87) e (6.88), obtemos:
−γ′(t )

∫
R

∫
Γ

p(y)ϕ(t , y)δt t (t )dΓd y ≤ γ1∥δt t (t )∥L2(Γ)

∥∥∥∥∫
R

p(y)ϕ(y, t )d y

∥∥∥∥
L2(Γ)

≤ (γ1)2

2
∥δt t (t )∥2

L2(Γ) +
1

2

∥∥∥∥∫
R

p(y)ϕ(t , y)d y

∥∥∥∥2

L2(Γ)

≤ (γ1)2

2
∥δt t (t )∥2

L2(Γ) +
C (α,η,0)

2

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y

≤ (γ1)2

2
∥δt t (t )∥2

L2(Γ) +
[
C (α,η,0)

]2

4
∥δt (t )∥2

L2(Γ) −
C (α,η,0)

4

d

d t
∥ϕ(t )∥2

L2(R;L2(Γ))

≤ C2

2

(
∥δt (t )∥2

L2(Γ) +∥δt t (t )∥2
L2(Γ)

)
−C3

d

d t
∥ϕ(t )∥2

L2(R;L2(Γ)), (6.89)
onde C2 = max{(γ1)2/2, [C (α,η,0)]2/4} e C3 =C (α,η,0)/4.

Por outro lado, como ρ−1

2ρ
+ 1

2ρ
+ 1

2
= 1, da Desigualdade de Hölder (Proposição (A.5)), da

hipótese (6.8), da imersão H 1(Ω) ,→ L2ρ(Ω) e da estimativa (6.71), obtemos:
−

∫
Ω

f ′(u(t ))ut (t )ut t (t )d x ≤C
∫
Ω

(
1+|u(t )|ρ−1) |ut (t )| · |ut t (t )|d x

=C
∫
Ω
|ut (t )ut t (t )|d x +C

∫
Ω

∣∣|u(t )|ρ−1ut (t )ut t (t )
∣∣ d x

≤C∥ut (t )∥L2(Ω) · ∥ut t (t )∥L2(Ω) +C∥u(t )∥ρ−1
L2ρ(Ω)

∥ut (t )∥L2ρ(Ω) · ∥ut t (t )∥L2(Ω)

≤C∥ut (t )∥H 1(Ω)∥ut t (t )∥L2(Ω) +C (C̃1)ρ[C (Uτ,τ)]
ρ−1

2 ∥ut (t )∥H 1(Ω)∥ut t (t )∥L2(Ω)

=C
(
1+ (C̃1)ρ[C (Uτ,τ)]

ρ−1
2

)
∥ut (t )∥H 1(Ω)∥ut t (t )∥L2(Ω)

≤ C4(Uτ,τ)

2

(
∥ut (t )∥2

H 1(Ω) +∥ut t (t )∥2
L2(Ω)

)
; ∀t ≥ τ, (6.90)

onde C̃1 é a constante da imersão H 1(Ω) ,→ L2ρ1 (Ω) e C4(Uτ,τ) =C
(
1+ (C̃1)ρ[C (Uτ,τ)]

ρ−1
2

).
Finalmente, como h ∈ H 1

l oc (0,+∞;L2(Ω)), existe constante C̃ > 0 tal que
∥ht (t )∥L2(Ω) ≤ C̃ ; ∀t ≥ τ,

e portanto∫
Ω

ht (t )ut t (t )d x ≤ 1

2
∥ht (t )∥2

L2(Ω) +
1

2
∥ut t (t )∥L2(Ω) ≤

C̃

2
+ 1

2
∥ut t (t )∥2

L2(Ω); ∀t ≥ τ. (6.91)
Agora, aplicando as estimativas (6.83)–(6.86) e (6.89)–(6.91) em (6.82), obtemos:

d

d t

(
1

2
∥Ut (t )∥2

H +C3∥ϕ(t )∥2
L2(R;L2(Γ))

)
≤ C̃

2
+ C4(Uτ,τ)+mc1

2
∥ut (t )∥2

H 1(Ω) +
C2

2
∥δt (t )∥2

L2(Γ)

+ 1+C4(Uτ,τ)+mc1

2
∥ut t (t )∥2

L2(Ω) +
C2

2
∥δt t (t )∥2

L2(Γ) +
γ(t )

2
∥ϕt (t )∥2

L2(R;L2(Γ)) +∥ϕ(t )∥2
L2(R;L2(Γ))

≤ C̃

2
+C5

(
1

2
∥Ut (t )∥2 +C3∥ϕ(t )∥2

L2(R;L2(Γ))

)
; ∀τ≤ t < T, (6.92)

onde C5 = max{1+C4 +mc1,C2,1/C3} e Ut (t ) = (ut (t ),δt (t ),ut t (t ),δt t (t ),ϕ(t )).
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Seja T > τ qualquer. Como ϕ(τ, y) = 0, para todo y ∈R, integrando a desigualdade (6.92) de τ
a t ≤ T , obtemos:

1

2
∥Ut (t )∥2

H ≤ 1

2
∥Ut (t )∥2

H +C3∥ϕ(t )∥2
L2(R;L2(Γ))

≤ 1

2
∥Ut (τ)∥2

H + C̃ (T −τ)

2
+C5

∫ t

τ

(
1

2
∥Ut (s)∥2

H +C3∥ϕ(s)∥2
L2(R;L2(Γ))

)
d s, (6.93)

para todo τ< t ≤ T .
Suponha que g :R→R é uma função Lipschitziana. Assim, como g (0) = 0 (ver hipótese (6.10)),

existe constante M > 0 tal que
|g (v)| ≤ M |v |;∀v ∈R. (6.94)

Fazendo t = τ na equação (6.12), obtemos:
∥ut t (τ)∥L2(Ω) ≤ ∥∆u0

τ∥L2(Ω) +∥u0
τ∥L2(Ω) +∥u0

τ∥ρL2ρ(Ω) +Mc(τ)∥u1
τ∥L2(Ω) +∥h(τ)∥L2(Ω) := C̃1, (6.95)

uma vez que u(τ) = u0
τ ∈ H 2(Ω), ut (τ) = u1

τ ∈ H 1(Ω) ,→ L2(Ω), h(τ) ∈ L2(Ω), H 1(Ω) ,→ L2ρ(Ω), e da
hipótese (6.8) e da desigualdade (6.94), segue que:

∥ f (u0
τ)∥L2(Ω) ≤C

(∫
Ω
|u0
τ|2ρ d x

)1/2

=C∥u0
τ∥ρL2ρ(Ω)

e ∫
Ω
|g (u1

τ)|2 d x ≤ M 2
∫
Ω
|u1
τ|2 d x.

Procedendo de maneira análoga, com a equação (6.13), obtemos:
∥δt t (τ)∥L2(Γ) ≤ ∥δ0

τ∥L2(Γ) +∥(u1
τ)|Γ∥L2(Γ) := C̃2, (6.96)

pois δ(τ) = δ0
τ ∈ L2(Γ), ϕ(τ, y) = 0 para todo y ∈R, e como ut (τ) = u1

τ ∈ H 1(Ω), do teorema de Traço
segue que (ut (τ))|Γ = (u1

τ)|Γ ∈ H 1/2(Γ) ,→ L2(Γ).
Além disso, como u(τ) = u1

τ ∈ H 1(Ω) e δt (τ) = δ1
τ = 0, temos que:

∥ut (τ)∥2
H 1(Ω) = ∥u1

τ∥2
H 1(Ω) := C̃3 e ∥δt (τ)∥L2(Γ) = ∥δ1

τ∥2
L2(Γ) = 0. (6.97)

Por outro lado, t = τ na Equação (6.14), obtemos:
ϕt (τ, y) =−(y2 +η)ϕ(τ, y)+p(y)δt (τ) = p(y)δ1

τ = 0; ∀y ∈R.

Portanto
γ(τ)∥ϕt (τ, y)∥2

L2(R;L2(Γ)) = 0. (6.98)
Assim, utilizando as estimativas (6.95)–(6.98) em (6.93), obtemos:

1

2
∥Ut (t )∥2

H ≤ 1

2
∥Ut (t )∥2

H +C3∥ϕ(t )∥2
L2(R;L2(Γ))

≤ C̃ (Uτ,τ)+C5

∫ t

τ

(
1

2
∥Ut (s)∥2

H +C3∥ϕ(s)∥2
L2(R;L2(Ω))

)
d s, (6.99)
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onde
C̃ (Uτ,τ) = 1

2

(
C̃ (T −τ)+ C̃1

2 + C̃2
2 + C̃3

)
Finalmente, aplicando o Lema de Gronwall (Proposição (A.7)), na estimativa (6.99), segue que:

∥Ut (t )∥2
H ≤ ∥Ut (t )∥2

H +C3∥ϕ(t )∥2
L2(R;L2(Γ)) ≤ 2C̃ (Uτ,τ)e2C5T <∞, (6.100)

para todo τ< t ≤ T .
Portanto: 

ut ∈ L∞
loc

(
0,+∞; H 1(Ω)

)
δt ∈ L∞

loc

(
0,+∞; L2(Γ)

)
ut t ∈ L∞

loc

(
0,+∞; L2(Ω)

)
δt t ∈ L∞

loc

(
0,+∞; L2(Γ)

)
.

(6.101)

Por outro lado, da Equação (6.12), das estimativas (6.71) e (6.93), da hipótese (6.8), e da desi-
gualdade (6.94), obtemos:

∥∆u(t )∥L2(Ω) ≤ ∥ut t (t )∥L2(Ω) +∥u(t )∥ρ
L2ρ(Ω)

+Mc(τ)∥ut (t )∥L2(Ω) +∥h(t )∥L2(Ω) := C̃4 <∞,

para todo τ< t < T .
Portanto

u ∈ L∞
loc

(
τ,+∞; H 2(Ω)

)
, (6.102)

e como δt = ∂u

∂ν
, do Teorema de traço em H 2(Ω), segue que ∥δt∥H 1/2(Γ) ≤C∥u∥H 2(Ω) (C > 0 cons-

tante). Portanto:
∥δt (t )∥H 1/2(Γ) ≤C∥u(t )∥H 2(Ω) := C̃5; ∀τ< t ≤ T. (6.103)

Suponha δ(τ) = δ0
τ ∈ H 1/2(Γ). Como δ(t ) = δ0

τ+
∫ t

τ
δs(s)d s, temos que δ(t ) ∈ H 1/2(Γ) e

∥δ(t )∥H 1/2(Γ) ≤ ∥δ0
τ∥H 1/2(Γ) +

∫ t

τ
∥δs(s)∥H 1/2(Γ) d s ≤ C̃5(T −τ) <∞; ∀τ< t ≤ T. (6.104)

Por fim, das regularidades obtidas em (6.74), (6.101) e (6.102), e das estimativas (6.103)e (6.104),
obtemos que a solução forte global (u,δ) do problema (6.2)–(6.6) possui as seguintes regularidades:

u ∈ L∞
loc

(
τ,+∞; H 2(Ω)

)∩L∞ (
τ,+∞; H 1(Ω)

)
δ ∈ L∞

loc

(
τ,+∞; H 1/2(Γ)

)∩L∞ (
τ,+∞; L2(Γ)

)
ut ∈ L∞

loc

(
τ,+∞; H 1(Ω)

)∩L∞ (
τ,+∞; L2(Ω)

)∩L1
(
τ,+∞; H 1(Ω)

)
δt ∈ L∞

loc

(
τ,+∞; H 1/2(Γ)

)∩L∞ (
τ,+∞; L2(Γ)

)∩L1
(
τ,+∞; L2(Γ)

)
ut t ∈ L∞

loc

(
τ,+∞; L2(Ω)

)∩L1
(
τ,+∞; L2(Ω)

)
δt t ∈ L∞

loc

(
τ,+∞; L2(Γ)

)∩L1
(
τ,+∞; L2(Γ)

)
,

o que prova (6.64).
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6.2 Existência de Atrator Pullback

Nesta seção, investigamos o comportamento assintótico do sistema (6.2)–(6.6) no contexto
não autônomo, com o objetivo central de estabelecer a existência de um atrator pullback. Para
alcançar esse resultado, seguimos uma estratégia em várias etapas interligadas.

Primeiramente, reescrevemos o sistema ampliado (6.12)–(6.17) como um problema de Cauchy
não autônomo (3.9), no qual o sistema é descrito por uma equação diferencial em espaços de Hilbert
com operador dependente do tempo. Em seguida, introduzimos a formulação precisa do processo
de evolução associado, representado por {P (t ,τ)}t≥τ. Esse processo é construído a partir do sistema
CD de Kato associado à família de operadores lineares {A (t )}t≥τ e incorpora, de maneira explícita, os
termos não lineares e as forças externas dependentes do tempo. Tal construção garante a existência
e unicidade de soluções brandas globais no espaço de energia natural, fornecendo a base para o
estudo das propriedades assintóticas.

Com esse arcabouço, passamos à análise de energia. Derivamos estimativas que permitem
controlar a norma das soluções em função do tempo e da força externa, o que conduz à identificação
de famílias de conjuntos absorventes para o processo {P (t ,τ)}t≥τ. Por fim, introduzimos o universo
D de subconjuntos de H , adequado ao estudo de atração pullback, e estabelecemos condições sob
as quais o processo é D–pullback assintoticamente compacto. Esse resultado, aliado à existência de
conjuntos absorventes, nos permite demonstrar, ao final, a existência de um atrator pullback para o
sistema, o qual descreve a dinâmica assintótica dependente do tempo.

6.2.1 Formulação do Processo de Evolução

O sistema (6.12)–(6.17) é equivalente ao seguinte problema de Cauchy:{
Ut (t ) = F̃ (U (t ), t ) ; t > τ
U (τ) =Uτ

, (6.105)

onde F̃ := (A (t )−F (t ,U (t ))+G (t )) : [τ,+∞)×H →H é a aplicação definido por:

F̃ (U , t ) =



v

z

∆u −u − f (u)− c(t )g (v)+h(t )

−δ−γ(t )
∫
R

p(y)ϕ(y)d y − v|Γ

−(y2 +η)ϕ(y)+p(y)z,


, (6.106)

onde, para cada t ≥ τ, A (t) : D ⊂ H → H é o operador linear, definido em (6.20), com domínio
D dado em (6.22)); F : H → H e G : [τ,+∞) → H são as aplicações definidas em (6.21); U =
(u,δ, v, z,ϕ); eUτ = (u0

τ,δ0
τ,u1

τ,δ1
τ,0).
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O Teorema 6.5 e a estimativa (6.71) garantem, para cada Uτ ∈ H , que o problema (6.19), e
portanto, o problema (6.105), admite uma única solução brandaU ∈C 0 ([τ,+∞);H ) dada por:

U (t ) = P (t ,τ)Uτ+
∫ t

τ
P (t , s) [G (s)−F (s,U (s))]d s,

onde {P (t , s)}t≥s é o processo de evolução gerado pelo sistema CD de Kato ({A (t )}t≥τ ,H ,D).
Defina o processo de evolução (do sistema completo) de {P (t )}t≥0 pondo:

P (t ,τ) : H −→ H

Uτ 7−→ U (t ) = P (t ,τ)Uτ+
∫ t

τ
P (t , s) [G (s)−F (s,U (s))]d s. (6.107)

EntãoU ∈C 0 ([τ,+∞);H ) tal que
U (t ) =P (t ,τ)Uτ = P (t ,τ)Uτ+

∫ t

τ
P (t , s) [G (s)−F (s,U (s))]d s,

é a única solução brando do problema (6.105).

6.2.2 Existência de Atrator Pullback

Apresentaremos alguns lemas técnicos que serão utilizados para o obter uma família de
conjuntos pullback absorvente em um conveniente universo de atração D (ver Definição 3.53), sob a
ação do processo {P (t ,τ)}t≥τ.
Lema 6.8
Seja E(t) a energia do sistema associada ao problema (6.12)-(6.17) dada por (6.55). Então existem
constantes β0, C f e CF tais que:

β0∥U (t )∥2
H −C f ≤ E(t ) ≤CF

(
1+∥U (t )∥ρ+1

H

)
; ∀t ≥ τ, (6.108)

ondeU (t ) = (u,δ,ut ,δt ,ϕ,φ) ∈H .
Demonstração. Observe que da estimativa (6.68), temos que:

−β
2
∥u∥2

H 1(Ω) −m f ·med(Ω) ≤
∫
Ω

F (u(x)) d x ≤ C̃1

(
med(Ω)+∥u∥ρ+1

H 1(Ω)

)
,

onde F (u) =
∫ u

τ
f (s)d s.

Então
E(t ) = 1

2
∥U (t )∥2

H +
∫
Ω

F (u(t )) d x ≥ 1

2
∥U (t )∥2

H − β

2
∥u(t )∥H 1(Ω) −m f ·med(Ω)

= β0∥U (t )∥2
H −C f ,

onde β0 = 1−β
2

e C f = m f ·med(Ω).
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Agora, note que, ∥U (t)∥2
H

≤ 1+∥U (t)∥ρ+1
H

. De fato, se ∥U (t)∥H ≤ 1, temos ∥U (t)∥2
H

≤ 1 ≤
1+∥U (t)∥ρ+1

H
; e caso ∥U (t)∥H ≥ 1, tem-se ∥U (t)∥2

H
≤ ∥U (t)∥ρ+1

H
≤ 1+∥U (t)∥ρ+1

H
, uma vez que

ρ+1 ≥ 2. Assim, obtemos:
E(t ) = 1

2
∥U (t )∥2

H +
∫
Ω

F (u(t )) d x ≤ 1

2
∥U (t )∥2

H + C̃1med(Ω)+ C̃1∥u∥ρ+1
H 1(Ω)

≤ 1

2
+ 1

2
∥U (t )∥ρ+1

H
+ C̃1med(Ω)+ C̃1∥U (t )∥ρ+1

H

=
(

1

2
+ C̃1med(Ω)

)
+

(
1

2
+ C̃1

)
∥U (t )∥ρ+1

H

≤ CF

(
1+∥U (t )∥ρ+1

H

)
,

onde CF = max{(1+2C̃1med(Ω))/2,(1+2C̃1)/2}.
Lema 6.9
Seja E(t) a energia do sistema associada ao problema (6.12)-(6.17) dada por (6.55). Então existem
constantes positivas σ1 e m0 > 0, tais que:

E(t ) ≤ 3E(τ)e−σ1(t−τ) +2m0

∫ t

τ
e−σ1(t−s)∥h(s)∥2

L2(Ω) d s +6C f ; ∀t ≥ τ. (6.109)
Demonstração. DoTeoremade Traço existe uma constanteC0 > 0 tal que ∥u(t )|Γ∥L2(Γ) ≤C0∥u(t )∥H 1(Ω).
Então ∫

Γ
u(t )|Γδ(t )dΓ≤ ∥u(t )|Γ∥L2(Γ)∥δ(t )∥L2(Γ) ≤C0∥u(t )∥H 1(Ω)∥δ(t )∥L2(Γ).

Dado ε> 0, defina a Energia Pertubada:
Eε(t ) := E(t )+εΦ(t ), (6.110)

com
Φ(t ) =〈u(t ),ut (t )〉L2(Ω) +〈δ(t ),δt (t )〉L2(Γ) +〈u(t )|Γ ,δ(t )〉L2(Γ)

+ γ(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ)) −β1

∫ t

τ
∥δt (s)∥2

L2(Γ) d s, (6.111)

onde β1 := 2(1−β)+4(C0)2

1−β . Portanto:

|Φ(t )| ≤
∣∣∣∣∫
Ω

u(t )ut (t )d x +
∫
Γ
δ(t )δt (t )dΓ+

∫
Γ

u(t )|Γδ(t )dΓ+ γ(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ))

∣∣∣∣
≤ 1

2
∥u(t )∥2

L2(Ω) +
1

2
∥ut (t )∥2

L2(Ω) +
1

2
∥δ(t )∥2

L2(Γ) +
1

2
∥δt (t )∥2

L2(Γ) +
1

2
∥u(t )∥2

H 1(Ω)

+ (C0)2

2
∥δ(t )∥2

L2(Γ) +
γ(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ))

≤C1∥U (t )∥2
H , (6.112)

onde C1 = max{[1+ (C0)2]/2,γ(τ)/2}.
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Da estimativa (6.112) e do Lema 6.8, obtemos:
|Φ(t )| ≤ C1

β0

(
E(t )+C f

)
,

e escolhendo ε0 = β0

2C1
, temos que:

ε|Φ(t )| ≤ ε0|Φ(t )| ≤ ε0
C1

β0

(
E(t )+C f

)= 1

2

(
E(t )+C f

)
; ∀0 < ε≤ ε0.

Consequentemente
−1

2
E(t )− 1

2
C f ≤ ε|Φ(t )| ≤ 1

2
E(t )+ 1

2
C f ,

e portanto:
1

2
E(t )− 1

2
C f ≤ Eε(t ) ≤ 3

2
E(t )+ 1

2
C f ; ∀0 < ε≤ ε0. (6.113)

Por outro lado, das Equações (6.12), (6.13), (6.14) e (6.15), obtemos:
Φ′(t ) = ∥ut (t )∥2

L2(Ω) +〈u(t ),ut t (t )〉L2(Ω) +∥δt (t )∥2
L2(Γ) +〈δ(t ),δt t (t )〉L2(Γ) +〈ut (t )|Γ ,δ(t )〉L2(Γ)

+〈u(t )|Γ ,δt (t )〉L2(Γ) +γ(t )〈ϕ(t ),ϕt (t )〉L2(R;L2(Γ)) +
γ′(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ)) −β1∥δt (t )∥2
L2(Γ)

= ∥ut (t )∥2
L2(Ω) +

〈
u(t ),∆u(t )−u(t )− f (u(t ))− c(t )g (ut (t ))+h(t )

〉
L2(Ω) +∥δt (t )∥2

L2(Γ)

+
〈
δ(t ),−δ(t )−γ(t )

∫
R

p(y)ϕ(t , y)d y −ut (t )|Γ

〉
L2(Γ)

+〈ut (t )|Γ ,δ(t )〉L2(Γ)

+〈u(t )|Γ ,δt (t )〉L2(Γ) +γ(t )
〈
ϕ(t ),−(y2 +η)ϕ(t )+p(y)δt (t )

〉
L2(R;L2(Ω))

+ γ′(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ)) −β1∥δt (t )∥2
L2(Γ)

= ∥ut (t )∥2
L2(Ω) −∥u(t )∥2

H 1(Ω) −
∫
Ω

f (u(t ))u(t )d x − c(t )
∫
Ω

g (ut (t ))u(t )d x

+
∫
Ω

h(t )u(t )d x + (1−β1)∥δt (t )∥2
L2(Γ) −∥δ(t )∥2

L2(Γ) −γ(t )
∫
R

∫
Γ

p(y)ϕ(t , y)δ(t )dΓd y

+2
∫
Γ

u(t )|Γδt (t )dΓ−γ(t )
∫
R

(y2 +η)∥ϕ(t )∥2
L2(Γ) d y +γ(t )

∫
R

∫
Γ

p(y)ϕ(t , y)δt (t )dΓd y

+ γ′(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ)),

e como
γ′(t )

2
∥ϕ∥2

L2(R;L2(Γ)) −γ(t )
∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y ≤ γ(t )

2
∥ϕ∥2

L2(R;L2(Γ)) −γ(t )∥ϕ(t , y)∥2
L2(R;L2(Γ))

= −γ(t )

2
∥ϕ∥2

L2(R;L2(Γ)),

temos que:
Φ′(t ) ≤ ∥ut (t )∥2

L2(Ω) −∥u(t )∥2
H 1(Ω) −

∫
Ω

f (u(t ))u(t )d x − c(t )
∫
Ω

g (ut (t ))u(t )d x

+
∫
Ω

h(t )u(t )d x + (1−β1)∥δt (t )∥2
L2(Γ) −∥δ(t )∥2

L2(Γ) −γ(t )
∫
R

∫
Γ

p(y)ϕ(t , y)δ(t )dΓd y

+2
∫
Γ

u(t )|Γδt (t )dΓ+γ(t )
∫
R

∫
Γ

p(y)ϕ(t , y)δt (t )dΓd y − γ(t )

2
∥ϕ(t )∥2

L2(R;L2(Γ)). (6.114)
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Agora, observe que, das hipóteses (6.9) e (6.10) obtemos:∫
Ω

[
F (u(t ))− f (u(t ))u(t )

]
d x ≤

∫
Ω

(
β

2
|u(t )|2 +m f

)
d x = β

2
∥u∥2

L2(Ω) +C f (6.115)
e
−c(t )

∫
Ω

g (ut (t ))u(t )d x ≤−mc0

∫
Ω

ut (t )u(t )d x ≤ 1−β
8

∥u(t )∥2
H 1(Ω)+

2(mc0)2

1−β ∥ut (t )∥2
L2(Ω). (6.116)

Além disso ∫
Ω

h(t )u(t )d x ≤ 1−β
8

∥u(t )∥2
H 1(Ω) +

2

1−β∥h(t )∥2
L2(Ω) (6.117)

e
2
∫
Γ

u(t )|Γδt (t )dΓ≤ 2C0∥u(t )∥H 1(Ω)∥δt (t )∥L2(Γ) ≤
1−β

4
∥u(t )∥2

H 1(Ω) +
4(C0)2

1−β ∥δt (t )∥2
L2(Γ). (6.118)

−
∫
R

∫
Γ

p(y)ϕ(t , y)δ(t )dΓd y ≤ [C (α,η,0)]2

2

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y + 1

2
∥δ(t )∥2

L2(Γ) (6.119)
e ∫

R

∫
Γ

p(y)ϕ(t , y)δt (t )dΓd y ≤ [C (α,η,0)]2

2

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y + 1

2
∥δt (t )∥2

L2(Γ), (6.120)
Então, inserindo E(t ) em (6.114) e utilizando as estimativas (6.115)–(6.120), obtemos:

Φ′(t ) ≤−E(t )− 1

2
∥u(t )∥2

H 1(Ω) −
1

2
∥δ(t )∥2

L2(Γ) +
3

2
∥ut∥2

L2(Ω) +
(

3

2
−β1

)
∥δt (t )∥2

L2(Γ)

+
∫
Ω

[
F (u(t ))− f (u(t ))u(t )

]
d x − c(t )

∫
Ω

g (ut (t ))u(t )d x +
∫
Ω

h(t )u(t )d x

+2
∫
Γ

u(t )|Γδt (t )dΓ−γ(t )
∫
R

∫
Γ

p(y)ϕ(t , y)δ(t )d y dΓ+γ(t )
∫
R

∫
Γ

p(y)ϕ(t , y)δt (t )d y dΓ

≤−E(t )− 1

2
∥u(t )∥2

H 1(Ω) −
1

2
∥δ(t )∥2

L2(Γ) +
3

2
∥ut∥2

L2(Ω) +
(

3

2
−β1

)
∥δt (t )∥2

L2(Γ) +
β

2
∥u(t )∥2

H 1(Ω)

+C f +
1−β

8
∥u(t )∥2

H 1(Ω) +
2(mc0)2

1−β ∥ut (t )∥2
L2(Ω) +

1−β
8

∥u(t )∥2
H 1(Ω) +

2

1−β∥h(t )∥2
L2(Ω)

+ 1−β
4

∥u(t )∥2
H 1(Ω) +

4(C0)2

1−β ∥δt (t )∥2
L2(Γ) +

[C (α,η,0)]2

2

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y

+ 1

2
∥δ(t )∥2

L2(Γ) +
[C (α,η,0)]2

2

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y + 1

2
∥δt (t )∥2

L2(Γ).

Portanto
Φ′(t ) ≤−E(t )+

(
−1−β

2
+ 1−β

2

)
∥u(t )∥2

H 1(Ω) +
(
−1

2
+ 1

2

)
∥δ(t )∥2

L2(Γ) +
(

3

2
+ 2(mc0)2

1−β
)
∥ut (t )∥2

L2(Ω)

+ (
β1 −β1

)∥δt (t )∥2
L2(Γ) +

[
C (α,η,0)

]2
∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) +

2

1−β∥h(t )∥2
L2(Ω) +C f

=−E(t )+
(

3

2
+ 2(mc0)2

1−β
)
∥ut∥2

L2(Ω) +
(
Cα,η

)2
∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) +

2

1−β∥h(t )∥2
L2(Ω)

+C f , (6.121)
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onde Cα,η :=C (α,η,0) (vide Lemma 4.5).
Por outro, de (6.56), e da desigualdade de Young, temos:

d

d t
E(t ) ≤ −mc0∥ut∥2

L2(Ω) −γ0

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y +〈h(t ),ut (t )〉L2(Ω)

≤ −mc0

2
∥ut∥2

L2(Ω) −γ0

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y + 1

2mc0
∥h(t )∥2

L2(Ω). (6.122)

Agora, escolha

ε= min

{
ε0,

mc0

2

(
3

2
+ 2(mc0)2

1−β
)−1

,γ0
(
Cα,η

)−2 ,1

}
. (6.123)

Note que ε≤ ε0 = β0

2C1
<β0 = 1−β

2
. Assim, das estimativas (6.121) e (6.122), obtemos:

d

d t
Eε(t ) = d

d t
E(t )+εΦ′(t )

≤−mc0

2
∥ut (t )∥2 −γ0

∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y + 1

2mc0
∥h(t )∥2

L2(Ω) −εE(t )

+ε
(

3

2
+ 2(mc0)2

1−β
)
∥ut (t )∥2

L2(Ω) +ε
(
Cα,η

)2
∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y

+ 2ε

1−β∥h(t )∥2
L2(Ω) +εC f

≤
(
−mc0

2
+ mc0

2

)
∥ut (t )∥2

L2(Ω)(−γ0 +γ0)
∫
R

(y2 +η)∥ϕ(t , y)∥2
L2(Γ) d y −εE(t )

+
(
1+ 1

2mc0

)
∥h(t )∥2

L2(Ω) +εC f

=−εE(t )+m0∥h(t )∥2
L2(Ω) +εC f (6.124)

onde m0 = 1+ 1

2mc0
.

Como ε≤ ε0, aplicando a desigualdade (6.113) na estimativa (6.124), obtemos:
d

d t
Eε(t ) ≤ −2ε

3
Eε(t )+ ε

3
C f +m0∥h(t )∥2

L2(Ω) +εC f

= −2ε

3
Eε(t )+m0∥h(t )∥2

L2(Ω) +
4ε

3
C f ,

e pela versão diferencial do Lema de Gronwall (Proposição A.6), segue que:
Eε(t ) ≤ Eε(τ)e− 2ε

3 (t−τ) +m0

∫ t

τ
e− 2ε

3 (t−s)∥h(s)∥2
L2(Ω) d s + 4ε

3
C f

∫ t

τ
e− 2ε

3 (t−s) d s

≤ Eε(τ)e−σ1(t−τ) +m0

∫ t

τ
e−σ1(t−s)∥h(s)∥2

L2(Ω) d s +2C f , (6.125)

onde σ1 =−2ε

3
.
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Finalmente, da desigualdade (6.113) e da estimativa (6.125), segue que:
E(t ) ≤ 2Eε(t )+C f

≤ 2Eε(τ)e−σ1(t−τ) +2m0

∫ t

τ
e−σ1(t−s)∥h(s)∥2

L2(Ω) d s +5C f

≤ (
3E(τ)+C f

)
e−σ1(t−τ) +2m0

∫ t

τ
e−σ1(t−s)∥h(s)∥2

L2(Ω) d s +5C f

≤ 3E(τ)e−σ1(t−τ) +2m0

∫ t

τ
e−σ1(t−s)∥h(s)∥2

L2(Ω) d s +6C f

A seguir, definiremos um universo de atração conveniente para o estudo da dinâmica pullback
do processo evolutivo associado ao nosso problema.
Definição 6.10
Seja σ1 > 0 a constante positiva obtida no Lema 6.9 e seja

R0 =
{

r :R→ [0,+∞); lim
τ→−∞eσ1τ[r (τ)]ρ+1 = 0

}
. (6.126)

Definimos a seguinte família de subconjuntos limitados de H por:
D̂ =

{
D(t ); D(t ) ⊂ B r (t )(0), r ∈ R0 e D(t ) ̸= 0 para todo t ∈R

}
, (6.127)

onde B r (t )(0) é a bola fechada (com respeito a norma de H ) centrada na origem e raio r (t ).
A coleção de todas as famílias da forma (6.127) define um universo D de subconjuntos de H

(ver Definição 3.52).
Proposição 6.11
Se σ0 ≤ σ1, então o processo de evolução {P (t ,τ)}t≥τ definido em (6.107) tem uma família de
conjuntos D–pullback absorvente (ver Definição 3.53), denotada por B̂0. Mais precisamente, a
família B̂0 é dada por bolas fechadas B r0(t )(0), onde

r0(t ) =
√

2m0

∫ t

−∞
e−σ0(t−s)∥h(s)∥2

L2(Ω)
d s +6C f +1; ∀t ∈R. (6.128)

Além disso, se σ0 < σ1
2 , então B̂0 ∈D, ou seja, a família B̂0 pertence ao universo D

Demonstração. Seja D̂ uma família arbitrária no universo D. Então para qualquer par τ ≤ t e
qualquerUτ ∈ D(τ) ⊂ B r (τ)(0), dos Lemas 6.8 e 6.9, e da Definição 6.10 segue que:

∥P (t ,τ)Uτ∥2
H ≤ E(t )

≤ 3E(τ)e−σ1(t−τ) +2m0

∫ t

τ
e−σ1(t−s)∥h(s)∥2

L2(Ω) d s +6C f

≤ 3CF

(
1+∥Uτ∥ρ+1

H

)
e−σ1(t−τ) +2m0

∫ t

τ
e−σ1(t−s)∥h(s)∥2

L2(Ω) d s +6C f

≤ 3CF
(
1+ [r (τ)]ρ+1)e−σ1(t−τ) +2m0

∫ t

τ
e−σ1(t−s)∥h(s)∥2

L2(Ω) d s +6C f . (6.129)
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Se σ0 ≤σ1, temos que:∫ t

τ
e−σ1(t−s)∥h(s)∥2

L2(Ω) d s ≤
∫ t

τ
e−σ0(t−s)∥h(s)∥2

L2(Ω) d s.

Tomando r0(t ) por (6.128), de (6.129), segue que:
∥P (t ,τ)Uτ∥2

H ≤ 3CF
(
1+ [r (τ)]ρ+1)e−σ1(t−τ) +2m0

∫ t

τ
e−σ0(t−s)∥h(s)∥2

L2(Ω) d s +6C f

≤ 3CF
(
1+ [r (τ)]ρ+1)e−σ0(t−τ) +2m0

∫ t

−∞
e−σ1(t−s)∥h(s)∥2

L2(Ω) d s +6C f

≤ 3CF
(
1+ [r (τ)]ρ+1)e−σ1(t−τ) + [r0(t )]2 −1, (6.130)

e como r (t ) ∈ R0 (onde R0 é o conjunto definido em (6.126)), temos que
lim

τ→−∞3CF
(
1+ [r (τ)]ρ+1)e−σ1(t−τ) = 0,

e portanto existe T = T (t ,D̂) ≤ t tal que
3CF

(
1+ [r (τ)]ρ+1)e−σ1(t−τ) < 1; ∀τ< T. (6.131)

De (6.130) e (6.131), segue que:
P (t ,τ)D(τ) ⊂ B0(t ); ∀τ< T,

onde B0(t ) := B r0(t )(0).
Isso mostra que a coleção B̂0 formada pelas bolas fechadas B r0(t )(0) é uma família D–pullback

absorvente. Afirmamos que B̂0 ∈D. De fato. De (6.128), segue que:
[r0(τ)]2e

σ1
2 τ = 2m0e−(

σ0−σ1
2

)
τ

∫ τ

−∞
eσ0s∥h(s)∥2

L2(Ω) d s + (6C f +1)e
σ1
2 τ.

Como ∫ τ

−∞
eσ0s∥h(s)∥2

L2(Ω) d s decresce quando τ→−∞, e σ1
2 −σ0 > 0, temos que [r0(τ)]2e

σ1
2 τ→ 0

quando τ→∞, e portanto, r0 ∈ R0 (ver conjunto definido em (6.126)). Logo B̂0 ∈D.
Agora apresentaremos um lemma técnico que será utilizado para mostrar que o processo

{P (t ,τ)}t≥τ é D–pullback assintoticamente compacto (ver Definição 3.57).
Lema 6.12
Seja {P (t ,τ)}t≥τ o processo de evolução definido em (6.107). DadosU 1

τ ,U 2
τ ∈H , existe σ2 >σ1, tal

que
∥P (t ,τ)U 1

τ −P (t ,τ)U 2
τ∥2

H ≤ 3∥U 1
τ −U 2

τ∥2
H e−σ2(t−τ) +Ct ,τ

∫ t

τ
∥u1(s)−u2(s)∥2

Lρ+1(Ω) d s

+4
∫ t

τ

∫
Ω

[
f (u2(s))− f (u1(s))

](
(u1)t (t )− (u2)t (r )

)
d x d s, (6.132)

onde U j (t) := P (t ,τ)U j
τ = (

u j (t ),δ j (t ), v j (t ), z j (t ),ϕ j (t )
) ( j = 1,2), Ct ,τ = 4sups∈[τ,t ] k(τ, s) e

k(τ, t ) = C̃
(
1+∥∥U 1(t )

∥∥ρ−1
H

+∥U 2(t )∥ρ−1
H

).
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Demonstração. SejamU 1
τ ,U 1

τ ∈H ;U 1
τ = (u1

τ,δ1
τ, v1

τ, z1
τ,0) eU 2

τ = (u1
τ,δ2

τ, v2
τ, z2

τ,0). Considere as so-
luções brandasU 1 : [0,+∞) →H eU 2 : [0,+∞) →H ;U 1(t ) = (u1(t ),δ1(t ), (u1)t (t ), (δ1)t (t ),ϕ1(t ))

e U 2(t ) = (u2(t ),δ2(t ), (u2)t (t ), (δ2)t (t ),ϕ2(t )) do problema de Cauchy (6.19) para os dados iniciais
U 1
τ eU 2

τ respectivamente.
Observe que, W =U 1 −U 2 = (w,χ, wt ,χt ,ϕ̃) é solução branda do seguinte problema:

wt t (x, t )−∆w(x, t )+w(x, t )+ f (u1(x, t ))− f (u2(x, t ))+ c(t )g (wt (x, t )) = 0, (6.133)
χt t (ξ, t )+χ(ξ, t )+γ(t )

∫
R

p(y)ϕ̃(ξ, t , y)d y =−(wt )|Γ(ξ, t ), (6.134)
ϕ̃t (ξ, t , y)+ (y2 +η)ϕ̃(ξ, t , y)−p(y)χt (ξ, t ) = 0, (6.135)

χt (ξ, t ) = ∂w

∂ν
(ξ, t ), (6.136)

w(x,τ) = u1
τ(x)−u2

τ(x) e wt (x,τ) = v1
τ(x)− v2

τ(x), (6.137)
χ(ξ,τ) = δ1

τ(ξ)−δ2
τ(ξ), χt (ξ,τ) = z1

τ(ξ)− z2
τ(ξ) e ϕ̃(ξ,τ, y) = 0, . (6.138)

onde t > τ, x ∈Ω, ξ ∈ Γ e y ∈R.
Multiplicando o sistema (6.133)–(6.135) pelas funções wt , χt e ϕ̃ respectivamente, procedendo

de forma similar a demonstração da Proposição 6.6, e utilizando as condição de fronteira (6.136),
obtemos:
1

2

d

d t
∥w(t )∥2

H 1(Ω) +
1

2

d

d t
∥χ(t )∥2

L2(Γ) +
1

2

d

d t
∥wt (t )∥2

L2(Ω) +
1

2

d

d t
∥χt (t )∥2

L2(Γ) +
d

d t

γ(t )

2
∥ϕ̃(t )∥2

L2(R;L2(Γ))

=
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
wt (t )d x − c(t )〈g (wt (t )), wt (t )〉L2(Ω) −γ(t )+

∫
R

(
y2 +η)∥ϕ̃(t , y)∥2

L2(Γ) d y

+ γ′(t )

2
∥ϕ̃(t )∥2

L2(R;L2(Γ)). (6.139)
Defina o funcional energia do problema (6.133)–(6.138):

E (t ) = 1

2
∥W (t )∥2

H = 1

2
∥w(t )∥2

H 1(Ω) +
1

2
∥χ(t )∥2

L2(Γ) +
1

2
∥wt (t )∥2

L2(Ω) +
1

2
∥χt (t )∥2

L2(Γ)

+ γ(t )

2
∥ϕ̃(t )∥2

L2(R;L2(Γ)). (6.140)
Assim de (6.139) e (6.140), obtemos:

d

d t
E (t ) ≤−mc0∥wt (t )∥2

L2(Ω) −γ(t )+
∫
R

(
y2 +η)∥ϕ̃(t , y)∥2

L2(Γ) d y

+
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
wt (t )d x (6.141)

Dado ε̃> 0, defina a Energia Pertubada:
Eε̃(t ) := E (t )+ ε̃Ψ(t ), (6.142)

com
Ψ(t ) =〈w(t ), wt (t )〉L2(Ω) +〈χ(t ),χt (t )〉L2(Γ) +〈w(t )|Γ ,χ(t )〉L2(Γ)

+ γ(t )

2
∥ϕ̃(t )∥2

L2(R;L2(Γ)) −β2

∫ t

τ
∥χt (s)∥2

L2(Γ) d s, (6.143)
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onde β2 := 2+ (C0)2.
Note que
|Ψ(t )| ≤

∣∣∣∣∫
Ω

w(t )wt (t )d x +
∫
Γ
χ(t )δt (t )dΓ+

∫
Γ

w(t )|Γχ(t )dΓ+ γ(t )

2
∥ϕ̃(t )∥2

L2(R;L2(Γ))

∣∣∣∣
≤ 1

2
∥w(t )∥2

L2(Ω) +
1

2
∥wt (t )∥2

L2(Ω) +
1

2
∥χ(t )∥2

L2(Γ) +
1

2
∥χt (t )∥2

L2(Γ) +
1

2
∥w(t )∥2

H 1(Ω)

+ (C0)2

2
∥χ(t )∥2

L2(Γ) +
γ(t )

2
∥ϕ̃(t )∥2

L2(R;L2(Γ))

≤ C1

2
∥W (t )∥2

H =C1E (t ),

onde C1 = max{1+ (C0)2,γ(τ)}.
Logo

−C1E (t ) ≤Ψ(t ) ≤C1E (t ); ∀t ≥ τ. (6.144)
Assim, se ε̃≤ ε̃0 := 1

2C1
, então de (6.144), segue que:

Eε̃(t ) = E (t )+ ε̃Ψ(t ) ≤ E (t )+ ε̃0Ψ(t ) ≤ E (t )+ ε̃0C1E (t ) = E (t )+ 1

2
E (t ) = 3

2
E (t )

e
Eε̃(t ) = E (t )+ ε̃Ψ(t ) ≥ E (t )− ε̃C1E (t ) ≥ E (t )− ε̃0C1E (t ) = E (t )− 1

2
E (t ) = 1

2
E (t ).

Em resumo, para todo t ≥ τ, tem-se
1

2
E (t ) ≤ Eε̃(t ) ≤ 3

2
E (t ), sempre que 0 < ε̃≤ ε̃0. (6.145)

Por outro lado, das Equações (6.133)–(6.136), obtemos:
Ψ′(t ) = ∥wt (t )∥2

L2(Ω) +〈w(t ), wt t (t )〉L2(Ω) +∥χt (t )∥2
L2(Γ) +〈χ(t ),χt t (t )〉L2(Γ) +〈wt (t )|Γ ,χ(t )〉L2(Γ)

+〈w(t )|Γ ,χt (t )〉L2(Γ) +γ(t )〈ϕ̃(t ),ϕ̃t (t )〉L2(R;L2(Γ)) +
γ′(t )

2
∥ϕ̃(t )∥2

L2(R;L2(Γ)) −β2∥χt (t )∥2
L2(Γ)

= ∥wt (t )∥2
L2(Ω) +

〈
w(t ),∆w(t )−w(t )+ f (u2(t ))− f (u1(t ))− c(t )g (wt (t ))

〉
L2(Ω) +∥χt (t )∥2

L2(Γ)

+
〈
χ(t ),−χ(t )−γ(t )

∫
R

p(y)ϕ̃(t , y)d y −wt (t )|Γ

〉
L2(Γ)

+〈wt (t )|Γ ,χ(t )〉L2(Γ)

+〈w(t )|Γ ,χt (t )〉L2(Γ) +γ(t )
〈
ϕ̃(t ),−(y2 +η)ϕ̃(t )+p(y)χt (t )

〉
L2(R;L2(Ω))

+ γ′(t )

2
∥ϕ̃(t )∥2

L2(R;L2(Γ)) −β2∥χt (t )∥2
L2(Γ)

= ∥wt (t )∥2
L2(Ω) −∥w(t )∥2

H 1(Ω) +
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x − c(t )

∫
Ω

g (wt (t ))w(t )d x

+ (1−β2)∥χt (t )∥2
L2(Γ) −∥χ(t )∥2

L2(Γ) −γ(t )
∫
R

∫
Γ

p(y)ϕ̃(t , y)χ(t )dΓd y

+2
∫
Γ

w(t )|Γχt (t )dΓ−γ(t )
∫
R

(y2 +η)∥ϕ̃(t )∥2
L2(Γ) d y +γ(t )

∫
R

∫
Γ

p(y)ϕ̃(t , y)χt (t )dΓd y

+ γ′(t )

2
∥ϕ̃(t )∥2

L2(R;L2(Γ)).
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Logo:

Ψ′(t ) ≤ ∥wt (t )∥2
L2(Ω) −∥w(t )∥2

H 1(Ω) +
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x − c(t )

∫
Ω

g (wt (t ))w(t )d x

+ (1−β2)∥χt (t )∥2
L2(Γ) −∥χ(t )∥2

L2(Γ) −γ(t )
∫
R

∫
Γ

p(y)ϕ̃(t , y)χ(t )dΓd y

+2
∫
Γ

w(t )|Γχt (t )dΓ+γ(t )
∫
R

∫
Γ

p(y)ϕ̃(t , y)χt (t )dΓd y − γ(t )

2
∥ϕ̃(t )∥2

L2(R;L2(Γ)). (6.146)

Inserindo E (t ) em (6.146), obtemos:

Ψ′(t ) ≤−E (t )− 1

2
∥w(t )∥2

H 1(Ω) −
1

2
∥χ(t )∥2

L2(Γ) +
3

2
∥wt∥2

L2(Ω) +
(

3

2
−β2

)
∥χt (t )∥2

L2(Γ)

+
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x − c(t )

∫
Ω

g (wt (t ))w(t )d x +2
∫
Γ

w(t )|Γχt (t )dΓ

−γ(t )
∫
R

∫
Γ

p(y)ϕ̃(t , y)χ(t )d y dΓ+γ(t )
∫
R

∫
Γ

p(y)ϕ̃(t , y)χt (t )d y dΓ

≤−E (t )− 1

2
∥w(t )∥2

H 1(Ω) −
1

2
∥χ(t )∥2

L2(Γ) +
3

2
∥wt∥2

L2(Ω) +
(

3

2
−β2

)
∥χt (t )∥2

L2(Γ)

+
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x + 1

4
∥w(t )∥2

H 1(Ω) + (mc0)2∥wt (t )∥2
L2(Ω)

+ 1

4
∥u(t )∥2

H 1(Ω) + (C0)2∥χt (t )∥2
L2(Γ) +

[C (α,η,0)]2

2

∫
R

(y2 +η)∥ϕ̃(t , y)∥2
L2(Γ) d y

+ 1

2
∥χ(t )∥2

L2(Γ) +
[C (α,η,0)]2

2

∫
R

(y2 +η)∥ϕ̃(t , y)∥2
L2(Γ) d y + 1

2
∥χt (t )∥2

L2(Γ),

e portanto:

Ψ′(t ) ≤−E (t )+
(
−1

2
+ 1

2

)
∥w(t )∥2

H 1(Ω) +
(
−1

2
+ 1

2

)
∥χ(t )∥2

L2(Γ) +
(

3

2
+ (mc0)2

)
∥wt (t )∥2

L2(Ω)

+ (
β2 −β2

)∥χt (t )∥2
L2(Γ) +

[
C (α,η,0)

]2
∫
R

(y2 +η)∥ϕ̃(t , y)∥2
L2(Γ)

+
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x

=−E (t )+
(

3

2
+ (mc0)2

)
∥wt∥2

L2(Ω) +
[
C (α,η,0)

]2
∫
R

(y2 +η)∥ϕ̃(t , y)∥2
L2(Γ)

+
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x. (6.147)

Agora, escolha

ε̃= min

{
ε̃0,mc0

(
3

2
+ (mc0)2

)−1

,γ0
[
C (α,η,0)

]−2 ,1

}
. (6.148)
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Assim, de (6.141) e (6.147), obtemos:
d

d t
Eε̃(t ) = d

d t
E (t )+ ε̃Ψ′(t )

≤−mc0∥wt (t )∥2 −γ0

∫
R

(y2 +η)∥ϕ̃(t , y)∥2
L2(Γ) d y +

∫
Ω

[
f (u2(t ))− f (u1(t ))

]
wt (t )d x

− ε̃E (t )+ ε̃
(

3

2
+ (mc0)2

)
∥wt (t )∥2

L2(Ω) + ε̃
[
C (α,η,0)

]2
∫
R

(y2 +η)∥ϕ̃(t , y)∥2
L2(Γ) d y

+ ε̃
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x

≤ (−mc0 +mc0)∥wt (t )∥2
L2(Ω)(−γ0 +γ0)

∫
R

(y2 +η)∥ϕ̃(t , y)∥2
L2(Γ) d y − ε̃E (t )

+
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
wt (t )d x +

∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x

=−ε̃E (t )+
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x +

∫
Ω

[
f (u2(t ))− f (u1(t ))

]
wt (t )d x,

e como ε̃≤ ε̃0, aplicando a desigualdade (6.144), obtemos:
d

d t
Eε̃(t ) ≤−2ε̃

3
Eε̃(t )+

∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x

+
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
wt (t )d x. (6.149)

Agora, observe que, do Teorema do Valor Médio, existe θ ∈ (0,1) tal que
f (u2)− f (u1) = f ′(u∗)(u2 −u1) =− f ′(u∗)w,

onde u∗ = θu1 + (1−θ)u2. Logo
|[ f (u2)− f (u1)]w | = | f ′(u∗)| · |w |2.

Como 0 < θ < 1, temos que |u∗| ≤ |u1|+ |u2|, e portanto, da hipótese (6.8), obtemos:
|[ f (u2)− f (u1)]w | = | f ′(u∗)| · |w |2 ≤C

(
1+ (|u1|+ |u2|)ρ−1) |w |2. (6.150)

Se N ∈ {1,2}, temos que ρ = 3, e nesse caso, H 1(Ω) ,→ L4(Ω) = Lρ+1(Ω). Além disso,
(|u1|+ |u2|)2 ≤ 2|u1|2 +2|u2|2,

e portanto, de (6.150) e da Desigualdade de Hölder, segue que:∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x ≤C

∫
Ω

(
1+ (|u1(t )|+ |u2(t )|)2) |w(t )|2 d x

≤C
∫
Ω

(1+2|u1(t )|2 +2|u2(t )|2)|w(t )|2 d x ≤ 2C
∫
Ω

(1+|u1(t )|2 +|u2(t )|2)|w(t )|2 d x

≤ 2C
(√

med(Ω)+∥u1(t )∥2
L4(Ω) +∥u2(t )∥2

L4(Ω)

)
∥w(t )∥2

L4(Ω)

≤ 2C
(√

med(Ω)+ (C̃0)2∥u1(t )∥2
H 1(Ω) + (C̃0)2∥u2(t )∥2

H 1(Ω)

)
∥w(t )∥2

L4(Ω)

≤ C̃
(
1+∥u1(t )∥2

H 1(Ω) +∥u2(t )∥2
H 1(Ω)

)
∥w(t )∥2

L4(Ω)

≤ C̃
(
1+∥∥U 1(t )

∥∥2
H +∥U 2(t )∥2

H

)
∥w(t )∥2

L4(Ω), (6.151)
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onde C̃ = 2C max
{p

med(Ω), (C̃0)2
} e C̃0 é a constante da imersão H 1(Ω) ,→ L4(Ω).

Para N ≥ 3, temos que 1 ≤ ρ ≤ N

N −2
, e portanto 2 < ρ + 1 < 2ρ ≤ 2N

N −2
. Então, tem-se

H 1(Ω) ,→ L2ρ(Ω) ,→ Lρ+1(Ω) (ver Corolário 1.26). Além disso, observe que, 0 ≤ ρ−1 ≤ 2, se N = 3; e
0 ≤ ρ−1 ≤ 1, se N ≥ 4.

Suponha que 0 ≤ ρ−1 ≤ 1 (N ≥ 3). Nesse caso, tem-se:
(|u1|+ |u2|)ρ−1 ≤ |u1|ρ−1 +|u2|ρ−1,

uma vez que a função s → sρ−1 é côncava (possui derivada segunda negativa) quando 0 < ρ−1 < 1

(os casos ρ−1 = 0 e ρ−1 = 1 são triviais).
Portanto, de (6.150) segue que:∫

Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x ≤ C

∫
Ω

(
1+ (|u1(t )|+ |u2(t )|)ρ−1) |w(t )|2 d x

≤ C ′
∫
Ω

(1+|u1(t )|ρ−1 +|u2(t )|ρ−1)|w(t )|2 d x,

onde C ′ =C .
Agora, se 1 < ρ−1 < 2 (N = 3), temos:

(|u1|+ |u2|)ρ−1 ≤ 2ρ−2 (|u1|ρ−1 +|u2|ρ−1) ,

uma vez que a função s → sρ−1 é convexa (possui derivada segunda positiva).
Como 2ρ−2 > 1, de (6.150) segue que:∫
Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x ≤ C

∫
Ω

(
1+ (|u1(t )|+ |u2(t )|)ρ−1) |w(t )|2 d x

≤ C
∫
Ω

(1+2ρ−1|u1(t )|ρ−1 +2ρ−2|u2(t )|ρ−1)|w(t )|2 d x

≤ C ′
∫
Ω

(1+|u1(t )|ρ−1 +|u2(t )|ρ−1)|w(t )|2 d x,

onde C ′ = 2ρ−2C .
Portanto, para N ≥ 3, obtemos:∫

Ω

[
f (u2(t ))− f (u1(t ))

]
w(t )d x ≤C ′

∫
Ω

(1+|u1|ρ−1 +|u2|ρ−1)|w(t )|2 d x

≤C ′
(
[med(Ω)]

ρ−1
ρ+1 +∥u1(t )∥ρ−1

Lρ+1(Ω)
+∥u2(t )∥ρ−1

Lρ+1(Ω)

)
∥w(t )∥2

Lρ+1(Ω)

≤C ′
(
[med(Ω)]

ρ−1
ρ+1 + (C̃0)ρ−1∥u1(t )∥ρ−1

H 1(Ω)
+ (C̃0)ρ−1∥u2(t )∥ρ−1

H 1(Ω)

)
∥w(t )∥2

Lρ+1(Ω)

≤ C̃
(
1+∥u1(t )∥ρ−1

H 1(Ω)
+∥u2(t )∥ρ−1

H 1(Ω)

)
∥w(t )∥2

L4(Ω)

≤ C̃
(
1+∥∥U 1(t )

∥∥ρ−1
H +∥U 2(t )∥ρ−1

H

)
∥w(t )∥2

L4(Ω), (6.152)
onde C̃ = 2C max

{
[med(Ω)]

ρ−1
ρ+1 , (C̃0)ρ−1

}
e C̃0 é a constante da imersão H 1(Ω) ,→ Lρ+1(Ω).
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Observe que para N ∈ {1,2}, temos ρ = 3, e portanto ρ−1 = 2 e Lρ+1(Ω) = L4(Ω) . Portanto,
aplicando as estimativas (6.151) e (6.152), na desigualdade (6.149), obtemos:

d

d t
Eε̃(t ) ≤−2ε̃

3
Eε̃(t )+k(τ, t )∥w(t )∥2

Lρ+1(Ω) +
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
wt (t )d x, (6.153)

onde k(τ, t ) = C̃
(
1+∥∥U 1(t )

∥∥ρ−1
H

+∥U 2(t )∥ρ−1
H

).
Aplicando a versão diferencial do Lema de Gronwall (Proposição A.6) em (6.153), obtemos:

Eε̃(t ) ≤ Eε̃(τ)e− 2ε̃
3 (t−τ) + sup

s∈[τ,t ]
k(τ, s)

∫ t

τ
e− 2ε̃

3 (t−s)∥w(s)∥2
Lρ+1(Ω) d s

+
∫ t

τ
e− 2ε̃

3 (t−s)
∫
Ω

[
f (u2(t ))− f (u1(t ))

]
wt (s)d x d s (6.154)

Comparando (6.123) com (6.148), observamos que ε< ε̃. Assim, escolhendo σ2 := 2ε̃
3 , temos

que σ1 := 2ε
3 < 2ε̃

3 =σ2. Além disso, de (6.145) e (6.154), obtemos:

E (t ) ≤ 2Eε̃(t ) ≤ 2Eε̃(τ)e−σ2(t−τ) +2 sup
s∈[τ,t ]

k(τ, s)
∫ t

τ
e−σ2(t−s)∥w(s)∥2

Lρ+1(Ω) d s

+2
∫ t

τ
e−σ2(t−s)

∫
Ω

[
f (u2(t ))− f (u1(t ))

]
wt (s)d x d s

≤ 3E (τ)e−σ2(t−τ) +2 sup
s∈[τ,t ]

k(τ, s)
∫ t

τ
e−σ2(t−s)∥w(s)∥2

Lρ+1(Ω) d s

+2
∫ t

τ
e−σ2(t−s)

∫
Ω

[
f (u2(t ))− f (u1(t ))

]
wt (s)d x d s (6.155)

Finalmente, como e−σ(t−s) < 1 para todo s ∈ [τ, t ] e
E (t ) = 1

2
∥W (t )∥2

H = 1

2
∥U 1(t )−U 2(t )∥2

H = 1

2
∥P (t ,τ)U 1

τ −P (t ,τ)U 2
τ∥2

H ,

de (6.155), obtemos (6.132), onde Ct ,τ = 4 sup
s∈[τ,t ]

k(τ, s)

Proposição 6.13 (i) Se N ∈ {1,2,3}, então o processo de evolução {P (t ,τ)}t≥τ definido em (6.107)
é D–pullback assintoticamente compacto.

(ii) Se N ≥ 4 e existe uma constante C̃ > 0 tal que:
| f ′(u)| ≤ C̃ (1+|u|ρ−2); ∀u ∈R, (6.156)

então o processo de evolução {P (t ,τ)}t≥τ definido em (6.107) é D–pullback assintoticamente
compacto.
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Demonstração. Seja B̂0 = {B(t )}t∈R uma família D–pullback absorvente, que é garantido pela Pro-
posição 6.11. DadosU 1

τ ,U 2
τ ∈ B0(τ), do Lema (6.12), segue que:

∥P (t ,τ)U 1
τ −P (t ,τ)U 2

τ∥2
H ≤ 3∥U 1

τ −U 2
τ∥2

H e−σ2(t−τ) +Ct ,τ

∫ t

τ
∥u1(s)−u2(s)∥2

Lρ+1(Ω) d s

+4
∫ t

τ

∫
Ω

[
f (u2(s))− f (u1(s))

](
(u1)t (t )− (u2)t (r )

)
d x d s

≤ 3(2|r0(τ)|)2 e−σ2(t−τ) +Ct ,τ

∫ t

τ
∥u1(s)−u2(s)∥2

Lρ+1(Ω) d s

+4
∫ t

τ

∫
Ω

[
f (u2(s))− f (u1(s))

](
(u1)t (t )− (u2)t (r )

)
d x d s (6.157)

onde U j (t) := P (t ,τ)U j
τ = (

u j (t ),δ j (t ), v j (t ), z j (t ),ϕ j (t )
) ( j = 1,2), Ct ,τ = 2sups∈[τ,t ] k(τ, s) e

k(τ, t ) = C̃
(
1+∥∥U 1(t )

∥∥ρ−1
H

+∥U 2(t )∥ρ−1
H

).
Observe que

K (τ, t ) = C̃
(
1+∥∥U 1(t )

∥∥ρ−1
H +∥U 2(t )∥ρ−1

H

)
<∞; ∀t ≥ τ,

uma vez que, de (6.130), obtemos
∥U j (t )∥ρ−1

H
= ∥P (t ,τ)U j

τ∥ρ−1
H

≤ [
3CF

(
1+|r (τ)|ρ−1)+|r0(t )|2] ρ−1

2 ( j = 1,2).

Além disso, de (6.128), tem-se:
|r0(τ)|2e−σ2(t−τ) =

(
2m0e(σ2−σ0)τ

∫ τ

−∞
eσ0s∥h(s)∥2

L2(Ω) d s + (6C f +1)eσ2τ

)
e−σ2t ; ∀t ≥ τ.

Como σ2 −σ0 > 0 e σ2 > 0, temos que e(σ−σ0)τ,eσ2τ→ 0 quando τ→−∞. Logo
lim
τ→∞

(
2m0e(σ2−σ0)τ

∫ τ

−∞
eσ0s∥h(s)∥2

L2(Ω) d s + (6C f +1)eσ2τ

)
e−σ2t = 0.

Assim, dado qualquer ε> 0, existe τε ∈R (que depende de ε, de t e de B̂0) tal que:
12|r0(τε)|2e−σ2(t−τε) < ε2. (6.158)

Defina fε : B0(τε)×B0(τε) −→R por:
fε

(
U 1
τε

,U 2
τε

)=√
Ct ,τε

(∫ t

τ
∥u1(s)−u2(s)∥2

Lρ+1(Ω) d s

)1/2

+2

∣∣∣∣∫ t

τε

∫
Ω

[
f (u2(s))− f (u1(s))

](
(u1)t (t )− (u2)t (r )

)
d x d s

∣∣∣∣1/2

. (6.159)
DadosU 1

τε
,U 1

τε
∈ B0(τε), das estimativas (6.157) e (6.158), segue que:

∥P (t ,τε)U 1
τε
−P (t ,τε)U 2

τε
∥2

H ≤ 12|r0(τε)|2e−σ2(t−τε) +Ct ,τε

∫ t

τε

∥u1(s)−u2(s)∥2
Lρ+1(Ω) d s

+4
∫ t

τε

∫
Ω

[
f (u2(s))− f (u1(s))

](
(u1)t (t )− (u2)t (r )

)
d x d s

≤ ε2 +Ct ,τε

∫ t

τε

∥u1(s)−u2(s)∥2
Lρ+1(Ω) d s

+4
∫ t

τε

∫
Ω

[
f (u2(s))− f (u1(s))

](
(u1)t (t )− (u2)t (r )

)
d x d s,
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e portanto, de (6.159), obtemos:
∥P (t ,τε)U 1

τε
−P (t ,τε)U 2

τε
∥H ≤ ε+

√
Ct ,τε

(∫ t

τε

∥u1(s)−u2(s)∥2
Lρ+1(Ω) d s

)1/2

+2

∣∣∣∣∫ t

τε

∫
Ω

[
f (u2(s))− f (u1(s))

](
(u1)t (t )− (u2)t (r )

)
d x d s

∣∣∣∣1/2

= ε+ fε
(
U 1
τε

,U 2
τε

)
; ∀U 1

τε
,U 1

τε
∈ B0(τε).

Assim, diante da Proposição 3.59, resta apenas mostrar que fε é uma função contrativa sobre
B0(τε)×B0(τε) (ver Definição 3.25). De fato, seja (

U n
τε

)
n∈N uma sequência de valores iniciais em

B0(τε), com
U n(t ) :=P (t ,τε)U n

τε
= (

un(t ),δn(t ), vn(t ), zn(t ),ϕn(t )
)

(n ∈N).

Observe que, de (6.130), obtemos:
∥U n(s)∥2

H = ∥P (s,τε)U j
τε∥2

H ≤ 3CF
(
1+|r (τε)|ρ−1)+|r0(t )|2 <∞; ∀τε ≤ s ≤ t .

Logo, ∣∣∣∣∣∣
(un)n∈N é uma sequência limitado em L2(τε, t ; H 1(Ω)),

(vn)n∈N é uma sequência limitada em L2(τε, t ; L2(Ω)),
(6.160)

Observe que H 1(Ω) e L2(Ω) são espaços reflexivos (Espaços de Hilbert) e vele a seguinte cadeia
de imersões:

H 1(Ω)
comp
,→ Lρ+1(Ω) ,→ L2(Ω) (Ver Teorema 1.28). (6.161)

Como vn = (un)t para todo n ∈N, as estimativas em (6.160), as imersões em (6.161)permitem a
aplicação do Teorema de Aubin-Lions (Teorema 1.35), e o Teorema de Aubin-Lions garante a existência
de uma subsequência (unk )k∈N de (un)n∈N e uma função u ∈ L2(τε, t ; Lρ+1(Ω)) tais que:

unk → u ( fortemente ) em L2(τε, t ; Lρ+1(Ω)). (6.162)
De (6.162), segue que (unk )k∈N é uma sequência de Cauchy em L2(τε, t ; Lρ+1(Ω)), e portanto:

lim
k→∞

lim
l→∞

∫ t

τε

∥unk (s)−unl (s)∥2
Lρ+1(Ω) d s = 0. (6.163)

O limite em (6.163), mostra que (U nk )k∈N, comU nk = (unk ,δn , vnk , zn ,ϕn) é uma subsequência
de (U n)n∈N tal que, a primeira parcela de fε(U nk ,U nl ) converge à zero (Ver expressão em (6.159)).
Assim, para mostrar que fε é de fato contrativa, precisamos mostrar que a segunda parcela de
fε(U nk ,U nl ) também converge à zero. Contudo, essa segunda parcela envolve termos com cresci-
mento crítico e portanto apresenta um certo grau de dificuldade, que acarretou em uma restrição no
crescimento da não linearidade f do problema quando a dimensão N > 3. Diante disso, dividimos a
demonstração em dois casos.
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Primeiramente, observe que:∫ t

τε

∫
Ω

[
f (unl (s))− f (unk (s))

][
(unk )t (s)− (unl )t (s)

]
d x d s

=
∫ t

τε

∫
Ω

[
f (unl (s))(unk )t (s)+ f (unk (s))(unl )t (s)

]
d x d s

−
∫ t

τε

∫
Ω

f (unl (s))(unl )t (s)d x d s −
∫ t

τε

∫
Ω

f (unk (s))(unn )t (s)d x d s

=
∫ t

τε

∫
Ω

[
f (unl (s))(unk )t (s)+ f (unk (s))(unl )t (s)

]
d x d s

−
∫
Ω

[
F (unk (t ))+F (unl (t ))

]
d x +

∫
Ω

[
F (unk (τ))+F (unl (τ))

]
d x. (6.164)

Se N ∈ {1,2,3}, da hipótese (6.8), temos que |F (u)| ≤C
(
1+|u|4) para todo u ∈R, e portanto,

a função F satisfaz as condições de Carathéodory, sendo NF : L5(Ω) → L
5
4 (Ω) o seu operador de

Nemytskii (Ver Teorema A.14). Como, nesse caso (N ≤ 3) o Teorema de Rellich-Kondrachov, garante
que H 1(Ω)

comp
,→ L5(Ω). Assim, aplicando o Teorema de Aubin-Lions, tem-se:

unk → u ( fortemente ) em L2(τε, t ; L5(Ω)) (N ≤ 3) (6.165)
Como NF : L5(Ω) → L

5
4 (Ω) e L

5
4 (Ω) ,→ L1(Ω) do limite em (6.165), obtemos:

∥F (uk (t ))∥L1(Ω) →∥F (u(t ))∥L1(Ω) e ∥F (uk (τε))∥L1(Ω) →∥F (u(τε))∥L1(Ω) (6.166)
Se N > 3, suponha que exista constate C̃ > 0 satisfazendo (6.156). Nesse caso, temos que

|F (u)| ≤ C̃ (1+ |u|ρ), e portanto, F satisfaz as condições de Carathéodory, sendo NF : Lρ+1(Ω) →
L
ρ+1
ρ (Ω) o seu operador de Nemytskii. Do Teorema de Teorema de Rellich-Kondrachov, segue que:

H 1(Ω)
comp
,→ Lρ+1(Ω). Assim, podemos utilizar as limitações em (6.156) para aplicar o Teorema de

Aubin-Lions e garantir que
unk → u ( fortemente ) em L2(τε, t ; Lρ+1(Ω)) (N > 3); (6.167)

e como NF : Lρ+1(Ω) → L
ρ+1
ρ (Ω) e L

ρ+1
ρ (Ω) ,→ L1(Ω), obtemos (6.166).

por outro lado, como H 1(Ω)
comp
,→ L2(Ω), qualquer que seja N ∈N (do Teorema de Aubin-Lions),

segue que:
unk → u ( fortemente ) em L2(τε, t ; L2(Ω)), (6.168)

e como L2(τ, t ; L2(Ω)) é reflexivo, da segunda estimativa em (6.160), segue que:
(unk )t * ut ( fracamente ) em L2(τε, t ; L2(Ω)). (6.169)

Além disso, para N ∈ {1,2,3}, temos | f (u)| ≤ C (1+ |u|3) e quando N > 3, tem-se | f (u)| ≤
C̃ (1+|u|ρ−1). Assim, o operador de Nemytskii de f é dado por:

N f : L4(Ω) → L
4
3 (Ω) (N ≤ 3) e N f : Lρ+1(Ω) → L

ρ+1
ρ (Ω) (N > 3).
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Note que
(N f )|L6(Ω) : L6(Ω) → L2(Ω) (N ≤ 3) e (N f )∣∣L

2(ρ2−1)
ρ (Ω)

: L
2(ρ2−1)

ρ (Ω) → L2(Ω) (N > 3). (6.170)
Defina:

Gk
l (s) =

∫
Ω

f (unk (s))(unk )t (s)d x e Gk (s) =
∫
Ω

f (u(s))(unk )t (s)d x,

e observe que:
|Gl (s)| ≤

(∫
Ω
| f (unl (s))|2 d x

)1/2

+
(∫
Ω
|(unk )t (s)|2 d x

)1/2

. (6.171)
Para N ≤ 3, temos que (unk )k∈N é limitada em L2(τε, t ; L5(Ω)) (ver (6.165)) e L6(Ω) ,→ L5(Ω),

e para N > 3, temos (unk )k∈N é limitada em L2(τε, t ; Lρ+1(Ω)) (ver (6.167)) e L
2(ρ2−1)

ρ (Ω) ,→ Lρ+1(Ω).
Como o operador de Nemytskii leva conjuntos limitados em conjuntos limitados, utilizando os
respectivos operadores de Nemytskii (ver (6.170)) e o fato de (unk )k∈N ser limitado em L2(τε, t ; L2(Ω))

(ver (6.169)), obtemos uma constante M > 0 tal que
|Gk

l (s)| ≤ M em quase todo ponto s ∈ [τε, t ].

Afirmamos que Gk
l (s) →Gk (s) quase sempre em [τε, t ] quando l →+∞. De fato:

|Gk
l (s)−Gk (s)| ≤

∫
Ω
| f (unl (s))− f (u(s))| · |(unk )t (s)|d x → 0,

quase sempre em [τε, t ], quando l →∞.
Portanto, do Teorema da Convergência Dominada, temos:∫ t

τε

Gk
l (s)d s →

∫ t

τε

Gk (s)d s quando l →∞. (6.172)
Assim, de (6.169) e (6.172), tem-se:

lim
k→∞

[
lim
l→∞

∫ t

τε

∫
Ω

f (unk (s))(unl )t (s)d x d s

]
=

∫ t

τε

∫
Ω

f (u(s))ut (s)d x d s

= lim
l→∞

[
lim

k→∞

∫ t

τε

∫
Ω

f (unl (s))(unk )t (s)d x d s

]
,

e portanto:
lim

k→∞
lim
l→∞

∫ t

τε

∫
Ω

[
f (unk (s))(unl )t (s)+ f (unl (s))(unk )t (s)

]= 2
∫ t

τε

∫
Ω

f (u(s))ut (s)d x d s

= 2
∫
Ω

F (u(t ))d x −2
∫
Ω

F (u(τε))d x. (6.173)
Finalmente, aplicando (6.166) e (6.173) em (6.164), obtemos:

lim
k→∞

lim
l→∞

∫ t

τε

∫
Ω

[
f (unl (s))− f (unk (s))

][
(unk )t (s)− (unl )t (s)

]
d x d s

= lim
k→∞

lim
l→∞

∫ t

τε

∫
Ω

[
f (unl (s))(unk )t (s)+ f (unk (s))(unl )t (s)

]
d x d s

− lim
k→∞

lim
l→∞

∫
Ω

[
F (unk (t ))+F (unl (t ))

]
d x + lim

k→∞
lim
l→∞

∫
Ω

[
F (unk (τ))+F (unl (τ))

]
d x

= 2
∫
Ω

F (u(t ))d x −2
∫
Ω

F (u(τε))d x −2
∫
Ω

F (u(t ))d x +2
∫
Ω

F (u(τε))d x = 0. (6.174)
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Portanto de (6.163) e (6.174), segue que fε é contrativa, e isto completa a prova.
Finalmente, no que segue, provaremos que o processo {P (t ,τ)}t≥τ admite um atrator pullback

(ver Definição 3.54).
Teorema 6.14
Se σ0 ≤ σ1, então O processo de evolução {P (t ,τ)}t≥τ definido em (6.107) admite um (único) D–
atrator pullback, quando N ≤ 3 ou quando N > 3 e existe uma constante C̃ > 0 satisfazendo (6.156).

Além disso, se σ0 < σ1
2 , então esse atrator pertence ao universo D.

Demonstração. Se σ0 ≤σ1, a Proposição 6.11 garante que o Processo de Evolução {P (t ,τ)}t≥τ ad-
mite uma família B̂0 = {B0(t )}t∈R de connjuntos D–pullback absorventes. Além disso, da Proposição
6.13, segue que (em qualquer um dos casos (i) ou (ii)), o processo {P (t ,τ)}t≥τ é D-pullback assin-
toticamente compacto. Portanto, o Teorema 3.58 garante a existência de uma D–atrator pullback
{AD(t )}t∈R dado por:

AD(t ) = ⋃̂
D∈D

ω(D̂ , t ); ∀t ∈R.

Além disso, se σ0 < σ1
2 , a Proposição 6.11, garante que B̂0 ∈D, e portanto, do Teorema 3.58

segue que AD(t ) =ω(B̂0, t ) ⊂ B0(t ) e {AD(t )}t∈R ∈D.
Neste capítulo estabelecemos a existência e unicidade de soluções globais para o problema de

valor inicial e de contorno (6.2)–(6.6), tanto na formulação branda quanto na forte, sob hipóteses
adequadas sobre os dados iniciais e os coeficientes do modelo. O Teorema 6.7 mostrou que, a
partir de dados em espaços de energia natural, obtemos uma única solução branda global com
regularidade (6.62). Com hipóteses adicionais de regularidade dos dados e da força externa h,
provamos a existência de soluções fortes globais com regularidade (6.63), e ainda, sob hipóteses de
compatibilidade e de Lipschitzianidade para g , alcançamos regularidade local mais elevada (6.64).
Dessa forma, foi completada a análise da boa colocação do modelo.

No que diz respeito ao comportamento assintótico, formulamos o problema como um processo
de evolução {P (t ,τ)}t≥τ. Introduzimos o universo D adequado para o contexto não-autônomo. Com
esse arcabouço, mostramos inicialmente a existência de famílias pullback absorventes (Proposição
6.11), controladas por funções de energia dependentes do forçamento externo h. Em seguida,
por meio de estimativas de energia refinadas, provamos que o processo associado é D—pullback
assintoticamente compacto (Proposição 6.13), sob hipóteses de crescimento natural sobre a não
linearidade f .

Esses resultados culminaram no Teorema 6.14, que garante a existência de um D–atrator
pullback para o processo {P (t ,τ)}t≥τ. Esse atrator fornece a descrição assintótica completa do
sistema quando N ≤ 3, ou ainda quando N > 3, sob condições adicionais de crescimento sobre f .
Além disso, verificamos que, se (σ0 < σ1

2 ), o atrator pertence ao universo D.



6.2. Existência de Atrator Pullback 211

Apesar desses avanços, permanecem questões em aberto que merecem ser exploradas em
trabalhos futuros. Um caminho natural consiste em estender a análise para o caso em que N > 3,
relaxando as condições impostas sobre f , para hipóteses tão gerais quanto as do caso N ≤ 3. Esse
desafio envolve superar dificuldades técnicas na obtenção de imersões compactas sob o expoente
crítico de Sobolev.

Outro rumo promissor é a investigação da existência de um atrator uniforme, o qual forneceria
uma descrição assintótica independente do universo escolhido e permitiria discutir estabilidade
estrutural em relação a perturbações externas. Esse tipo de objeto dinâmico tem sido estudado em
trabalhos recentes, como emMatofu (BORTOT; SOUZA, 2025), que analisa a existência de atrator
uniforme para o modelo (6.1). A adoção desse enfoque pode abrir caminho para resultados de
robustez e continuidade em relação a perturbações no sistema.

Em suma, a elaboração desta tese resultou em um trabalho robusto e de grande valor acadê-
mico, que reúne desde os fundamentos clássicos da teoria das distribuições e dos espaços de Sobolev,
passando pela teoria de semigrupos de operadores lineares limitados e pela análise da geração e
estabilidade de semigrupos lineares, até alcançar o estudo recente e mais complexo da dinâmica
não linear e não autônoma. Nesse contexto, exploramos as modernas teorias de semigrupos de
operadores não lineares contínuos e de processos de evolução para problemas não autônomos,
estabelecendo um elo entre resultados abstratos e aplicações concretas.

O trabalho não apenas sistematiza e integra essas diferentes abordagens, como também
apresenta aplicações diretas de cada uma delas: semigrupos de operadores lineares, semigrupos
de operadores não lineares e processos de evolução. Essas aplicações têm importância central na
pesquisa contemporânea em equações de evolução, pois permitem compreender a longo prazo a
dinâmica de sistemas dissipativos e a sua tendência para estados assintóticos estáveis.

Entre os conceitos centrais destacados, a estabilidade de semigrupos aparece como ponto
de partida essencial para a análise qualitativa das soluções. A noção de atrator global fornece uma
estrutura invariante e compacta que descreve o comportamento assintótico dos sistemas autônomos,
enquanto o atrator pullback amplia esse quadro para problemas não autônomos, oferecendo um
instrumento mais refinado para a compreensão da dinâmica dependente do tempo. A articulação
entre esses conceitos mostra a profundidade e a atualidade dos resultados aqui desenvolvidos.

Dessa forma, considero que o presente trabalho cumpre plenamente seu propósito inicial
e final: integrar teoria e aplicação em torno de uma linha coerente de investigação, contribuindo
tanto para a consolidação de resultados clássicos quanto para o avanço em direções recentes e
promissoras da análise de equações de evolução.
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APÊNDICE A

Resultados Clássicos

Teorema A.1 (Lema de Du Bois Raymond)
Seja Ω⊂Rn um conjunto aberto. Se f ∈ L1

loc (Ω) e,∫
Ω

f (x)ϕ(x)d x = 0, ∀ϕ ∈C∞
0 (Ω).

Então, f (x) = 0, em quase todo ponto x ∈Ω.
Demonstração. (Ver (CAVALCANTI; CAVALCANTI, 2009), Proposição 4).
Teorema A.2 (Teorema da Convergência Dominada)
Sejam (X ,X,µ) um espaço de medida e L (X ,X,µ) o espaço das funções integráveis. Seja ( fn)n∈N
um sequência de funções em L (X ,X,µ) tal que

lim fn(x) = f (x), para quase todo ponto x ∈ X ,

para alguma função mensurável f : X −→R.
Se existir uma função integrável g ∈L (X ,X,µ) tal que | fn(x)| < g (x) para todo x ∈ X e todo

n ∈N, então
f ∈L (X ,X,µ) e lim

∫
X

fn dµ=
∫

X
f dµ

Demonstração. ver ((BARTLE, 1996), Teorema 5.6).
Proposição A.3 (Desigualdade de Young)
Sejam 1 < p <∞ e q ∈R tais que 1

p + 1
q = 1. Então

ab ≤ ap

p
+ bq

q
,

qualquer que sejam os números reais a,b ≥ 0.
Demonstração. Veja ((BREZIS, 2010), Teorema 4.6).
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Corolário A.4
Sejam a,b ≥ 0 e p, q ∈R tais que 1

p
+ 1

q
= 1. Para todo ε> 0 dado, tem-se:
ab ≤ εap +C (ε)bq ,

onde C (ε) > 0 é uma constante dependente do ε dado.
Demonstração. Basta notar que

ab = (εp)1/p 1

(εp)1/p
= (

(εp)1/p a
)( b

(εp)1/p

)
,

e aplicar a desigualdade de Young (Proposição A.3) que segue o resultado, comC (ε) = 1

q(εp)q/p
.

Proposição A.5 (Desigualdade de Hölder)
Seja (X ,X,µ) um espaço de medida e sejam f ∈ Lp := Lp (X ,X,µ) e g ∈∈ Lq := Lq (X ,X,µ), com
1

p
+ 1

q
= 1. Então f g ∈ L1 := L1(X ,X,µ) e

∥ f g∥L1 ≤ ∥ f ∥Lp∥g∥Lq .

Demonstração. Ver ((BARTLE, 1996), Teorema 6.9).
Proposição A.6 (Lema de Gronwall–Versão diferencial)
Sejam τ ∈R, f , g : [τ,T ] →R funções integráveis e u : [τ,T ] →R uma função não negativa e diferen-
ciável em (τ,T ) ⊂R tais que:

du

d t
≤ f (t )u(t )+ g (t ); ∀t ∈ [τ,T ].

Então
u(t ) ≤ u(τ)e

∫ t
τ f (r )dr +

∫ t

τ
g (s)e

∫ t
τ f (r )dr d s; ∀t ∈ [τ,T ].

Além disso, se f e g forem não negativas, então:
u(t ) ≤ e

∫ t
τ f (r )dr

(
u(τ)+

∫ t

τ
g (s)d s

)
; ∀t ∈ [τ,T ].

Demonstração. ver ((EVANS, 2010), página 708).
Proposição A.7 (Lema de Gronwall–Versão integral)
Sejam τ ∈ R, a : [τ,T ] uma função crescente, b : [τ,T ] → R uma função integrável e u : [τ,T ] → R

uma função contínua e não negativa tais que
u(t ) ≤ a(t )+

∫ t

τ
b(s)u(s)d s; ∀t ∈ [τ,T ].

Então
u(t ) ≤ a(t )e

∫ t
τ b(s)d s .
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Demonstração. ver ((DOERING; LOPES, 2008), Lema 10.18) ou ((EVANS, 2010), página 709).
Proposição A.8 (Desigualdade de Cauchy-Schwarz)
Seja (V;〈,〉) um espaço vetorial com produto interno. Se u, v ∈V, então

|〈u, v〉| ≤ ∥u∥∥v∥,

Além disso, a igualdade ocorre se, e somente se, os vetores u e v são linearmente dependentes.
Demonstração. Veja ((BOTELHO; PELLEGINO; TEXEIRA, 2015), Proposição 5.1.2).
Teorema A.9 (Lax-Milgran)
Sejam (H ;〈·, ·〉) um espaço de Hilbert e B : H ×H →C uma forma sesquilinear:

(i) contínua. (Isto é, existe C > 0, talque |B(u, v)| ≤C · ∥u∥∥v∥; ∀u, v ∈ H ),
(ii) coerciva. (Isto é, existe C > 0 tal que Re[B(u,u)] ≥C · ∥u∥2; ∀u ∈ H ).

Então, para todo funcional L : H →C antilinear limitado, existe um único u ∈ H tal que
B(u, v) =L (v), para todo v ∈ H .

Demonstração. Veja ((BREZIS, 2010), Corolário 5.8).
Teorema A.10 (Alternativa de Fredholm)
Seja X um espaço de Banach. Se L : X → X é um operador linear compacto sobre X , então

(i) ker(I −L ) tem dimensão finita.
(ii) (I −L ) (X ) é fechado
(iii) ker(I −L ) = {0} ⇔ (I −L ) (X ) = X .

Demonstração. Veja ((BREZIS, 2010), Teorema 6.6)
Teorema A.11 (Teorema Espectral para Operadores Autoadjuntos com Resolvente Compacto)
Seja A : D(A) ⊂ H → H um isomorfismo linear autoadjunto tal que A−1 é compacto. Então existe
uma base ortonormal infinito de autovetores {un}n∈N associadas à sequência de autovalores {λn}n∈N
tais que lim

n→∞ |λn | =∞.
Demonstração. Veja ((BORTOLAN, 2021); Teorema 5.3.7).
Teorema A.12 (Princípio dos zeros isolados)
Sejam D ⊂C um conjunto aberto conexo, f : D →C uma função holomorfa não-constante e z0 ∈ D.
Se f (z0) = 0, então existe uma vizinhança de z0, V ⊂ D, onde o único zero de f é z0.
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Demonstração. Veja ((CONWAY, 1978); Corolário 3.10)
Teorema A.13 (Lema de Nakao)
Sejam 1 < T ≤+∞ e f : [0,T ) → (0,+∞). Se existem constantes k0,k1 > 0 tais que:

sup
t≤s≤t+1

f (s) ≤ k0
(

f (t )− f (t +1)
)+k1; ∀0 ≤ t ≤ T −1,

então
f (t ) ≤ sup

0≤s≤1
f (s)

(
1+k0

k0

)
e−θt +k1, ∀0 ≤ t ≤ T,

onde θ = ln

(
1+k0

k0

)
.

Demonstração. Veja ((NAKAO, 2006); Lema 2.1)
Teorema A.14 (Teorema de Carathéodory)
SejamΩ⊂Rn um aberto regular e f :Ω×Rm →R uma função que satisfaz as condições de Carathéo-
dory:

(i) u 7−→ f (x,u) é contínua para quase todo ponto x ∈Ω.
(ii) x 7−→ f (x,u) é mensurável em quase todo ponto u ∈Rm .
(iii) Existe p > 1 e uma função g ∈ Lq (Ω), como 1

p + 1
q = 1, tais que:

| f (x,u)| ≤ c|u|p−1 + g (x); ∀(x,u) ∈Ω×Rm (c > 0).

Então, dada uma função u :Ω→ Rm , o operador de Nemytskii, F : Lp (Ω) → Lq (Ω) definido
por:

F (u)(x) := f (x,u(x))

é contínuo e limitado (leva conjuntos limitados em conjuntos limitados).
Demonstração. Veja ((RENARDY; ROGERS, 2004); Página 370)
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