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Resumo

Este trabalho aborda a analise de trés problemas de evolucdo com amortecimento do tipo derivada

fracionaria, investigando a existéncia, unicidade e comportamento assintético das solucoes.

O primeiro problema consiste em um modelo linear e auténomo unidimensional de uma ponte
suspensa, cujo deck é modelado pela Teoria de Vigas de Timoshenko. O sistema incorpora amor-
tecimentos internos fracionarios em cada uma de suas equacoes. Para este modelo, aplicou-se a
Teoria de Semigrupos de Operadores Lineares Limitados para demonstrar a existéncia e unicidade
de solucao global. A analise assintética revelou que o decaimento da energia do sistema nao é

exponencial, mas sim polinomial.

O segundo problema trata de um modelo abstrato nao linear e autbnomo em dimensao N para
uma ponte suspensa, onde o deck é regido pela teoria de vigas de Kirchhoff e o0 amortecimento
fracionario € novamente aplicado. A prova da existéncia de solucao local foi obtida através da Teoria
Classica de Semigrupos. A demonstracdo de que esta solucio é global (ou seja, ndo explode em
tempo finito) foi realizada por meio de estimativas de energia para os termos da norma das solucoes.
A andlise do comportamento de longo prazo foi conduzida via Teoria de Semigrupos de Operadores
Continuos (sistemas dindmicos), onde se provou a existéncia de um conjunto compacto atrator que

atrai todas as solucdes do sistema.

Por fim, o terceiro problema analisa um modelo n3o linear e ndo auténomo de equacado de onda com
condicao de fronteira acustica, sujeito a um amortecimento interno nao linear e um amortecimento
do tipo derivada fracionaria na fronteira. A existéncia de solucao local foi estabelecida combinando
a Teoria de Semigrupos com a Teoria dos Sistemas CD (de Cauchy-Duhamel) de Kato. A prova
de que estas solucdes sdo globais novamente decorreu de estimativas de energia. Para o estudo
assintético, utilizou-se a Teoria de Processos Evolutivos, que generaliza a nocdo de semigrupos para
o contexto ndo autébnomo. Por meio desta teoria, demonstrou-se que as solucdes admitem uma
familia tempo-dependente de conjuntos compactos (um atrator pullback) que atrai as trajetorias
no sentido pullback, isto €, quando as solucées evoluem a partir de condicoes iniciais tomadas em

tempos cada vez mais remotos no passado.

Palavras-chave: Equacoes de Evolucao, Derivada Fracionaria, Semigrupos, Processos Evolutivos,

Comportamento Assintético, Atratores, Problemas Nao-Autdonomos.






Abstract

This work addresses the analysis of three evolution problems with fractional derivative-type damping,

investigating the existence, unigueness, and asymptotic behavior of solutions.

The first problem consists of a one-dimensional linear and autonomous model of a suspension bridge,
whose deck is modeled by Timoshenko Beam Theory. The system incorporates fractional damping
terms in each of its equations. For this model, the Theory of Semigroups of Bounded Linear Operators
was applied to demonstrate the existence and uniqueness of global solution. The asymptotic analysis

revealed that the energy decay of the system is not exponential but rather polynomial.

The second problem addresses an abstract, nonlinear, autonomous N-dimensional model for a
suspension bridge, governed by Kirchhoff plate theory for the deck and again subject to fractional
damping. The proof of local solution existence was achieved using Classical Semigroup Theory. The
demonstration that this solution is global (i.e., does not blow up in finite time) was carried out via
energy estimates for the solution norms. The long-term behavior analysis was conducted using the
Theory of Nonlinear Semigroups of continuous operators (dynamical systems), which established

the existence of a compact global attractor that attracts all system trajectories.

Finally, the third problem analyzes a nonlinear and non-autonomous wave equation model with an
acoustic boundary condition, subject to a nonlinear internal damping and a fractional derivative-type
damping on the boundary. The existence of a local solution was established by combining Semigroup
Theory with Kato’s Cauchy-Duhamel (CD) Systems Theory. The proof that these solutions are global
again followed from energy estimates. For the asymptotic study, the Theory of Evolutionary Processes,
which generalizes the notion of semigroups to the non-autonomous context, was used. Through this
theory, it was demonstrated that the solutions admit a time-dependent family of compact sets (a
pullback attractor) that attracts the trajectories in the pullback sense, i.e., when solutions evolve

from initial conditions taken at times increasingly remote in the past.

Keywords: Evolution Equations, Fractional Derivative, Semigroups, Evolutionary Processes, Asymp-

totic Behavior, Attractors, Non-Autonomous Problems.
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Introducao

A teoria das Equacdes Diferenciais Parciais (EDPs) ocupa um papel central na matematica mo-
derna, funcionando como um ponto de convergéncia entre diversas areas, como analise funcional,
teoria da medida, geometria diferencial, ciéncia da computacao, mecanica dos fluidos, biologia e
matematica financeira. As EDPs sao ferramentas fundamentais para modelar fenémenos complexos,
como a propagacao de ondas, a difusdo de calor, o comportamento de fluidos e a dindmica popula-
cional. Contudo, a natureza intrinsecamente singular de muitas dessas equacoes frequentemente

exige a ampliacao das nocoes classicas de derivadas e funcoes.

Nesse contexto, os conceitos de derivada fraca e distribuicoes tornam-se essenciais. Sergei
Sobolev introduziu a nocao de derivada fraca, permitindo o tratamento de funcdes integraveis que,
embora nao possuam derivadas no sentido classico, admitem-nas no sentido fraco. Esse avanco
deu origem aos espacos de Sobolev, que constituem o ambiente natural para estudar a existéncia, a
unicidade e a regularidade das solucoes de muitos problemas envolvendo EDPs. Posteriormente,
Laurent Schwartz expandiu essa ideia ao desenvolver a teoria das distribuicdes, que estende a nocao
de derivada para objetos mais gerais, como funcoes com singularidades pontuais, oferecendo uma

base sélida para problemas nos quais as solucoes classicas sdo inadequadas.

Embora a teoria dos espacos de Sobolev e das distribuicoes tenha consolidado um arcabouco
conceitual importante para problemas estacionarios e evolutivos, a analise rigorosa da dindmica
temporal das EDPs exige ferramentas matematicas mais avancadas. Nesse cenario, a teoria de semi-
grupos de operadores emerge como uma abordagem unificadora e poderosa para tratar problemas
de evolucao. Seu principal mérito esta em padronizar a técnica de resolucao de uma ampla classe de
EDPs, formulando-as como problemas de valor inicial de Cauchy em espacos funcionais apropriados,
como os espacos de Sobolev. Ao imitar a estratégia utilizada no estudo de Equacdes Diferenciais
Ordinarias (EDOs), a teoria de semigrupos fornece uma estrutura sistematica para estudar a evolucio

temporal das solucoes, abstraindo as particularidades das equacoes individuais.

Para problemas autbnomos lineares, onde as propriedades do sistema nao variam no tempo,
a teoria de semigrupos de operadores lineares limitados oferece ferramentas fundamentais para
garantir a existéncia e unicidade das solucoes, além de investigar seu comportamento assintético. A
estabilidade desses semigrupos permite caracterizar a dissipacdo de energia e o comportamento de

longo prazo de fenbmenos como a difusao de calor ou a propagacao de ondas.



2 Introducgédo

Arelevancia dateoria, no entanto, ndo se restringe ao caso linear. Sua extensao para semigrupos
de operadores continuos em espacos métricos proporciona uma abordagem robusta para problemas
auténomos nao lineares, nos quais métodos classicos falham. Nesse contexto, o conceito de atrator
global desempenha um papel crucial ao descrever a dindmica assintética das solucées em sistemas
dissipativos. O atrator global € um conjunto compacto e invariante que atrai todas as trajetérias
provenientes de conjuntos limitados, fornecendo uma descricao abrangente da dinadmica de longo

prazo.

Quando o foco recai sobre problemas ndao auténomos, cuja dindmica varia explicitamente no
tempo, a teoria de processos evolutivos torna-se a ferramenta mais adequada. Essa teoria generaliza
a de semigrupos ao lidar com operadores dependentes do tempo, permitindo uma analise detalhada
de sistemas afetados por variacoes externas, como mudancas ambientais, dindmicas sazonais ou
perturbacoes. Nesse cenario, surgem diferentes nocoes de atratores, sendo os mais amplamente
utilizados o atrator pullback e o atrator uniforme. O atrator pullback descreve como o comportamento
das solucdes é atraido a partir do passado, considerando explicitamente a dependéncia temporal do
sistema. J4 o atrator uniforme fornece uma visao global do comportamento assintético, abstraindo

as variacoes temporais especificas.

Portanto, a forca da teoria de semigrupos e de processos evolutivos estd em sua capacidade de
unificar e padronizar técnicas para o estudo de EDPs. Essas teorias oferecem ferramentas versateis
para a andlise de existéncia, unicidade e comportamento temporal das solucdes, abrangendo tanto
problemas lineares quanto nao lineares, autbnomos e nao auténomos. Além disso, proporcionam
uma compreensao detalhada da dinamica assintética das solucoes, seja pela estabilidade de semigru-
pos lineares, pelo estudo de atratores globais em semigrupos continuos ou pelas diferentes nocoes

de atratores, como o pullback e o uniforme, nos processos evolutivos.

O presente trabalho tem como obijetivo principal estudar sistemas de equacdes diferenciais
parciais de evolucao dissipativas, nos quais a dissipacao é oriunda de amortecimentos do tipo
derivada de ordem fracionaria. Para atingir esse objetivo, faz-se uso das teorias padronizadas dos
semigrupos de operadores lineares limitados (para problemas lineares), de semigrupos de operadores
continuos (para problemas nao lineares) e da teoria de processos evolutivos (para problemas nao

autébnomos).

Além disso, pretende-se que o texto seja autossuficiente. Para tanto, inicialmente é apre-
sentada, de forma sucinta e completa, a teoria das distribuicdes e dos espacos de Sobolev, que
constituem o ambiente natural para as solucdes das equacoes estudadas. Em seguida, sdo desenvol-
vidas as trés teorias unificadoras mencionadas. O texto também contém um apéndice com resultados

matematicos auxiliares utilizados na resolucao dos problemas.

Essas teorias serao aplicadas nos trés Gltimos capitulos desta tese, cada um empregando uma
delas para estudar um problema de natureza diferente. Os problemas estudados serao, respecti-

vamente: um problema linear e autbnomo; um problema nao linear e autébnomo; e, por fim, um



problema nao linear e ndo auténomo. Além da boa colocacao dos problemas, utilizam-se as teorias
de semigrupos e de processos evolutivos para estudar o comportamento assintético das solucoes do
problema linear auténomo, a existéncia de atrator global para o problema nao linear e autbnomo e

a existéncia de atrator pullback para o problema nao linear e ndo auténomo.

No Capitulo 1, sdo apresentados os espacos funcionais que constituem o ambiente das solucoes
das EDPs estudadas, a saber: as Distribuicdes e os espacos de Sobolev. As principais referéncias
utilizadas neste capitulo foram (RUDIN, 1991), (CAVALCANTI; CAVALCANTI, 2009) e (MEDEIROS;
MIRANDA, 2000).

No Capitulo 2, apresentamos a teoria de semigrupos de operadores lineares limitados. Por
meio dessa teoria, obtemos resultados de existéncia e unicidade de solucdes para o problema
abstrato de Cauchy linear autébnomo, os quais serdo aplicados ao problema (4.1)-(4.3), tratado no
Capitulo 4. Além disso, a teoria fornece resultados sobre estabilidade de semigrupos, que serao
utilizados para garantir o decaimento da energia associada ao mesmo problema. Essa estrutura
tedrica também permitira estudar a boa colocacdo dos problemas (5.3)-(5.6) e (6.2)-(6.6), abordados
nos Capitulos 5 e 6, respectivamente. Tais estudos serdo realizados por meio de resultados de
existéncia e unicidade para casos particulares de problemas abstratos de Cauchy nao lineares ou
nao autébnomos. Para o desenvolvimento deste capitulo, foram consultadas as seguintes referéncias:
os livros (PAZY, 1983), (LIU; ZHENGZ, 2011) e (AMMARI; SHEL, 2002), bem como os artigos (ARENDT;
BATTY, 1988), (BORICHEV; TOMILOV, 2010) e (GEARHART, 1978). Para o estudo de solucdes de

problemas n3o lineares ou ndo autébnomos, utilizamos também (PAZY, 1983) e (KATO, 1985).

No Capitulo 3, apresentamos a teoria de semigrupos de operadores continuos sobre um
espaco métrico para problemas nao lineares, e a teoria de processos evolutivos para problemas nao
auténomos. O foco dessas teorias recai sobre o estudo da dindmica (comportamento assintotico)
das solucoes. Elas serao aplicadas na analise da existéncia de atrator global e da existéncia de
atrator pullback para os respectivos problemas (5.3)-(5.6) e (6.2)-(6.6), tratados nos Capitulos 5 e
6. Para a teoria de semigrupos de operadores continuos e o estudo da existéncia de atrator global,
utilizamos as referéncias (ROBINSON, 2011), (ROBINSON, 2001), (CARVALHO; LANGA; ROBINSON,
2013), (CHUESHOV; LASIECKA, 2008) e (CHUESHOV; LASIECKA, 2010). Ja para o estudo da teoria de
processos evolutivos em problemas ndo auténomos e da existéncia de atrator pullback, utilizamos
(CARVALHO; LANGA; ROBINSON, 2013).

No Capitulo 4, estudamos a boa colocacao e o comportamento assintético de um sistema
linear e autébnomo de ponte suspensa, cujo deck é modelado pela teoria de vigas de Timoshenko,
sob a influéncia de dissipacoes internas do tipo derivada fracionaria. Para isso, utilizamos a teoria
de semigrupos de operadores lineares limitados, apresentada de forma sucinta na primeira secao
do Capitulo 2. A existéncia e unicidade de solucao sao estabelecidas por meio do Teorema de
Lumer-Phillips, a partir de um operador que gera o semigrupo associado ao sistema em estudo.

Em seguida, exploramos as propriedades espectrais desse operador, essenciais para a aplicacdo do
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Teorema de Borichev-Tomilov, a fim de obter uma taxa polinomial de decaimento das solugées. Além
disso, utilizamos o Teorema de Gearhart para mostrar que as solucdes ndo apresentam decaimento

exponencial.

No Capitulo 5, estudamos um modelo abstrato (N-dimensional), no linear e auténomo, de
ponte suspensa cujo deck é modelado pela teoria de vigas de Kirchhoff, sob o efeito de dissipacoes
internas do tipo derivada fracionaria. Utilizamos a teoria de semigrupos de operadores continuos
para tratar a parte linear do problema, aplicando o Teorema de Lumer-Phillips para mostrar que essa
parte linear gera um Cy-semigrupo de contracoes. Mostramos também que a parte nao linear do
problema define um operador localmente Lipschitz, o que garante a existéncia e unicidade de solucdo
local. A solucio global é obtida a partir de estimativas de energia, que asseguram que as solucoes
nao explodem em tempo finito e, portanto, estao definidas globalmente. Em seguida, empregamos
a teoria nao linear de operadores continuos, apresentada na primeira secao do Capitulo 3, para
analisar a dindmica do problema. Com isso, provamos a existéncia de atrator global. Além disso,
mostramos que esse atrator possui dimensao fractal finita e, a partir desse estudo, conseguimos

obter maior regularidade para as solucoes.

Por fim, no Capitulo 6, estudamos um modelo abstrato, nao linear e ndo auténomo, de
equacao de onda com fronteira acustica, sob a acdo de um amortecimento nao linear interno e de
um amortecimento do tipo derivada fracionaria na fronteira. Para mostrar a existéncia de solucao
local, provamos que o operador da parte linear do problema gera um processo de evolucao especial,
denominado sistema CD de Kato, e que a parte nao linear é localmente Lipschitz na variavel espacial
U e Lipschitz continua na variavel temporal em conjuntos limitados de U. A solucao global foi
estabelecida a partir de estimativas de energia, garantindo que as solucdes nao explodem em tempo
finito e, assim, permanecem definidas globalmente. Finalmente, utilizamos a teoria de processos
evolutivos, apresentada na segunda secao do Capitulo 3, para estudar a dindmica pullback do
problema. Com isso, provamos a existéncia de um atrator pullback em um universo de atracado mais

geral 9.



Capitulo 1

Distribuicoes e Espacos de Sobolev

Neste capitulo, exploraremos os aspectos fundamentais da teoria das Distribuicdes de Schwartz
e dos Espacos de Sobolev, areas essenciais na analise matematica e em aplicacdes a Equacoes
Diferenciais Parciais (EDPs). O ponto de partida para essas teorias pode ser encontrado na identidade

classica:

f u(x)¢' (x)dx = —f u' (x)p(x)dx,
R R

onde u € uma funcao integravel e ¢ é diferenciavel com suporte compacto.

Essa identidade motivou o matematico russo Sergei Sobolev a introduzir o conceito de derivada
fraca, permitindo a analise de classes de funcdes integraveis cujas derivadas, no sentido tradicional,
podem nao existir, mas que possuem derivadas fracas até certa ordem. Paralelamente, Laurent
Schwartz desenvolveu a teoria das distribuicoes, ampliando significativamente a nocao de derivada
proposta por Sobolev e fornecendo uma estrutura matematica robusta para tratar problemas onde

as derivadas classicas nao se aplicam.

O capitulo esta organizado em trés secoes principais, de forma a apresentar de maneira gradual
e consistente os conceitos e ferramentas tedricas. Na primeira secao, construiremos uma topologia
especial no espaco das funcdes infinitamente diferenciaveis com suporte compacto. Com base
nessa topologia, introduziremos o conceito de distribuicoes, assim como os principais resultados

associados a elas.

Na segunda secao, reuniremos os conceitos e propriedades mais relevantes dos espacos de
Sobolev, que sdo fundamentais para a analise de EDPs e outras areas da matematica aplicada. Estes
espacos estendem as ideias de Sobolev sobre derivadas fracas e formam um cenario adequado para

as solucoes dos problemas que abordaremos nesse trabalho.

Por fim, na terceira secao, introduziremos o conceito de Distribuicoes Temperadas, o que nos
permitirad definir os espacos de Sobolev de ordem fracionaria. Esses espacos fornecem o ambiente
ideal para a analise do operador traco, que generaliza a ideia de avaliar uma funcao no bordo de seu

dominio. O operador traco desempenha um papel crucial na formulacao e resolucao de problemas
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em EDPs, especialmente aqueles que envolvem condicoes de contorno.

Com essa organizagao, esperamos fornecer uma visao clara e estruturada das ferramentas
tedricas que fundamentam a analise moderna, bem como preparar o terreno para os problemas que

abordaremos nos capitulos finais desta tese.

1.1 O Espaco das Funcoes Testes e as Distribuicoes

Nesta secdo, analisaremos uma topologia especifica que sera atribuida ao conjunto Cg°(Q)
das funcoes infinitamente diferenciaveis com suporte compacto. Essa topologia é essencial para
definir a derivada no sentido distribucional. Nosso objetivo é investigar as principais propriedades
dessa topologia, além de analisar os funcionais lineares definidos em Cg°(€2) que sdo continuos em

relacdo a essa estrutura topolégica.

Inicialmente, introduziremos terminologias utilizadas na teoria das distribuicées. Ao longo do
texto, o simbolo Q representard um aberto no espaco euclidiano R”. Denomina-se multi-indice uma
n-upla ordenada de inteiros ndo negativos. Para cada multi-indice a = (a1, -, a;) associa-se um
operador diferencial

9%l

D= — ~—
0x;% -+ 9x,%’

ondelal=a;+---+a,.

Quando |a| =0, istoé a = (0,---,0), D% é operador identidade. Além disso, define-se a poténcia

a _ .01 a —
x%=x"xp", comx=(Xy,0 00, Xp).

1.1.1 Funcoes Testes

Para cada compacto K c R", defina Qg = {f € C*[R"); supp(f) < K}. Quando K c Q, Dk

pode ser identificado com um subconjunto de C*°(Q). Neste caso denotamos Pk := Dk (Q2).

Introduziremos uma topologia em C*°(Q2) que o transforma em um espaco de Fréchet, ga-
rantindo que 2 (Q2) seja um subconjunto fechado de C*°(Q) nessa topologia, sempre que K c Q.

E possivel construir uma sequéncia (Kj) jen de conjuntos compactos, tal que K; < int(Kj;1) e
o0

Q= U K;j. sobre C*(Q), define-se uma sequéncia de semi-normas p; dada por
j=1

p;(f) =max{|D*f(x)l; x€ K; e |a| < j}, paracada jeN. (1.1)
A sequéncia de seminormas definida acima gera uma topologia %, em C*®(Q), a qual é
localmente convexa e metrizavel. Além disso, para cada x € Q, o funcional
0,:C°Q) — R
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é continuo na topologia %.

Observe que, 2k (Q) pode ser descrito como a intersecao dos nlcleos dos funcionais 6, , com

x variando no complementar de K, ou seja
k(@) = () ker(y).
xeQ/K
Logo, 2k () é um subconjunto fechado de C*°(Q) na topologia %.

Por outro lado, podemos definir uma base local para %, considerando a seguinte sequéncia

de conjuntos:
) 1 .
Bj:{fec (Q); pj(f)<}}, VjeN.

Afirmamos que C*° (), equipado com a topologia £, é um espaco métrico completo. De fato,
seja (fj) jen € uma sequéncia de Cauchy em C*°(Q). Fixando I € N, temos fj — fi€ B, para jel

suficientemente grandes. Assim,
a a 1
ID®f; = D" fil < o para x € K, e |a| < m.

Logo, (D f}) jen converge uniformemente em cada compacto de Q para uma funcao g,. Em particu-
lar, Dofj = fj — 8o. Assim, gy € C*(Q), 8o = D%go e fj — g0 em Z,. Portanto (C*(Q), £p) € um

espaco de Fréchet, no qual cada 2k (Q), para K < QQ é um subconjunto fechado.

Equiparemos Ci°(€2) com uma topologia especial que o torna um espaco vetorial topolo-
gico localmente convexo. Essa topologia, embora ndo métrica, apresenta boas propriedades de

convergéncia e continuidade.

Inicialmente, note que

U Dk (Q) = C;°(QQ) = {f € C*™(QQ); supp(f) é um conjunto compacto de Q.
KcQ

Para C3°(Q2) definimos a sequéncia de normas

lollj = max{ID*@(x)|; xeQelal<jl, VjeN. (1.2)

Ao restringirmos essas normas a 2k (Q2) para um compacto fixo K, a topologia induzida coincide
com aquela gerada pelas seminormas p; definidas em (1.1). De fato, dado K c Kj, existe jo €N, tal

que, para algum j > jo, temos que [l¢|lj = p;(¢) para ¢ € 2¢(€2). Como

lollj<lelljiv1 e pjl@)<pji1(p), sempreque j> jo,

as topologias induzidas por qualquer sequéncia de semi-normas mantém-se inalteradas se consi-
deremos iniciando-se do indice ij. Estas duas topologias de 2k (Q2) coincidem. Portanto, temos a

seguinte base local

1
B} = {(pEQK; lpll < ;}
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Denotamos esta topologia por 7.

As normas definidas em (1.2) permitem construir uma topologia métrica localmente convexa
sobre C;°(©Q2). No entanto, esta topologia apresenta a desvantagem de nao ser completa. Para
superar essa limitacdo, definimos uma nova topologia localmente convexa em Cg°(Q2), chamada

topologia do limite indutivo e denotada por £.

A topologia £ é definida como a cole¢ao de todas as unides de conjuntos da forma ¢ + W =

{p+y, ye W}, comge C°(Q) e W e B, onde
p={W c C;°(Q), W é convexo balanceado e Zx N W € T para todo compacto K < Q}.

Teorema 1.1
A topologia £ torna C3°(€2) um espaco vetorial topolégico localmente convexo, sendo f uma base

local para Z.

Demonstracdo. Ver ((RUDIN, 1991), p. 152). O]

Definicao 1.2
O espaco das fungbes testes é definido como C3°(Q2) munido da topologia do limite indutivo . Esse

espaco é comumente denotado por 2(Q) = (C;°(Q), £).

Teorema 1.3

No espaco 2(Q) das funcoes testes, valem as seguintes propriedades:

(a) Um conjunto convexo e balanceado U € 2(Q) é aberto se, e somente se, U € .
(b) A topologia g coincide com a topologia de subespaco que 2k (Q2) induz sobre 2(Q).

(c) Se E c 2(Q) é limitado, entdo E c 2k (Q) para algum K c (, e existem constantes reais

M < oo tais que:

lollj=M; VoeE e VjeN

(d) Se (¢ ) jen € uma sequéncia de Cauchy em 2(Q), entéo (¢ ;) jen < Dk (Q2) para algum compacto
KcQ,e

lim flo;j—¢iln=0 VmeN.
Jjl—o0

(e) Sep; — 0em 2(Q), entao existe um compacto K < Q tal que, supp(p;) < K e a sequéncia
Pj pplp;
(D%;) jen converge uniformemente para zero sobre K, qualquer que seja j € N e o multi-

indice a.

(f) Toda sequéncia de Cauchy em 2(Q2) é convergente.

Demonstracdo. Ver ((RUDIN, 1991), p. 153). O
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Teorema 1.4
Sejam Y um espaco vetorial localmente convexo e T : 2(Q2) — Y uma aplicacao linear. As seguintes

condicoes sdo equivalentes

(@) T é continuo;
(b) T é limitado;
(c) Sep;— 0em D(Q) entdo, T(p;) —0em Y;

(b) Para cada compacto K c Q, arestricdo T|g, ) € continua.

Demonstracdo. Ver ((RUDIN, 1991), p. 155). O

1.1.2 Distribuicoes

Definicao 1.5
Denomina-se distribuicao qualquer funcional linear continuo T : 2(Q2) — C. O conjunto de todas as

distribuicoes é denotado por 2'(Q).

Se T é um funcional linear, € comum representar a avaliacdo de T em um ponto x de seu

dominio por (T, x) em vez de T (x).

Teorema 1.6

Seja T : 2(Q2) — C um funcional linear. As seguintes condicoes sdo equivalentes

(@) T é uma distriuicdo (isto é T € 2'(Q));
(b) Para cada compacto K < Q existe um inteiro ndo negativo i e uma constante C > 0 tais que

KT, )| < Cllgllj para cada ¢ € Dk (Q).

Demonstracdo. Ver ((RUDIN, 1991), p. 156). O]

Exemplo 1.7
Seja ue L) (Q). Ento,

T, 2Q) — C
p — fu(x)(p(x)dx
Q
€ uma distribuicao.

De fato. Sejam ¢, ¢, € 2(Q2) e A€ C. Entdo

<Tu,<p1+7t<pz>:fgu(x)(<p1+/1<pz)dx fQu(x)<p1(x)dx+/1fgu(x)<pz(x)dx

<Tu; (P1> + /1<Tur (P2>;
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o que prova a linearidade.

Para mostrar a continuidade, usaremos a caracterizacao do Teorema 1.6. Sejam K < Q um

compacto e ¢ € Y. Entao:

(T @) = ‘ fQ W) () dx

Sf Iu(x)l-lw(x)ldx:f lu(x)|-p(x)|dx.
Q K

Como o suporte de ¢ esta contido em K, temos:
leu(x)I lpx)ldx < max{lp(x)|; x€Q}- UKlu(x)Idx) = UKlu(x)IdX) “llgllo.
Portanto pela caracterizacao do Teorema 1.6 segue que T}, € uma distribuicao.

Munindo o espaco vetorial 2'(Q) das distribuicbes com a topologia fraca*, obtemos a seguinte

imersao continua L}OC(Q) — 92'(Q). De fato, defina

g .1l
Lloc

Q — 29

u — Tu .

Segue do Exemplo 1.7 que 9 estd bem definida e é linear. Além disso, 9 € injetiva. Com efeito,

sejam u, v E L}OC(Q) tais que T, = T,. Entao para cada ¢ € 2(Q) temos:

fu(x)(p(x)dx:f v(x)p(x)dx.
Q Q

Logo
f[u(x)—v(x)kp(x)dx:O, Yo eD(Q).
Q

Pelo Lema de Du Bois Raymond (Teorema A.1), segue que u = v em quase todo ponto de Q. Assim,

u=vemlL! Q).

loc
Por esta razao, identifica-se a funcao u € L}OC(Q) com a distribuicao T, por ela definida, e

diz-se a distribuicao u ao invés de T;,. Uma vez feita essa identificacdo, temos L}OC(Q) c2'(Q).

Agora mostramos que a imersao é continua. Sejam (u;);en € L}OC(Q) eue L}OC(Q) tais que

u; — uem L}OC(Q). Para cada compacto K < Q) e € > 0 dado, existe iy € N tal que:
f lu; (x) —u(x)|dx <e, semprequei = ij.
Q
Entao, dada funcao teste ¢ € P (Q), tem-se

Ty, — Ty, @) = Ug[ui(x) —u(x)]px)dx

sf()|ui(x)—u(x)|-|<p(x)|dx

Como ¢ tem suporte contido em K, segue que:

flui(x)—u(x)l-lq)(x)ldx < maXIq)(x)If lu;(x) — u(x)|dx.
Q xeK K
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Portanto
(Ty, — Ty, )| <max|p(x)|-e.
xeEK

Logo Ty, — Ty, em 2'(Q).

Existem distribuicoes que nao sao definidas por funcoes localmente integraveis. Para ilustrar,

considere, para cada xj € Q, a aplicacao

§1:2(Q) — C
¢ — @(xop).

Inicialmente mostramos que 6, € uma distribuicdo. De fato, sejam ¢, ¢, € 2(Q) e A € C. Temos:

(O xpr 1+ AP2) = (1 + A@2) (x0) = p1(x0) + A2 (x0) = (O x, P1) + A0 xy, P2).

Isso prova a linearidade.

Para mostrar a continuidade usamos o Teorema 1.6. Para cada funcao teste ¢, temos:

[{0 x> @Y = l(x0)| = max|p(x)| = ll@llo.
xeQ)

Portanto 6, € continua em 2(€).
A distribuicdo 6, € chamada delta de Dirac concentrada no ponto x.

Mostraremos, agora, que 0, nao é definida por uma funcao localmente integravel, isto &, que
nao existe ue L) (Q) tal que,

fQu(x)(p(x)dx:(p(xo), Vpe2(Q). (1.3)

Suponha, por absurdo que tal u exista. Seja ¢ € 2(Q2) uma funcao teste arbitraria, e considere

a funcao ¢ € 2(Q) definida por ¢(x) = ||x — xoll¢p(x). Pela hipétese de absurdo (1.3), temos:

fﬂu(x)llx— Xollp(x)dx =0, Ve (Q).

Pelo Lema de du Bois Raymond (Teorema A.1), concluimos que
lx — xollu(x) =0, em quase todo ponto x € Q.

Como ||lx — xp|l > 0 para x # 0, segue que u(x) = 0 em quase todo ponto x € Q). Logo u =0 em
L' (.

loc
Substituindo u =0 em (1.3), obtém-se ¢(x() = 0 para toda funcao teste ¢ € 2(Q), o que é um
absurdo. Portanto L;, (Q) € 2'(Q).

Existem também sequéncias de funcoes localmente integraveis que convergem para uma

distribuicdo T € 2'(Q), cujo limite ndo pode ser representado por uma funcdo localmente integravel.
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onde ¢; € Cg°(R") é definida por:

Um exemplo classico é dado sequéncia ((pj)jeN,

n 1
Cj"exp se |[lxll <~

)
ljxIz2-1)’
0, se [x|l=-,

J

¢j(x) =

-1
com C = ( (p(x)dx) , sendo ¢ : R" — C a funcao definida por
Rn

: )
exp|—=——1|, se [x[<1
b(x) = 4Mw4
0, se x| =1.

Observe que:
supp(¢p;) = B1/j(0):={xeR"; x| <1/j} e fRn(,bj(x)dx: 1 (1.4)

A sequéncia (¢ ;) converge, no sentido das distribuicoes, para a delta de Dirac §, concentrada

na origem. Isto é, para todo ¢ € 2(R"), tem-se
}R}((ﬁp(p) = (b0, ).

De fato, de (1.4), segue que

URn(Pj(x)w(x)dx—w(O)‘ UWcbj(x)qJ(x)dx—fRncbj(x)qo(O)dx

IA

f_</>j(x)|<.0(x) —@0)ldx

By/(0)

Como ¢ € 2 (R™), ela é uniformemente continua. Assim, dado € > 0, existe § > 0 tal que | (x)—¢@(0)| <

£, sempre que || x| < 6.

Escolhendo jy =1/9, para j > jj, temos:

S[ bj(X)Npx)—@0)ldx <¢,

By,;(0)

U[Rn ¢i(xX)px)dx—¢(0)
Portanto
lim (¢}, ) = 9(0) = (0, 9,

0 que prova que ¢; — o em 2'(R").

Assim, concluimos que

(pj€L1

10c(Q), Yj €N, mas ¢; — o em 2'(R").
Mais geralmente, para 1 < p < co temos a seguinte cadeia de imersdes continuas:

Q) — L7 (Q)—2'(Q),

sendo cada inclusao densa na seguinte.
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Definicao 1.8
Sejam T € 2'(Q) uma distribuicdo e @ um multi-indice arbitrario. A derivada D*T de ordem a de T

€ definida como

(DT, ) = (-1)!T, D%p), Vpe2(Q).

Inicialmente, sem nos preocuparmos em provar que a derivada distribucional de uma dis-
tribuicio é de fato uma distribuicdo, podemos observar, que para uma distribuicido T € 2'(QQ) e

multi-indices a e B, vale a seguinte relacao

DDPT =D PT=DpPpOT

O préximo resultado garante que essa definicao é bem fundamentada.

Proposicao 1.9

A derivada de uma distribuicao é uma distribuicao.

Demonstracdo. Sejam T € 2'(QQ) e @ um multi-indice. Definimos

D*T:9(Q) — C
¢ — (=D'®(T,D%p).

Primeiro, operador diferencial D% mapeia continuamente 2(Q) em 2(Q), e portanto D*T
esta bem definida. A linearidade do operador D?T segue diretamente da linearidade da derivada

para funcoes infinitamente diferenciaveis e da linearidade do funcional T.

Para provar a continuidade, consideremos que, por ser T € 2'(Q), para cada compacto K < Q)
existe um numero inteiro nao negativo j, e uma constante real C tal que |(T, )| < Cllelj, qualquer

que seja ¢ € Dk (Q). Logo, para todo ¢ € D (Q2), temos:
(DT, )| = |(-1)1*(T, DYp)| = (T, D*p)| < CID%pllj, < Cllgll jo+|al-

Aqui utilizamos o fato de que, para todo multi-indice g:

ID%oll;, =r;1€a5<{|Dﬁ(D“<p(x))l; 1B < jol r)gleadcﬂDﬁ”(p(xn; 1Bl < jo}

< max{IDP*%px)l; 1B+ al < jo+lal}.
xeQ
Portanto, D*T é continuo, concluindo que D* T é uma distribuicao. O

A derivada de uma distribuicdo definida por uma funcao localmente integravel ndo é necessa-
riamente identificada com uma funcao localmente integravel. Este fato sera ilustrado no exemplo

abaixo e motivara a introducao de uma classe relevante de espacos de Banach.
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Exemplo 1.10

Considere a funcao de Heaviside u, definida como

1, sex>0
u(x) = .
0, sex=<0

A funcao u é localmente integravel, mas a sua derivada u’ no sentido das distribuicdes ndo é

localmente integravel. Com efeito, para cada ¢ € 2(R), temos

oo t
W) =-Nu,¢") = —f u(x)g'(x)dx = —f ¢'(x)dx=— tlimf @' (x)dx
R 0 —0o0Jo
como ¢ tem suporte compacto, do Teorema Fundamental do Calculo, obtém-se
W', ) = = lim [ (1) = p(0)] = (0) = (Do, p); Y € DR

Logo u' = 6. Concluimos, assim, que u’ ndo é definida por uma funcio localmente integravel.

Um observacao final € oportuna. Se u € C™(R"), para cada multi-indice a < |m|, a derivada
D%u no sentido das distribuicoes coincide com a derivada de u no sentido classico. Em termos de
distribuicoes, isso equivale a afirmar que D*T,, = Tpa,,. De fato, para qualquer multi-indice |a| < m

e ¢ € 2(Q), integrando por partes, Obtemos:

(Tpay, ) = f D*u(x)p(x)dx = (-1)!* f u(x)D%p(x)dx (-1)'NT,, D% )
R” R

(D*Ty, @),

Isso demonstra a igualdade D*T,, = Tpa,, como afirmado.

1.2 Os Espacos de Sobolev

O matematico russo Sergei Lvovich Sobolev, definiu uma nocao de derivada para funcoes

integraveis da seguinte maneira:

Uma funcdo u € LP(Q) possui derivada fraca se, e somente se, existem fungées g1,---, g, €
LP(Q) tais que

0p(x)

f u(n 22 - —f g/ dx, Yo e C(Q).
Q Ox;j Q

Essa nocao de derivada coincide com a apresentada na Definicdo 1.8, quando aplicada a funcoes

localmente integraveis.

Na secao anterior, vimos que uma funcao localmente integravel possui derivadas de todas

as ordens no sentido das distribuicoes, embora essas derivadas nem sempre pertencam a L}OC(Q).

Consequentemente, funcdes em LP(Q) podem ndo admitir derivadas fracas, no sentido de Sobolev,
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de determinadas ordens. Esse fato levou Sobolev a introduzir uma importante classe de espacos
de Banach, denominadas espacos de Sobolev, que serdao formalizadas nesta secao. Também apre-
sentaremos o espaco dual de um subconjunto dos espacos de Sobolev, o qual impoe restricoes
aos seus elementos e é continuamente imerso no espaco das distribuicoes. Esses conceitos sdo
fundamentais para a analise de condicdes de contorno em problemas modelados por Equacoes
Diferenciais Parciais.

1.2.1 Espacos de Sobolev

Definicao 1.11
Sejam m um inteiro ndo negativo e p um namero real estendido, com 1 < p < co. O espaco de Sobolev
WP (Q)) é definido como o espaco vetorial das funcées u € LP(Q) cujas derivadas distribucionais

D%u pertence a L”(Q), para cada multi-indice |a| < m. Formalmente,

W™P(Q) ={ueLP(Q); D*ue L’ (Q), e |a|l < m}.

Os espacos de Sobolev WP (Q) sdo espacos normados. Para 1 < p < oo, a norma associada é
dada por:

I llwmp): WTPQ) — R

1
p
u — ”u”Wmvp(Q):( Z ”Daunfp(ﬂ)) .

lal=m

Quando p = oo, a horma é definida como:
I lwmeoiqy : W(Q) — R
u — |lullwmeoq) = max [|D¥ull z~q)
lal=m
A seguir provamos que essa norma é completa.

Proposicao 1.12

O espaco de Sobolev WP (Q)), munido da norma acima, € um espaco de Banach.

Demonstracdo. Consideremos o caso em que 1 < p < oo. O caso p = co segue por argumentos
similares e sera omitido. Seja (u;) jeny uma sequéncia de Cauchy em WP (Q). Provaremos que

(1) jen converge para uma funcao ue WP (Q).

Como (u;) jen € Cauchy, dado € > 0, existe jo € N tal que
ltj = willfymp iy <€ Sempre que j,1> jo.
Logo, para cada multi-indice |a| < m, temos:

a a p a a p _ . p
”D u]_D ul”Lp(Q)Sl |Z ”D u]_D ul”Lp(Q)— ”u]_ulllwm,p(g)<£;
al=m
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sempre que j, I > jj.

Portanto, (D%u;) jen € uma sequéncia de Cauchy em LP(Q2). Como LP(Q2) € completo, para
cada |a| = m, existe uma funcao u, € LP(Q) tal que D%u; — uq em LP(Q).

Agora, seja u a funcao correspondente a u.... g). Mostraremos que D*u = u, para cada
multi-indice || < m. Sabemos que D%u; — uy, em LP(Q) 2'(Q). Em particular, uj:= Douj —u
em 2'(Q2). Como o operador derivada é continuo em 2'(Q2), temos que D*u; — D%u em 2'(Q).

Portanto, da unicidade do limite em 2'(Q2), segue que D%u = u,.

Finalmente, provamos que u; — u em WP (Q). Dado ¢ > 0, para cada |a| < m, existe j, € N

tal que

IID“uj—D“ulll’f,,(Q)< , sempreque j > jq.

&
Y o1
lal<=m
Assim, para j > max{j,; |a| < m}, temos:
||uj—u||’v’,,,,l,,,(9):| |Z ID%uj = D%ull}, o) <.
als=m

Logo, uj — uem W™P(Q), e portanto W""P(Q) € um espaco de Banach.

]

No caso particular em que m =0, o espaco W*?(Q) coincide com L”(Q). Jd quando p=2, 0
espaco de Sobolev W2(Q) é comumente denotado por H™(Q). Este espaco, quando munido do

produto interno

(W, vy = Y. (D*u,D*V)2(q), Yu,ve H™(Q).

lal=m
possui uma estrutura de espaco de Hilbert.

Um aspecto relevante da estrutura topolégica de WP é sua compatibilidade com as funcoes
teste, o que se traduz na validade da imersdo continua 2(Q) — WP (Q). Isso equivale a dizer que
o operador inclusao

T:2(Q — W™P(Q)
(p e (p.
é continuo.

Para verificar esta propriedade, considere uma sequéncia (¢;) jen de funcées em C3°(Q) tal
que ¢; — 0 em 2(Q). Nesse contexto, existe um compacto K < Q tal que supp(¢;) < K e para
qualquer multi-indice a, temos D% ; — 0 uniformemente em K. Isso implica que, dado € > 0, existe

um jo € N tal que, para todo x € K, temos

|ID%p(x)| <&, sempreque j> jg.
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Comisso, paral < p<ooe meN, temos

g g v
||<p,-||wm,p(m=( ) ||D“<p,-||’z,,m)) :( ) |D“<pj(x)|'”) <( > (e-med(K))”) ,

lal<sm lalsm lal<sm

sempre que j > max{j,; a < m}

Portanto T'(¢;) = ¢; — 0 em W"P(Q). Assim, do Teorema 1.4, segue que a imersao 2(Q) —

WP (Q)) é de fato continua.
Quando p = oo, 0 resultado segue de maneira analoga.

No curso de Teoria da Medida, sabe-se que, para 1 < p < oo, 0 espaco C;°(€2) munido de sua
topologia natural dada pela norma da convergéncia uniforme, é denso em L”(Q). Por outro lado o
espaco Cg°(Q2) é denso em L*°(Q) com respeito a topologia fraca o (L°°,L1). Assim, a partir do que
foi discutido anteriormente, concluimos que 2(Q2) é denso em LP(Q). Como |l ullzrq) < lullwmrq),
temos W™P(Q) — LP(Q). Contudo, o espaco C3°(€2) ndao denso em W™ P(Q). Este dltimo fato

motiva a definicao apresentada a seguir.

Definicao 1.13
Seja m um inteiro ndo negativo e sejam p e g numeros reais estendidos taisque 1 < p<oo,g>1e
1,1 _ ine-
sty 1. Define-se
wmP(Q)

Wy"P (@) = CP©Q) )
onde o fecho é tomado na norma de W,"” (Q).
Quando p =2, utiliza-se a notagao HJ"(Q) := Wom’z(Q).
Além disso, define-se W~"29(Q) como o dual topolégico forte [W,""]" de W,"*(Q). De

maneira analoga, o dual topolégico de Hg’l(Q) é representado por H~""(Q)).

Proposicao 1.14

Seja (¢ ;) jen Uma sequéncia de funcdes testes tal que @ ; — 0 em 2(Q). Entdo ¢; — 0 em W, " (Q).

Demonstracdo. Como ¢; — 0 em 2(Q), existe um compacto K c Q tal que supp(¢;) < K para todo

j €N. Além disso, D% — 0 uniformemente em K quaisquer que seja o multi-indice a. Assim,

lpilympy = 2 1D g = Y. | ID%@j)1Pdx= 3 | ID%;x)|Pdx

lal<sm lal=smYQ lalsmYK

Utilizando a uniformidade no compacto K, temos:

lpilympy = 2. | 1D%@;0)IPdx< 3 sup|D%p;(x)|”- med(K).

lal=smYK lal=m x€K

Como para cada j € N e cada multi-indice a, D% — 0 uniformemente em K, segue que

)" sup|D%p;(x)|” — 0.

la|=m xeK

Logo 191 ym,pqy = O- Isto &, ¢ — 0 em WP (Q). O
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Corolario 1.15
Se T e W™™4(Q), entdo Tig ) : 2(Q) — C é uma distribuicao.

Demonstracdo. Seja (¢ ) jen Uma sequéncia em 2(Q) tal que @;— 0em 2(Q). Da Proposi¢ao 1.14,
segue que ¢; — 0 em Wom’p(Q). Assim, (T,¢;) — 0. Portanto, pelo Teorema 1.4, conclui-se que
T|@(Q) € 9,(9) ]

Proposicao 1.16
A aplicacao linear
T W) — 2'Q)

T — Tgw

é injetora e continua.

Demonstracdo. Sejam Ty, T, € W™™9(Q) tal que I (Th) = T (T»), isto &, (T1)2) = (T2)2(q)- Como
W, P (Q) € denso em W™P(Q), dado u € W, """ (Q), existe uma sequéncia (¢ ;) jen = 2(Q) tal que

@pj— uem W"™P(Q), e, pelo fato de (T1, ¢ ;) = (T2, ¢}), tem-se
(Ty, uy =lim(Ty, @) = im(T2, @ ;) = (1>, u).

Logo, T1 = T», o que prova a injetividade da .

Resta mostrar a continuidade. Considere uma sequéncia (T;) jen € W~ ""9(Q2) uma sequéncia

tal que Tj — 0 em W="49(Q). Assim, para cada j € N, tem-se

KT, ul
I Tillw-ma) = sup =
uEWOm'p(Q)/{O} ” u” wnmp(Q)

Portanto, (T}, u) — 0 para todo u € Wom’p(Q). Em particular, (T}, ) — 0 para cada ¢ € 2(Q)), o que

garante que T; — 0 em 2'(Q). Assim, I é continua. L]

Devido a Proposicao 1.16, temos a seguinte inclusao continua:
W_m’q(Q)@(m —2'(Q),

onde W4(Q),, o = {Ti,q; T €W ™I (Q)},

Sempre que mencionarmos uma distribuicdo T € W~"49(Q), consideraremos implicitamente

sua restricao T, -

Apresentamos agora uma série de resultados fundamentais para a obtencao das estimativas
necessarias a abordagem dos problemas que serao tratados nos capitulos finais deste trabalho. Esses
resultados fornecem maneiras de definir normas em Wom'p(Q) que sao equivalentes a norma usual
de W™P(Q) quando restrita ao subespaco W, """ (Q).
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Teorema 1.17 (Desigualdade de Poincaré)
Seja Q c R um aberto limitado em alguma direcao x; e seja pr;(Q) < (a, b) a sua projecdo nessa

direcdo. Entdo paratodo u e H& (Q), tem-se

flul dx<(b- a)zf

Demonstracdo. Ver ((MEDEIROS; MIRANDA, 2000), p. 36). ]

2
dx

le

Se O cR" é um aberto limitado, a Desigualdade de Poincaré pode ser aplicada em todas as

direcoes x1,- -+, x;. Assim, obtemos:

1/2
ou |?

d
axl o

lull2q) < C(Z

para alguma contante C > 0 que depende da limitacdo de Q2 em cada direcdo do espaco R”. Essa
desigualdade define uma norma para espaco H& (Q), equivalente a norma usual de H'(Q) restrita a
H; (Q).

Corolario 1.18

Sejam Q < R” um aberto limitado e m € N. A fungao

||'||H6"(Q):H(I)W(Q) — R

D=

lal=m
define uma norma no espaco H{"(Q), equivalente a norma usual de H™(Q) restrita aos elementos
de H™(QY).

Demonstracdo. Ver ((MEDEIROS; MIRANDA, 2000), p. 37). O]

Mais geralmente:

Proposicao 1.19
Sejam Q < R um aberto limitado, 1 < p <oco e m € N. A fungao

I gy W 7 (@) — R

1

al=m

define uma norma no espaco Wom’p(Q), equivalente a norma usual do espaco WP (Q) restrita a
w,"P ().

Demonstracdo. Ver ((MEDEIROS; MIRANDA, 2000), p. 36-38). O
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Proposicao 1.20
Sejaue H02 (Q), onde Q cR"™ é um aberto limitado. Entdo existe Cy > que depende da limitacdo Q
tal que:

lullr2q) = CollAullz2(qy

Demonstracdo. Note que:

ou 021 6%u
1Aul?, o = f(z ax) Z ( ) 2% anZax dx. (1.5)

i=1 i<j

Como u € Hy(Q), da Férmula de Green, segue que:

02u 02 ou o8 0%u |
f—u—udx:— ou “ dx:f( “ ) dx. (1.6)
Q 0x2 02x§ Q 0x; ax,-ax§ a\0x;x;j

Assim, de (1.5) e (1.6), segue que:

62
A7z, = Z ( axixj) : (17)
) ou 1 « : . L
Como H(Q), temos que u, e H(Q). Entao da desigualdade de Poincaré, existem constan-
~ i
tes C,C > 0 tais que:
gy < VUl e |24 <e@ “(5v) 2 (1.8)
e L 0xillr2 0xi )l 2y '
Portanto, das desigualdades (1.7) e (1.8), segue que:
o%u \*
I3, < C ( ) = CollAull?, (),
L2@) = >0 UZI o \0x;x; 0 L2
onde Cy = CC. O

Corolario 1.21

Sejam QQ c R” um aberto limitado. A funcao
. . 2 —_—
” ”Hg(Q) . Ho Q) R
u r— ”Au”L2(Q)

define uma norma no espaco HO2 (Q), equivalente a norma usual de H?(Q) restrita aos elementos de
HX(Q).

Teorema 1.22 (Desigualdade de Poicaré-Wirtinger)

Seja Q0 c R” um aberto limitado regular de classe C!. Entio existe uma constante C > 0, tal que

1 p n Pd Up
Uu—————— | u(x)dx =C f -
” med () ];2 P (Q) l:zl Q

No caso Q = (a,b) cR, tem-se C=2(b—a)

ou
ax,-

Demonstracdo. ver ((ATTOUCH; BUTTAZZO; MICHAILLE, 2006); p. 173). O
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1.2.2 Imersoes de Sobolev

A fim de introduzir as imersoes do tipo Sobolev em um aberto limitado Q < R”, definiremos,
no restante desta secao, uma condicdo de compatibilidade para o aberto Q. Essa condicao permitira
construir um operador de prolongamento, que tem como objetivo transferir as imersoes continuas
existentes nos espacos WP (R") (ver ((CAVALCANTI; CAVALCANTI, 2009), p. 146, 152, 166)) para 0s
espacos WP (Q).

Definicao 1.23

Diremos que um conjunto aberto limitado Q c R” é regular (de classe Ck), se sua fronteira I = 4Q
for uma variedade de classe C* de dimens3o n — 1, estando Q inteiramente de um lado de T'. Isto
significa que, para cada ponto x, € I" existe um namero real r >0 e uma funcao ¢y, : R* ! —C,de

classe C¥, tais que:

QN Br(xp) ={(x1, -+, Xn) € Br(X0); Xn > Qxy(X1,-++, Xp-1)}.

Sejam Q < R” um aberto limitado regular e Q o retangulo aberto:
Q=1{y1,,yeER, 0<yj<lparaj=1,---,n-1,e -1<y, <1}
Definimos os subconjuntos abertos Q* e Q7, e a hipersuperficie Z, como

Q" =Qn{y,>0}, Q =0Qn{y, <0}, Z=Qn{y, =0}

Se considerarmos um ponto x € I, entdo existem uma vizinhanca limitada U, c R” de x e uma

aplicacao ¢, : U, — Q tais que:

(a) ¢y € uma bijecdo de U, sobre Q.
(b) @y e (p;1 possuem derivadas parciais continuas até a ordem k.

(© @x(UxnQ)=Q", ¢ (UNR"/Q)=Q~, px(UxnT)=2.

As condicdes (a) e (b) garantem que ¢, : Uy, — Q é um difeomorfismo de classe C*. Além disso,

exigimos a seguinte condicdo de compatibilidade:

(d) Se (Ui, 1) e (Ua,p,) sao pares que satisfazem as condicdes (a), (b) e (c), com U, n U, # @,
entao existe um homeomorfismo diferenciavel J;» de ¢ (U; N Uy) sobre ¢2(U; N U>), com

jacobiano positivo, tal que:
P2(x) = J12(p1(x)), Vxe Uy NUs.

Seja Q < R"™ um conjunto aberto limitado regular. A fronteira I' = 0Q2 € um compacto de R".

Consequentemente, existe um sistema finito de cartas locais {(Uj, )} 1<j<m para I'. Com essas
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cartas locais, é possivel construir uma particio da unidade C* subordinada a cobertura {U;}o<i<m,
jsosj

onde Uy = Q. Essa cobertura é tal que:

m —_—
Uuj|=|Qu >Q.
j=0

m
Uu;
j=1

Denotamos as funcoes dessa particao por 6,61, --,0,,. Assim, essas funcoes satisfazem as
seguintes propriedades:
0;eCy, ¥j=0,1,---m.
Supp(HO) CQ; SUPP(QJ) c U]’ V] = ]-) , .
0<6;<1, Vj=0,---,m.

m —_—
Y 0i(x)=1, YxeQ.
j=0

Figura 1 - Aberto regular

Referéncia:(CAVALCANTI; CAVALCANTI, 2009)

Teorema 1.24

Seja Q um aberto limitado regular. Existe um operador linear e continuo
P:W™P(Q) — W™P[R™Y),

Chamado operador de prolongamento, tal que, para todo ue€ W™P(Q) temos P(u) = u, em quase

todo ponto de Q.

O Teorema anterior permite herdar certos resultados de imersoes ja conhecidos para os espacos

de Sobolev WP (R™), como veremos a seguir.

Teorema 1.25

Seja Q2 um aberto limitado regular do espaco R". Para n = 2 temos:

(a) W™P(Q) — L9(Q), quando mp<ne L=

m
q n’

T |
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(b) W™P(Q) — L1(Q),quando mp=ne p < q < oo.
(c) wmP(Q)— CcKA(Q), quando mp > n,com keNtal que k< m— % <k+1,e:
. 0<Am—k—%,se m—k—%<1,
e 0<A<1,casom-—k —%:1.
Demonstracdo. ver ((CAVALCANTI; CAVALCANTI, 2009), p. 208). O

Corolario 1.26

Selsp<oo,mp<neps<qgs pp,entéoW”’”’(Q)wL"(Q).

n-m
Demonstracdo. ver ((MEDEIROS; MIRANDA, 2000), p. 46). O]

Teorema 1.27

Seja I um intervalo aberto limitado de R. Entao:

(a) W™P(I)— C™ A1), com0<A<1 —% el<p<oo.

(b) Wml() — Cc™b1(]).
Demonstracdo. ver ((CAVALCANTI; CAVALCANTI, 2009), p. 209). O

Os resultados de imersao apresentados anteriormente, aliados a estrutura de aberto limitado

regular, permitem obter os seguintes resultados de compacidade:

Teorema 1.28 (Rellich-Kondrachov)

Sejam Q um aberto limitado regular do espaco R”. Paran=2e 1 < p < oo, temos:

(@) wir) “LF L), sempreque p<nel<g< n"Tpp.
(b) WlP(Q) iRy L9(Q), sempreque p=nel<qg<oo.

() wir@) ‘L co@), sempre que p > 7.

Demonstracdo. ver ((MEDEIROS; MIRANDA, 2000), p. 79). O

Corolario 1.29
Sejam Q um aberto limitado regular de classe C" do espaco R, n=2e 1 < p < oco. Entdo

(a) wmtLrq) ‘8P wmaq). sempreque p<nels<gqg< n"Tpp.

1 comp
(b) WLP(Q) — W™4(Q),sempreque p=nel<gqg<oo.

1 comp —
(c) Wm+LP(Q) — C™(Q), sempre que p > n.
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Demonstracdo. ver ((MEDEIROS; MIRANDA, 2000), p. 84) O

Teorema 1.30

Seja I um intervalo aberto limitado de R. Ent3o:

(@) WP “LP O, onde 1< p = 0.

(b) Wi L L9(D), onde 1< g < oo.

Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 221). O

1.2.3 Distribuicoes Veoriais e Espacos de Sobolev Vetoriais

Nesta subsecdo, definiremos a importante nocado de distribuicao vetorial. Estudaremos uma
relevante classe de funcdes vetoriais, a saber, o espaco L”(7, T; X). O mesmo é ambiente natural
das funcoes utilizadas no problemas de evolucao, onde consideramos funcoes u, com duas variaveis
(tempo, t e posicdo, x) tais que, a funcdo ¢t — ||u(?)| (onde, [u(1)](x) = u(x, t)) seja integravel.
Além disso, veremos que as funcoes em LP (1, T; X), definem distribuicoes vetoriais e enunciaremos

resultados sobre esses espacos, que serao usados nos problemas apresentados nesta tese.

Existe uma nocao de integral para funcées definidas em Y e tomando valores em X. Esta
integral é chamada integral de Bochner. Para uma exposicdo completa deste assunto ver ((YOSIDA,
1965), capitulo 5). Nos limitaremos a estudar o caso em que Y = [, T]. Isto &, funcdes do tipo

f:lr,T] — X, onde 7 < T sao numeros reais € X € um espaco de Banach.

Teorema 1.31 (Teorema de Bochner)
Uma funcao fortemente mensuravel f : [t,T] — X é integravel se, e somente se, a aplicacao

t— || f(1)|l € somavel. Neste caso,

T
f fde
T

Além disso, para cada ¥ € X/, tem-se

T T
<\yf f(t)dr>:f ¥, f() dt.

Demonstracdo. Ver ((EVANS, 2010), p. 650). O]

T
sf \fOldt.
T

Definicdo 1.32
Sejam X um espaco de Banach e 1 < p < co. Denota-se por L (7, T; X) o espaco vetorial das (classes

de) fungdes f: (r, T) — X fortemente mensuraveis, tais que a funcao, t — |u(t)|l € LP ((r, T)).

Munimos o espaco vetorial L”(z, T'; X) com a norma definida por

1

T g
”f”LP(T,T;X):(f ||f([)||§dl‘||xdt , VfelLP(1,T;X)sel<p<oo,
T
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Il fllzor,m:x) = ess sup I f(Dllx, feL®,T;X).

T<t<T

O espaco vetorial LP(t, T; X) é um espaco de Banach. Em particular, o espaco L?(z, T; X) é um

espaco de Hilbert guando munido do produto interno definido por:

(f, 812613 =fTT<f(t),g(l‘)>xdt, Vf,gel’T,T; X).
Definicao 1.33
Seja f € LY(7, T; X). Dizemos que uma funcio g€ LY(, T; X) é a derivada fraca de f, e escrevemos
g = f' quando
T T
fT o' () f(dt= —fT g dt,

para todo funcao teste ¢ € 2((0, T)).

Definicao 1.34
Sejam X um espaco de Banach e 1 < p < co. Definimos o espaco de Sobolev vetorial W7 (7, T; X)

da seguinte forma:
WYP(r, T;X) = {fe LP (1, T; X); f' existee f € LP(t, T; X)},

munido da norma definida por
T »
Il wr ) = (f IFoN%+ 1 ol de] , YfeW P, T;X)sel<p<oo,
T

I lwreo, 7o) = €ss sup (IF@Ix+ 1 @Olx), feW'™(, T; X).

T<t<T

Os espacos WP (0, T; X) sdo Banach. Em particular, o espaco H'(0, T; X) := W12(0, T; X) é

um espaco de Hilbert.

A seguir apresentaremos um resultado de compacidade, de suma importancia no estudo de

Equacoes Diferenciais Parciais ndo lineares.

Teorema 1.35 (Teorema de Aubin-Lions)

Sejam X,Y e Z espacos de Banach tais que:

(a) Y e Z s3o reflexivos.

comp

b) Y — XeX—Z.
Sejam pg e p; numeros reais taisque 1 < p, <oco e 1 < p; <oo. Entao
W=WPOPL(O, T;Y; Z):={f € LP°(1, T; Y); f € LP' (7, T; Z)}
munido da norma definida por

Ifllw = o vy + W f ey YfEW

, comp
é um espaco de Banache W — LPo(7,T; X).
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Demonstracdo. Ver ( (LIONS; ROBERT; DAUTRAY, 2000)). O]

Definicdo 1.36
Sejam X uma espaco de Banach. Definimos o espaco das distribuicoes vetoriais sobre (7, T) com

valores em X por

' (1, T;X)={T:2((1,T)) — X; T élinear e continua}

Fixe f € LP(z, T; X) e defina,
Yr:92(1,7) — X
T
Q — ff(t)(p(t)dt.
T

A aplicacéo f—— W € linear, continua e injetiva. Assim, temos a seguinte imersao: LP(z, T; X) —
92'(1, T; X).

Definicao 1.37

Seja ¥ € 2'(t, T; X) uma distribuicido. A derivada ‘f;—tf de ordem n de ¥ é definida pela seguinte

a"y n d"

expressao

Proposicao 1.38
Seja H um espaco de Hilbert. Se uma funcgao f € L[%(t, T, H) e sua derivada fraca fe [%(t, T; H),
entdo existe uma funcao g: (r, T) — H continua tal que f(7) = g(1), g.t.p em (7, T). Além disso,

no sentido das distribuicoes em (7, T'), obtemos
%mmi] =2(f'(0), f()yy em D' (z, T; H).
Aigualdade acima esta bem definida, desde que as funcoes
t—IfOlu e t— (', f(1))

sejam ambas integraveis em (7, T).

Demonstracdo. Ver (Temam (TEMAM, 1974), pagina 261). O

1.3 Distribuicoes Temperadas e Espacos de Sobolev Fracionario

Nesta secao, apresentaremos o espaco de Schwartz, as nocoes de distribuicdo temperada e a
transformada de Fourier, conceitos fundamentais para a definicio de uma nova classe de espacos
de Hilbert: os espacos H*()), onde s =0 é um numero real. Além disso, com o objetivo de analisar
o comportamento de funcoes submetidas a condicoes de contorno, definiremos formalmente os

espacos ambientes para funcoes definidas na fronteira 0Q de uma aberto regular Q.
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1.3.1 Distribuicoes Temperadas

Definicao 1.39
O espaco de Schwartz, também conhecido como espaco das funcées rapidamente decrescentes e

denotado por S(R"), é o subespaco vetorial formado pelas fun¢des ¢ € C*°(R") tais que:
lim |xIl/ D%p(x) =0,
| x|l —o0

para todo inteiro ndo negativo j e todo multi-indice a.

O conjunto das funcdes infinitamente diferenciaveis de suporte compacto, C3°(R"), € um
subconjunto do espaco de Schwartz S(R"). Com efeito, seja ¢ € C°(R™). Existe um compacto K < R"
tal que supp(p) c K. Considere uma constante r > 0 tal qual K c B, (0). Assim, para qualquer € >0,

inteiro nao negativo j e multi-indice a dados, temos:
Ix/|ID%p(x)| =0 <€, sempreque |x| > r.
Portanto,

lim x|/ D%p(x) =0.

x| —o0

Isto é, p € S(R™).

Prova-se que o produto de funcdes em S(R") pertence a S(R"). Além disso, D%p € S(R")
quaisquer que sejam a funcao ¢ € S(R™) e o multi-indice a. Para estabelecer uma estrutura topolégica

em S(R") que o torna um espaco de Fréchet. introduzimos a familia de semi-normas

Pm.j() = max sup (1+ 1x1%)7 D% (X)),

=M ycRn

onde j e m sao inteiros nao negativos.

Essa familia enumeravel de semi-normas, confere ao espaco uma topologia metrizavel, local-

mente convexa e completa, tornando-o um espaco de Fréchet (ver ((RUDIN, 1991), p. 184)).

Sempre que mencionarmos o espaco de Schwartz S(R"), consideraremos implicitamente essa

topologia, conforme descrito.

Proposicao 1.40

Se 1 < p <00, entdo a imersao S(R") — LP(R") é continua. Além disso, para 1 < p < oo, 0 espaco
S(R™) é denso em LP(R™). Consequentemente, o espaco das funcoes testes Z(R"), é denso em
S(R™).

Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 55 € p. 56). O

Definicao 1.41

Uma distribuicdo temperada é um funcional linear e continuo T : S(R"") — C definido sobre o
espaco de Schwartz. O conjunto de todas as distribuicoes temperadas, munido da topologia fraca*,
¢é denotado por S'(R").
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Exemplo 1.42
Qualquer funcdo u € L?(R™) onde, 1 < p < oo, define uma distribuicdo temperada. De fato, considere

T,:SR" — C

p — fwu(x)go(x)dx.

Alinearidade de T, é imediata pela definicao da integral. A continuidade é analisada em trés

Casos.

Caso 1 < p < oo, seja g um numero real tal que % +% = 1. Entdo, para cada j > %, temos
A+ 1xI*) 77 e LI®RM.

Usando a desigualdade de Holder, segue que

IA

Ty, @) fwm 1212 10 - [ux)]- (1 + | xI1?) dx

< sup |+ 1x1%7 @) lullr@n - 1L+ 11277 | Lagn.
xXeR"

A

Se caso p =1, temos

KTw, @) = ll@ll Loy - 11l L1 ey,

Finalmente, no caso em que p = oo, para j > g temos,

(T )] < sup |1+ 1x1%) - @) - el peony - 1+ 112 7 1l 11 ey -

xeR”

Assim, em qualquer caso, dada uma sequéncia (¢;) ;e < S(R™), com @; — 0 em S(R"), tem-se

(Ty, @) — 0. Portanto T, é continua.
Além disso, a aplicacao
T:LPR" — S@®R"Y
u — Ty

é linear, continua e injetora.

Da Proposicao 1.40 e do exposto acima, temos

S(R") — LP(R™) — S§'(R™), para 1<p<oo.

Apresentaremos agora a transformada de Fourier de uma funcio pertencente ao espaco L' (R")
e sua extensdo para o espaco L?(R"). Essa generalizacio permitira definir a transformada de Fourier
para distribuicoes temperadas e, por meio de caracterizacdes apropriadas, estender a norma do
espaco H™(R™) para valores de m nao inteiros, atribuindo sentido a esses espacos com expoentes

fracionarios.
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Definicao 1.43

Seja u e LY (R™). A transformada de Fourier de u é definida pela funcio

u:R" — C

—2mi{x,y)

y — e u(x)dx,

Rn

n
onde i?=-1e(x,y)= Y x;y; é o produto interno usual em R".
=1

A transformada de Fourier esta bem definida para qualquer u € L' (R"), pois

la(y)| = ‘f e 2 yx)dx
Rn

<[ |e7#miton). |u(x)|dx:f lu)ldx = l[ull g1 gny < 0o.
R R

Portanto, a transformada de Fourier é uma ferramenta bem fundamentada em L!(R").

A seguir, apresentaremos propriedades fundamentais da Transformada de Fourier, as quais

permitem sua extensdo aos espacos L?(R") e as distribuicdes temperadas

Proposicao 1.44
Se ¢ € S(R™), entdo ¢ € S(R™). Além disso, o operador

¥:SRY) — S[RY

Y — @
€ um isomorfismo topoldgico, cuja a inversa é o operador

v SRYH — SRY

¢ — @
dado pela transformacao de Fourier inversa que é definida por:
P =P(-y) :f MO p(x)dx.
Rn
Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 64). O

Teorema 1.45 (Plancherel)

Existe uma Unica bijecao isométrica
@ :L*R") — L*(R")
tal que 2(¢) = @, para todo ¢ € S(R™).

Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 68). O
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Observe que, dado u € L (R™) n L?(R"), temos &l € L*(R™). Além disso, de Plancherel (Teorema
1.45), decorre que %l 2y = llullf2(qy- Por outro lado, se u € L?(R™), existe uma sequéncia de
funcdes testes (1) ey € 2(R™) < L'([R™) N L*(R™) tal que [lu — u;ll ;2 @n — 0. Logo, (u;)en € Cauchy
em L?(R"), e portanto (ii;)en € Cauchy em L?(R™). Assim, podemos definir a transformada de

Fourier de uma funcdo u € L>(R"), pondo # := lim &; em L?(R").

Definicdo 1.46
Seja T € S'(R™) uma distribuicio temperada. A transformada de Fourier T da distribuico T é definida

por:

(T, @) =(T,p), Ve SR").

Da Proposicao 1.44, segue que a aplicacao
v SRY — SRM
T — T
€ um isomorfismo topolégico cuja a inversa é operador
(TSR — SR
T — T,
onde T:S— R é a transformada de Fourier inversa da distribuicdo T definida por

(T, @) = (T,p); Vo€ SR,

Um Gltimo comentario sobre transformadas de Fourier é oportuno. Como S(R") c L?(R") c
S'(R™), ha duas possiveis definicbes de transformada de Fourier em S(R"): uma proveniente de
L?(R"™) e outra de S'(R™). Na verdade, essas duas nocdes coincidem. Mais precisamente, tem-se
T(\,, = Tp. A demonstracao detalhada pode ser encontrada em ((CAVALCANTI; CAVALCANTI, 2009), p.
73-75).

1.3.2 Espacos de Sobolev Fracionarios

A seguir, definiremos uma classe importante de espacos de Hilbert, os espacos de Sobolev

fracionarios HS(R™).

Teorema 1.47

Para cada m € N temos:
H™R" ={ueSR"; A+IxII*)ae L*R")}.
Além disso, a funcao (-, -),, : H™(R™) x H™(R") — C definida por

W)= (A +1xD28,0+1x19%20) , = | Q+lxA" a0y, Yu,ve H"R")
L2(R") R”
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€ um produto interno sobre H(R") tal que a norma por ele induzida é equivalente a norma || || g ®n)

usual do espaco H™(R").
Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 242). O

Motivados pelo resultado anterior, definimos os espacos a seguir.

Definicao 1.48

Para s € R, com s = 0 define-se
H'R™ = {ue S®™); (1+lxI>)2ae [2RM).

Proposicao 1.49

O espaco H*(R™) munido do produto interno definido por,
(U, V) ps @y :fw(u Ix1®)*a(x)D(x)dx, Yu,ve H (R
é um espaco de Hilbert.
Além disso, tem-se HS([R") — L*[R")
Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 245). O

Proposicao 1.50

Sejam s =0 e a um multi-indice tal que |a| < s. A aplicacao
DY:H'R" — HUR")
u — D%

¢é linear e continua.

Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 252). ]

Definicao 1.51

Seja s = 0 um namero real. O dual topolégico de H*(R") é denotado por:
HR") = [H'RM)].
A seguir, apresentamos os resultados necessarios para definir os espacos de Hilbert H*(Q),
onde Q) é um aberto regular e s um namero real ndo-negativo.

Teorema 1.52

Seja Q < R” um aberto limitado regular com fronteira I' = Q). Considere a aplicacdo:

ra:’RYH — 12(Q)

u — Ug.
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A aplicacao rq é linear e continua.

Além disso, paracara meN
H™(Q) = {rq(w); ue H™(R™)},

e para cada multi-indice a, tem-se D%(rq (1)) = ro(D*u) no sentido das distribuicoes.
Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 265). O

Motivados pelo teorema anterior, definimos o seguinte.

Definicao 1.53

Sejam Q c R"™ um aberto regular e s > 0. Define-se

H*(Q) = {v),; ve H RM).

Observe que, se u € H*(QQ) entdo u = v, para algum, v € H(R") c L?(R™), o que implica
U="v,€ L?(Q). Assim, H*(Q) c L*(Q). Portanto a aplicacdo:

ro: H®R" — HQ)

u — UYg.

esta bem definida.

Além disso, a aplicacao rq : H*(R") — H*(Q) é linear, sobrejetora, e 0 ker(rg) € um subespaco
fechado de H*(R™) (ver ((CAVALCANTI; CAVALCANTI, 2009), p. 266)).

Finalmente definimos uma topologia em H*(Q) que coincide com a topologia métrica usual

dos espacos H™(Q) quando s = m € N. Para isso, consideramos o espaco quociente:

H:RY/ker(rq) ={[v]; ve HR™}:={v+ker(rq); ve H(R™)}.

A aplicacdo || - || : HS(R™)/ ker(rq) — R definida por:
IVl = inf{loll gs@ny; welv]}, VIvle HR")/ker(rg).

define uma norma no espaco H*(R")/ker(rqa) que o torna um espaco de Banach.

Por outro lado, para cada vetor v € H*(R"), temos
{we H'R™"); wev+ker(rq)}={we H'R"); ro(w) = rq(v)},
pois

wev+ker(rq) e w—veker(rqg) ©ro(w—-v)=0< rq(w) =rq(v).
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Assim, a norma de um elemento [v] € H(R"™)/ker(rq) pode ser reescrita como

I vl = inf{llwll gs®ny); ro(w) =ro(v)}.

Temos o seguinte diagrama:

rQ

H*(R™)

P =

HS(R™/ker(rq)
onde, [rql : H*(R"™)/ ker(rq) — H*(Q) é definida por [rql([v]) := rq(v), V[v] € HS(R™)/ker(rq).

H(Q)

Teorema 1.54

A aplicacao [rq] definida anteriormente é um isomorfismo isométrico.

Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 269). O

Teorema 1.55

Seja m € N. A norma definida por
el 2= inf{ll wll g wey; rQ (W) = u},

é equivalente a norma || - || gm(q), usual do espaco H(Q).

Demonstracdo. Seja ue H™(Q). Entao, rq(v) = u, para algum v € H*(R"). Assim,

2 2 2
[ u”Hm(Q) = rQ”Hm(Q) = Z ”Da(rQ(V))”LZ(Q)-
lalsm
Usando que rq (D%v) = D% (rqv), segue:
2 2 2 2
lal=m lal=m
Portanto, ||ullgmq) € uma cota inferior do conjunto {|w| gm®n); ro(w) = u} e, por definicao de

infimo, obtemos [l ull gm ) < lull -

Reciprocamente, como u € H™(Q), temos P(u) € H™(R") e rq(P(u)) = u, onde P é o operador

prolongamento, definido no Teorema 1.24. Como P é continuo, segue que
lullm < 1P| gmgny < Cllull gm gy,
onde C > 0 é uma constante associada a continuidade de P. ]

Teorema 1.56
Da sobrejetividade da aplicacdo rq, segue que, para cada u € H*(Q2), existe um v € H*(R") tal que
u = rq(v). Assim, aplicacao definida por

lull gs@ = oWl as = V]I, Yue H (Q)

define uma norma no espaco H*(Q2), onde s € um nimero real ndo negativo e Q é um aberto limitado

regular do R”. Além disso, o espaco H*(2) munido desta norma é um espaco de Hilbert.
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Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 271). O

Proposicao 1.57
2(Q) é denso em H*(Q) para cada s = 0.

Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 272). L]

Proposicao 1.58
H'Y(Q) — H%2(Q), sempre que 0 < s, < 57.

Demonstracdo. Ver ((MEDEIROS; MIRANDA, 2000), p. 96). O

Definicao 1.59
Seja Q um aberto limitado regular. Definimos:
——H(Q
HO=2@) 7 e HQ=HW).
Existem outras maneiras de definir os espaco H*(2), como através da teoria de interpolacdo
em espacos de Hilbert, conforme apresentado por Lions e Magenes em (LIONS; MAGENES, 1968),

capitulo 9.
No que segue, definiremos os espacos H*(I'), onde I' = 0Q).

Seja Q um aberto limitado regular do R” com fronteira I' = 0Q2. Considere {(U1, 1), -+, (U, m)}
um sistema de cartas locais para I'. A cobertura aberta {Q, Uy, -+, U,,,} de Q determina uma particio

da unidade 0y,---,0,, € CX(R™), C* da subordinada & mesma (Ver Figura 1) .

m
Seja u : ' — R uma funcao integravel. Entdo u = Z(Hju), q.t.p. em I'. Assim, para cada
j=1
jedl,---,m}, afuncao definida por

(3= uj(y):=0;wp;'(y), seyez=(0,1)""
! 0, se yeR"/X

é integravel.

Além disso,

m m
supp(uj) c{x€Z; uj(x) #0}c e fudl": Y [ ubjar=>_ | ayiydy,
r j=1T j=1JR"

onde dI' é a medida superficial de T induzida pela medida de Lebesgue, e J é a extensdo nula fora

deI'; = U;nT, de um operador diferenciavel J; determinado pela relagao:
ij(y)d :f ud;j;dr.
fu;w jyay p, A

Considere o espaco L” (I') com respeito a medida superficial I'. Utilizando a particdo da unidade
61, ,0m € CER™), temos

LPO)={u:T —R; fejo(,o]_.l = ﬁjeLP(Rn—l) ej=1,---,m},
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onde iij = ufjo ;' éaextensiode u;=ufjop;' aR""! zeroforade T =(0,1)" .
Além disso,

m p
lullzrry = (Z ||ftj||§p(wl)) , YueIl’PMelsp<oo.
j=1

De maneira analoga obtém-se as seguintes caracterizacoes:

C™(T) = {v:T —R vBjop7 =i, e C"R" Ve j={1,,mj,

D) ={v:T — R vhjo97' =11, € C°R" ) e j={1,---,m}.

Definicao 1.60

Para s > 0, define-se

H D) ={u; p;w e HR" N ej=1,---,m}, onde

¢;:DI) — DR"

i = ; -1
u — u]—uHJO(pj

Teorema 1.61

O conjunto H*(I') munido da norma definida por:
m 3
Zl g (w) ||§5(Rn_1))

2l sy =(
J

é um espaco de Hilbert. Além disso, D(I') é denso em H*(I').

Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 281). O

Definicao 1.62

Seja s > 0 um numero real. Definamos o espaco dual forte, H*(T) := [HS(I)]’.

1.3.3 O Teorema do Traco

Para finalizar a secao apresentaremos o Teorema do traco. Ele estende e formaliza a ideia
intuitiva de avaliar funcdes no bordo de um dominio Q < R, proporcionando uma maneira rigorosa
de lidar com problemas de fronteira em espacos funcionais. Enquanto funcoes suaves podem ser
diretamente avaliadas em 0, o Teorema do Traco garante que funcoes pertencentes a espacos de
Sobolev, que podem nao ser suaves, também admitam restricbes bem definidas a fronteira, desde

que satisfacam certos critérios de regularidade.
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Teorema 1.63 (Teorema do Traco)

Para cada m € N, existe uma Unica aplicacao linear, continua e sobrejetiva:

m—1 .
y:H"Q — [ H" 2D
j=0
u — (yow),y1(),---,ym-1()),

tal que

ou

am—lu .
(o), Y1(10), -+, Y1 () = (”'E‘rW‘r) Vue 2@,

du . :
onde 7 € a j-ésima derivada normal de u.
%

n .
O espaco [[ H™/~'#() é munido da topologia induzida pela norma:

Jj=0
m-—1 n 12
lwll n . = Z ||wj||Hm—j—1/2(r), Vw = (wp, Wy, -, Wm-1) € HHm_]_ (@I).
[TE™ V21 j=0 j=0
Jj=0
Além disso,

(i) ker(y)=HJ"(Q).

(i) Alinversa a direita de y é uma aplicacao linear e continua.
Demonstracdo. Ver ((CAVALCANTI; CAVALCANTI, 2009), p. 387). O]

A aplicacao y definida no Teorema 1.63 € denominada aplicagdo traco em H™(Q).

Teorema 1.64 (Férmula de Green Generalizada)

Sejam u € H>(Q) e v e H'(Q), onde Q c R” é um aberto regular com fronteira I' = 4Q. Ento:
(Au, U>L2(Q) = —<VU,VU>L2(Q) + <Y1(u);Y0(V)>L2(r);

onde y1(u),yo(v) € H2 (D).

Demonstracdo. ver ((CAVALCANTI; CAVALCANTI, 2009), p. 413). O
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Capitulo 2

A Teoria de Semigrupos de Operadores Lineares

Limitados e o Problema Abstrato de Cauchy

A jornada pela resolucdo de problemas fisicos e matematicos complexos frequentemente nos
conduz ao territério das Equacdes Diferenciais Parciais (EDPs). No entanto, a mera apresentacao
de uma EDP é insuficiente para caracterizar um problema bem posto, é a imposicao de condicoes
complementares, as condicoes iniciais e de contorno, que transforma uma equacdo em um modelo
gue realmente representa um fenémeno real ou a ele se aproxima. Este capitulo tem como objetivo
principal fornecer as ferramentas teéricas robustas e unificadas necessarias para a resolucao dos
problemas que serdo propostos nos capitulos subsequentes. Mais do que um conjunto de técnicas
avulsas, apresentaremos uma estrutura conceitual poderosa para o estudo de EDPs quando estas
sao formuladas como um Problema de Valor Inicial de Cauchy em espacos funcionais adequados.
A escolha estratégica desses espacos, é crucial, pois é ela que supre ou, de maneira equivalente,
incorpora as condicoes de contorno do problema, internalizando-as na prépria estrutura do espaco

onde a solucdo sera buscada.

Em nosso percurso inicial pelo estudo de Equacdes Diferenciais Ordinarias (EDOs) em espacos
vetoriais de dimens3o finita, aprendemos que a funcio exponencial e4 emerge como a solucio
natural e elegante para um problema de valor inicial linear auténomo. A solucao flui de maneira
suave a partir da condicao inicial, "transportada"pela acdo do operador exponencial. A grande
questao que orienta este capitulo é: como estender essa nocao intuitiva e poderosa de exponencial,
e, portanto, de solucdo, para um problema de valor inicial de Cauchy linear auténomo definido em

espacos vetoriais de dimensao infinita?

Veremos que, para a classe restrita de operadores lineares limitados (continuos), essa extensao
é direta e natural, podendo ser definida por meio de uma série de poténcias analoga a série da
exponencial classica. No entanto, a realidade dos problemas mais interessantes da fisica matematica
nos confronta com uma dificuldade fundamental: pense no operador Laplaciano na equacao do calor

ou na equacao de onda, os operadores que os definem sdo ilimitados. Esta quebra de continuidade
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representa um obstaculo profundo, pois a série de poténcias deixa de convergir, e a definicao simples

de exponencial colapsa.

E precisamente diante dessa dificuldade que surge uma das teorias mais belas e frutiferas da
analise funcional: a Teoria de Semigrupos de Operadores Lineares Limitados. Um semigrupo pode
ser entendido como a generalizacdo adequada da funcao exponencial definida por um operador
ilimitado. Esta teoria, que abordaremos com detalhes na primeira secao deste capitulo, ndo apenas
resolve o problema da existéncia e unicidade de solucdes por meio de teoremas de geracao de
semigrupos, como o célebre Teorema de Hille-Yosida, mas também permite uma anélise refinada
da estabilidade e do comportamento assintético das solucoes, investigando, por exemplo, se elas

decaem exponencialmente ou apresentam crescimento controlado ao longo do tempo.

2.1 Teoria de Semigrupos de Operadores Lineares Limitados

Nesta secado, desenvolveremos a teoria de semigrupos de operadores lineares limitados, com o
objetivo de estabelecer os fundamentos necessarios para demonstrar a boa colocacao (existéncia e
unicidade de solucdo) dos problemas que serdo abordados nos trés Gltimos capitulos desta tese. Essa
fundamentacao sera alcancada mediante a combinacao dos Teoremas de Geracao de Semigrupos
Lineares com os resultados classicos de existéncia e unicidade para o problema abstrato de Cauchy,

conforme apresentado na obra de referéncia (PAZY, 1983).

A Teoria de Semigrupos foi desenvolvida como uma abordagem unificada para reformular
equacoes diferenciais parciais na forma de problemas de valor inicial de Cauchy em espacos funcionais
abstratos, particularmente em espacos de Banach. Essa reformulagao proporciona um tratamento
sistematico e padronizado para EDPs, facilitando tanto a anélise tedrica quanto a resolucao de

problemas em contextos gerais e abstratos.

O objetivo fundamental dessa teoria consiste em generalizar o conceito de funcdo exponencial,
gue representa a solucdo natural para equacoes diferenciais ordinarias lineares em dimensoes finitas,
para cenarios mais amplos envolvendo operadores em espacos de dimensao infinita. A teoria se
fundamenta nas propriedades essenciais da exponencial, adaptando esses conceitos ao contexto de

operadores lineares em espacos funcionais.

Na contemporaneidade, a Teoria de Semigrupos consolida-se como um conjunto de ferra-
mentas matematicas robustas e versateis para estudar a evolucdo temporal de sistemas dinamicos
lineares. Sua estrutura abrangente permite abordar uma extensa variedade de problemas, ampliando
significativamente o alcance dos métodos classicos aplicados ao estudo qualitativo e quantitativo de

equacoes diferenciais parciais lineares.
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2.1.1 A Funcao Exponencial

A funcdo u: [0, +oo) — R, definida por u(t) = xpe?’ é uma solucdo globalmente definida para

a seguinte problema de valor inicial:

u'(t) = au(t); t>0,
u(0) = xo,
onde a e xy sdo contantes reais dadas.
Utilizando a expansao em Formula de Taylor, é possivel estender a nocao de exponencial de

um namero para exponencial de uma matriz quadrada A, definindo:
(tA)] 12 t]

etA:_Z _I+z‘A+—A2 A3+---+fAj+---, (2.1)
=0 J! 6 J!

onde I é a matriz identidade.

Assim, se A é uma matriz quadrada de ordem n e ug € R", a curva uy : [0, +o00) — R, definida

por u(t) = euy é solucdo da equacio diferencial ordinaria matricial:

u'(t) = Au(p); t>0,
(2.2)

u(O) = Uy,
onde u(t) é visto como matriz coluna.

tA

A funcao exponencial matricial S(#) = e*“* é caracterizada por trés propriedades fundamentais:

e S(0)=
e S(t+s)=S(1)S(s);
e lim S(¢) =

t—0*

Essas propriedades permitem estender o conceito de exponencial para operadores lineares
limitados em espacos de Banach. Suponha que X seja um espaco de Banache A: X — X é um
operador linear limitado. A série definida pela expressao (2.1) € absolutamente convergente no
espaco Z(X) dos operadores lineares limitados sobre X, devido a sua estrutura natural de espaco

normado dada pela norma |- [l #x) : £ (X) — R, definida por:

1Ax]x

[JAll =inf{C €R; [|[Axllx < Cllxllx, Vx€ X} = = sup [|Ax|lx.

xeX, x20 Xllx  qixie=1

Especificamente, para cada t > 0, temos
II(IA) I & IIAII”

Z <3 -

: n:O

. . o (tA)" . . . C .
Assim, definindo S(f) = 4 := %, as seguintes propriedades sao satisfeitas:
n n.

Il
o
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e S(0)=1: X — X é ooperador identidade,
o S(t+s)=8(1S(s),V t,5s=0,

o tlir(x)1+ 1S(8) = Ill¢x) =0.
Além disso, a curva u: [0, +00) — X, definida por u(t) = S(#)ug é solucido do problema (2.2),
com A€ £ (X) e ug € X. De fato, como

A A2 BAS At
St)y=e " :=I+tA+ + +

+ .
2! 3! 4!
segue que
d +S(t) _d +e”‘ = A+ 1A%+ CA + pA +
dt Cdt . 2! 3!
Logo
d* d~ 2A%  BA?
— S()=— e = A|I+1A+ —+——+--- | = Ae'.
dt dt 2! 3!
Portanto
d +
— S(1r) = AS(1).
T (1) (1)
Note que
d +
— S(t = AS(0) = Al = A.
T ( )]t—O 0)
+
Em razido desta propriedade, dizemos que A = 1 S(t)] é o gerador infinitesimal da colecao de
=0
operadores lineares limitados {S(%)};>0. !
. . . o (tA)"
Finalmente, definindo u(t) = S(Hug = X ug, temos:

n=0
+

u'(r) = % S ug = AS(H) upg = Aul(r),

com u(0) =S0)ug = Tug = uyp.

Observe que, se o operador linear A nao € limitado, ndo dispomos de uma norma para ele, e,
consequentemente a expressao (2.1) perde o significado. No entanto, para verificar se u(t) = S(t)uy
é solucao do problema de Cauchy (2.2), ndo utilizamos explicitamente a expressdo analitica de S(t),

mas apenas as suas propriedades caracteristicas fundamentais.

Por esta razao, no caso em que o operador linear A: X — X é nao limitado, torna-se natural
estudar colecoes de operadores lineares {S(1)};>o que satisfacam as propriedades fundamentais da

exponencial, com a condicdo adicional:

d +
PP S(t)] T A. (2.3)
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2.1.2 Semigrupo Uniformemente Continuo e Semigrupo Fortemente Continuo

Definicao 2.1
Seja £ (X) a algebra dos operadores lineares limitados em um espaco de Banach X. Dizemos que
uma aplicacao S: [0, +o00) — Z(X) é um semigrupo de operadores lineares limitados sobre X, quando

as seguintes condicoes sao satisfeitas:

(i) S(0) =1, onde I é o operador identidade.

(i) S(t+s)=S(1)S(s), paratodo t,s=0.

Dizemos que o semigrupo S é uniformemente continuo se satisfaz
(III) lim ||S(t) — I||$(X) =0.
r—0*

No que segue, chamaremos frequentemente de semigrupo simplesmente a colecao {S(#)};0,
para nos referirmos a um semigrupo de operadores lineares S : [0,00) — £ (X). Quando o semigrupo
{S(1)}s=0 € uniformemente continuo o operador A definido pela expressao (2.3) é chamado de

gerador infinitesimal do semigrupo S.

Exemplo 2.2

Seja A e £ (X) um operador linear limitado sobre o espaco de Banach X. Entao, a colecao {S(#)};>0,
onde S(¢) = e’ é um semigrupo de operadores lineares uniformemente continuo, com A como o
seu gerador infinitesimal. De fato, seja A: X — X um operador linear limitado sobre um espaco de

Banach X. Defina S(#) = e’4. Assim, para cada nimeroreal t =0 e x € X, tem-se

r? I "
S(t)x=e"x=x+tAx+ ?A2x+ EA3x---+ — Ax 4
n.

Entao
£? I "
2 3 n
IS(Hx—xllx=|tAx+ —Ax+—Ax+---+—A"x+---
2 6 n! X
t? 3 t"
2 3 n
= l‘llAllx(X)llxllirEIIAIIE(X)lellx+EllAllg(X)llxllx+-“+ﬁllAllg(X)lleX*-'“
t [2 ) n-1 el ’
=t Al eoollxllx 1+§||A||$(X)+€||A||$(X)"'+_n' IAlG )+
2 2 n-1 ,(n-1
=LAl | All t
ZL(X) Z(X)
<t|A X 1+¢A + +-..
| All 200l xll x | All 2x) 2 TR
= tel 1200 || Al o x0llx ] x.
Assim
I1S(H)x—xllx < tetllAllz(X) ||A||§€(x)
llxll x

Portanto ||S(#) — Ill ¢(x) — 0 quando ¢t — 0*.
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Além disso,
d + Z-Z tn—l
— S(t) = A+tA + A+ 4 A +
dt 2 (n—-1)
t2 tn—l
= A|l+tA+ =A%+ +——A" 4.
2 (n—1)]|

Ae'

d +
Portanto | — S(¢ = A.
dt ()]t=0

A reciproca do resultado apresentado no exemplo anterior também é verdadeira (ver (PAZY,
1983), p. 2-4). Em suma, {S(£)};>0 € um semigrupo uniformemente continuo, se e somente se
S(t) = e'4, onde seu gerador infinitesimal A € um operador linear limitado. Observe que a propo-
sicdo anterior implica que um operador nao limitado A nao pode ser gerador de um semigrupo

uniformemente continuo. Com base nisso, introduzimos a seguinte definicao:

Definicdo 2.3
Seja S: [0, +oo) — Z(X) um semigrupo de operadores lineares limitados sobre um espaco de Banach
X. Dizemos que S é um Cy-semigrupo ou simplesmente um semigrupo fortemente continuo se

satisfaz
(iv) lirsl IS(Hx—x|lx=0; Vxe X.
t—’ +

Um gerador infinitesimal de um Cy-semigrupo que nao é uniformemente continuo deve ser,
necessariamente, um operador linear ndo limitado. Como operadores lineares nao limitados em
espacos de Banach possuem dominio de definicdo em um subespaco D(A) c X, temos o seguinte

conceito de gerador infinitesimal:

Definicao 2.4
Seja S: [0, +00) — £ (X) um Cy-semigrupo sobre um espaco de Banach X. Dizemos que o operador
A:D(A) c X — X é o gerador infinitesimal do semigrupo S quando:

+

d S(Hx
dt

S(tH)x—
= lim M; Vxe€ D(A), (2.4)
t=0 =07

Ax:=

onde
D(A)={xe X; Axe X}.

Proposicao 2.5
Seja {S(1)} ;=0 um Cy-semigrupo sobre um espaco de Banach X. Existem constantesw =0e M =1
tais que

1S(O ) < Me®"; V= 0.

Demonstracdo. Ver ((PAZY, 1983), p. 4). O
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Na Proposicao acima, quando w =0, {S(#)};>¢ € chamado de limitado. Se além disso, M =1,

dizemos {S(1)} ;>0 € um Cy-semigrupo de contracoes.

Proposicao 2.6
Seja A o gerador infinitesimal de um Cy-semigrupo {S(#)} ;>0 sobre um espaco de Banach X. Entao

D(A) é um subespaco denso em X e A é um operador linear fechado

Demonstracdo. Ver ((PAZY, 1983), p. 5-6). O

Exemplo 2.7
Considere a aplicacdo S: [0, +o0) — Z(L*(R)) definida por [S(8) f1(x) = f(x+ ). Afirmamos que

{S(0)} =0 € um Cy-semigrupo de contracoes, mas nao é uniformemente continuo. Com efeito

(i) Dado f € L?(R), temos [S(0) f1(x) = f(x); Vx € R. Logo S(0) f = f.

(ii) Dados t,s=0e f € L?(R), segue que:

[S(t+ ) f1(x) = f(t+s+x) = [S(2) f(s+x) = [S(1)S(s) f1(x); Vx €R.
(iv) Dado f € L?(R), do Teorema da Convergéncia Dominada (Teorema A.2):
. 2 _ 2 3.
i S0 = f1Z g, = lim fR FOc+ 0 - FOIPdx = 0.
{S(D)} =0 € um Cy-semigrupo de contracoes, pois como

IS f1172 ) = fR If(x+DPdx = fR fPdx= 1S fI3, g V€ LX®),

tem-se ”S(t)”,?(LZ([R)) = 1, Yt=0.

Além disso, note que:

= f'(x).

= lim
r=0 =07

i fx+0-f(x)
[dt[s(t)f](x) —

Assim, o gerador infinitesimal do semigrupo {S(#)} ;>0 € 0 operador 9, : H' (R) c L*(R) — L*(R),
definido por (0, f) = f'l; V.f € H'(R).

Como d, ndo é um operador linear nao limitado, tem-se que o semigrupo {S(#)};>o gerado
por ele ndo é uniformemente continuo (isto €, ndo satisfaz a condicao (iii)). De fato. Tomando a

sequéncia (f;,) nen de funcdes em L2 (R) definida por:

x", se0<x<1

fn(x) = {

0, caso contrario
Note que

1
2n+1

e

1
2 2n

)
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e, portanto (f;,) nen € uma sequéncia limitada. Contudo

2

1
2 2.2(n-1) 47, _ "
10 full 72 ) —fo n°x dx_—Zn—l +o0.

Logo, (0 fr) nen Nao € uma sequéncia limitada. Portanto 9, nao € um operador linear limitado, e,

consequentemente, o semigrupo {S(#)};>¢ ndo é uniformemente continuo.

O préximo resultado demostra que, de fato, um Cy-semigrupo se comporta de maneira
analoga a exponencial. Por essa razao, € comum adotar a notacdo S(t) = etA, para representar um

Co-semigrupo {S(1)},>¢ gerado pelo operador linear nao limitado A.

Teorema 2.8
Sejam A: D(A) c X — X o gerador infinitesimal de um Cy-semigrupo {S(#)};>¢ sobre um espaco
de Banach X e ug € X. Defina u: [0, +00) — X por u(t) = S(£)ug := e uy. Entdo u € C° ([0, +00); X)

satisfaz

t t
u(t) = A(f NOIN ds) + Uy = A(f u(s) ds) +ug; Vi =0. (2.5)
0 0
Além disso, se 1y € D(A) entao
ue C° ([0, +00); D(A)) N C* ((0, +00); X),

e é a Unica solucao do problema de Cauchy linear e homogéneo:

{ u'(t)—Au(t)=0; t>0, (2.6)

u(0) = up,

Demonstracdo. Seja {S(#)};>¢o um Cy-semigrupo sobre X, A: D(A) € X — X o seu gerador infini-

tesimal e uy € X. Dados t =0 e h =0 pequeno de modo que ¢ — h = 0, da Proposicao 2.5, segue

que
lu(t+hug—uupllx =1SE+Rug—SOuollx = ISOSH)uo— SO upllx
< IS NexllS(h) uo— upll x
< Me""|S(huy— ugllx
e

lu(t—h)upg—u®upllx = 1St —h)up— S uollx

I1S(t —h)uo — S(t — h+ W) upll x

IA

st — M)l 20 ll o — S(R) uoll x

Me"uy— S(h)upl x.

IA

Portanto u € C°([0, +00); X).
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Além disso, como
NOENE 1 ¢
() f SSugds = —f (S(s+h)ug—S(S)ug)ds
h 0 h Jo
1 t+h 1 h
= Eft S(s)ug ds—ﬁfo S(S)ug ds
1 t+h 1 h
= Eft u(s)ds—ﬁfo u(s)ds,
segue que
t S(t)y—1 (*
A(f u(s)ds) = lim () f S(Sug ds
0 h—0% h 0
1 t+h 1 h
= lim — u(s)ds— lim —f u(s)ds
h—0+ h J¢ h—0* h Jo
= u(t) — Up,
0 que prova (2.5).
Agora, suponha que ug € D(A). Entao
Aug = lim w € X. (27)
h—0+ h
Seja t>0e h >0 pequeno, de modo que t— h > 0. Como
ut+h)—u(t)  S(t+hug—S(uy St S(h)ug — ug
h - h B h
e
u(t+h) —u® _ S(h+ug—S(Mug _ SWIS(B)uol — S(Huy
h B h - h
temos que
d* S(h)ug —
- u()=S( lim W = (1) Aug € X.
¢ d*t h
S(t —3(t
A7 ) = lim SISO = SWUo _ o e x
dt h—0* h
Portanto S(#)ug € D(A), e da unicidade do limite, segue que
d +
— u(t) = Au(t) = S(1) Auy. (2.8)
dt
Por outro lado,
H—u(t—h S(h)ug —
% —S(t)Aug = S(t—h) [W — Aug | +[S(£ = B) Aug — S(1) Autg)] .
Assim, de (2.7) e da continuidade da curva ¢t — S(t)x (x € X), temos respectivamente:
S(h)ug —
lim S(¢—py | 2HY0 %0 _ Auol —0 e lim [S(t—h)Aug - S(t) Aug] = 0.
h—0* h h—0*
Logo 4 ’
- . u(t)—u(t—nh)
= u(t) = }11er01+ — - S(1) Auy. (2.9)
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Portanto, de (2.8) e (2.9), temos que u € C1([0, +o0); X) e tal que

u' () = %u(t) = Au(t);Yt=0.

Além disso ©(0) = S(0)ug = Tug = uyp.

Considere o subespaco D(A) com a norma do grafico definida por:

lxllpcay = lxll x + | Axll x.

Da Proposicao 2.6, segue que A é fechado, e portanto D(A) é completo.

Agora, se uy € D(A), em (2.8), vimos que: AS(f)ug = S(t)ug; Yt =0. Assim, se fy =0, tem-se
l}in} ur(t) = }m} AS(Dug = letl S(t) Aug = S(tg) Aug = AT (to) ug = us(tp).
— 1o -1l — 1o

Portanto u € C°([0, +00); D(A)).

Para provar a unicidade, suponha que exista outra solucao v(t) : [0, +oo) — X para o problema

(2.6). Agora defina w = u— v. Note que w(0) = u(0) — v(0) = up— up =0, e
W =w-v) (O =u)-V1t)=Ault)- Av(t) = A(u—-v)(¢t) = Aw(t); Vi>0.

Logo, w é solucdo do problema (2.6) para o valor inicial ug = 0. Entao, pelo que visto acima, para

cada t =0, tem-se w(t) = S(£)0 = 0. Portanto, w =0, isto é, u = v. O]

Definicao 2.9

Seja X um espaco de Banach.

(i) Uma funcdo u e C° ([0, +00); X) satisfazendo (2.5) é chamada de solucdo branda (mild solution)

para o problema de Cauchy linear e homogéneo (2.6).

(i) Uma funcio u e C ([0, +00); X) N C! ((0, +00); X) satisfazendo o problema pontual de Cauchy

(2.6) é chamada de solucdo regular (cldssica)

2.2 O Problema abstrato de Cauchy

Na secao anterior, estabelecemos, por meio do Teorema 2.8, que, se um operador linear
ilimitado A: D(A) € X — X é o gerador infinitesimal de um Cy-semigrupo {S(#)} ;>0 em um espaco de
Banach X, entdo a funcao u(t) = S(r)uy apresenta propriedades analogas as da funcao exponencial.
Essa analogia fundamental garante que u(t) = S(#) uy seja a solucao do problema de Cauchy linear
homogéneo (2.6) associado ao operador A, fornecendo assim a base para a anélise de sistemas
dindmicos lineares auténomos. Esse resultado ser utilizado para provar a boa colocacdo do problema

linear (4.1)-(4.3), estudado no Capitulo 4.
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Nesta secdo, nosso objetivo é completar o estudo da boa colocacdo (existéncia e unicidade
de solucdes) do problema abstrato de Cauchy, estendendo a analise para dois casos importantes:
0 caso nao homogéneo e o caso ndo autébnomo. Primeiramente, abordaremos o problema nao
homogéneo, que pode ser linear ou conter uma nao linearidade separavel da parte linear descrita
pelo gerador de um Cy-semigrupo. Em seguida, apresentaremos resultados de boa colocacao para o
problema de Cauchy linear ndo auténomo, concentrando-nos no caso particular em que, para cada
t =0, os operadores lineares A(t) possuem o mesmo dominio fixo e sdo geradores de uma familia

de Cy-semigrupos.

A extensdo para o caso ndo homogéneo, representado pela equacdo u/'(t) — Au(t) = f(1),
introduz uma fonte externa f (), enriquecendo a modelagem de fendmenos fisicos. Mostraremos
que, sob condi¢coes apropriadas sobre f, a solucao pode ser representada pela conhecida férmula

da variacao das constantes:

t
u(t):S(t)u0+f S(t=3s)f(s) ds,
0

onde S(1) ;>0 € 0 Cy-semigrupo gerado pelo operador linear A. Além disso, discutiremos os conceitos
de solucao branda, solucao forte e solucao classica, esclarecendo as condicoes necessarias para que

uma solucado branda se torne uma solucao classica ou forte.

Ademais, a teoria sera generalizada para o contexto de problemas nao lineares auténomos
da forma u/(t) — Au(t) = f(¢t,u(t)), em que a ndo linearidade f é separada do operador linear A.
Para tal, utilizaremos técnicas de ponto fixo, assumindo que f satisfaz condi¢cdes de Lipschitz ou de
Lipschitz local. Isso nos permitira estabelecer existéncia e unicidade de solucoes, seja globalmente
no tempo ou localmente (com possibilidade de explosdo em tempo finito). Esses resultados serdo
fundamentais para demonstrar a boa colocacio do problema néo linear (5.3)-(5.6), que sera tratado

no Capitulo 5.

Finalmente, esta secao avanca de forma significativa ao tratar do cenario nao auténomo, no
qual o operador A depende explicitamente do tempo, isto é, A = A(¢). Esse caso é consideravelmente
mais complexo, pois a teoria de semigrupos padrao, baseada em operadores constantes no tempo,
nao pode ser aplicada diretamente. Contudo, para uma classe particular de problemas, aqueles em
que os operadores lineares A(t) possuem um dominio comum independente do tempo e formam uma
familia estavel de geradores de semigrupos, é possivel desenvolver uma teoria consistente. Nesse
contexto, apresentaremos os fundamentos dos sistemas CD de Kato, que estabelecem as condicoes
sob as quais é possivel construir um processo de evolucao linear {P(s, 1)} ;>s, 0 qual generaliza a nocao
de semigrupo. Esse aparato teorico sera essencial para demonstrar a boa colocacao do problema

nao auténomo (6.2)-(6.6), que sera analisado no Capitulo 6.
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2.2.1 Problema abstrato de Cauchy nao homogéneo

Consideremos agora o problema de Cauchy linear ndo homogéneo:

) (2.10)
u(0) = ug

{ w(t)—Au(®) = f(1); t>0

onde f:[0,+00) — X e X é um espaco de Banach.

Definicao 2.10
Uma funcdo u: [0, +oo) — X é uma solucdo (cldssica) do problema linear nGo-homogéneo (2.10), se
ue CO([0,+00); X) N C ((0,+00; X), u(t) € D(A), para t > 0 e (2.10) é satifeito.

Seja S(¢) = e'4 o Cy-semigrupo de contracdes gerado pelo operador A, e seja u: [0, +00) — X
uma solugao para o problema nao-homogéneo (2.10). Para, t > 0, defina g;: [0, 1) — X, por g(s) =

S(t— s)u(s). Note que g é diferencidvel para 0 < s < ¢, e usando (2.8), obtemos:

—AS(t—s)u(s)+ S(t—s)u'(s)

i (s)
dsg

—AS(t—s)u(s)+ S(t—s)Au(s) + S(t—35)f(s)
S(t—=3s)f(s). (2.11)

Se f € L'(0, +00; X), podemos integrar (2.11) de 0 a ¢ e obter:

t
u(t) = S(t)u0+f S(t—3s)f(s)ds; Yt>0. (2.12)
0

A funcdo u € C° ([0, +00); X) definida por (2.12) satisfaz:

t t
u(t) :A(f u(s) ds)+f f($)ds+ug; Yt=0. (2.13)
0 0

Definicao 2.11

Seja X um espaco de Banach.

(i) Uma funcdo u € C° ([0, +00); X) satisfazendo (2.13) é chamada de solucdo branda (mild solution)

para o problema de Cauchy linear ndo-homogéneo (2.10).

(i) Uma funcdo u e C% ([0, +00); X) N C! ((0, +00); X) satisfazendo o problema pontual de Cauchy

(2.10) é chamada de solucdo (cldssica).

Observe que a continuidade da funcao f, em geral, ndo é suficiente para garantir a existéncia
de solucdes de (2.10), mesmo quando ug € D(A). Para ilustrar isso, considere um elemento x € X tal
que S(1) = e'*x ¢ D(A) para nenhum ¢ = 0. Defina f(t) = e’*x. Note que f é continua. Contudo, a
Unica solucao branda (mild solution), do problema (2.10) para ug =0€ D(A) e f(t) = e'4x é dada

por u(t) = te'4x, que n3o é diferenciavel para ¢ > 0.
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Teorema 2.12

Seja A o gerador infinitesimal de um Cy-semigrupo {S(#)};>o sobre o espaco de Banach X. Entao

(i) Se fe L' (0,+00; X), entdo para cada ug € X, o problema linear ndo-homogéneo (2.10) tem

uma unica solucao branda (mild solution) definida por (2.12).

(i) Se fe C((0,+00); X), entio para cada ugy € D(A), a solucio u definida por (2.12) é um solucio

(classica).

Demonstracdo. Ver ((PAZY, 1983), p. 106-107). O]

Definicao 2.13
Seja X um espaco de Banach. Uma funcéo u: [0, +00) — X é uma solucdo forte do problema (2.10)

se:

(i) ue wbhh0,+o00; X);
(i) u(0) =upe u'(t) = Au(t) + f(t) em quase todo ponto ¢ > 0.

Teorema 2.14
Seja A o gerador infinitesimal de um Cy-semigrupo sobre o espaco de Banach X. Se f € W1 (0, +o0; X),
entao, para todo 1y € D(A), a funcdo u definida (2.12) é a Unica solucao forte do problema linear

nao-homogéneo (2.10).

Demonstracdo. Ver ((PAZY, 1983), p. 109). ]

Coroldario 2.15
Seja X um espaco de Banach reflexivo e seja A o gerador de um Cy-semigrupo {S(1)};>o sobre X.
Se f é Lipschitziana, entdo para ug € D(A), o problema ndo-homogéneo (2.10) admite uma Unica

solucao (classica) dada por (2.12).
Demonstracdo. Ver ((PAZY, 1983), p. 109-110). O

Embora a Teoria de Semigrupos de Operadores Lineares tenha sido desenvolvida primordial-
mente para o estudo de problemas lineares auténomos, seu alcance pode ser estendido mediante a
incorporacao de propriedades e técnicas adicionais. Esta extensdo permite demonstrar a boa coloca-
cao de problemas nao lineares autbnomos especificos nos quais é possivel separar a parte linear
da componente nao linear do problema. De forma ainda mais notavel, essa abordagem mostra-se
aplicavel, ainda que em contextos particulares de natureza simplificada, a certos problemas nao

autébnomos.

Neste contexto, com o objetivo de estabelecer a boa colocaciao do problema nao linear (5.3)-

(5.6) formulado no Capitulo 5, utilizaremos resultados de existéncia e unicidade de solucoes para o
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problema de Cauchy nio linear, conforme apresentado em (PAZY, 1983). Considere o problema:

, (2.14)
u(0) = ug

{zmn—Amn:fmuumt>o

onde f:[0,+00) x X — X e X & um espaco de Banach.

Suponhamos que A é gerador infinitesimal de Cy-semigrupo sobre X e que f: [0, +00) x X — X

¢é continua sobre a variavel ¢ € [0, +00) e satisfaz a condicdo de Lipschitz sobre a variavel u € X.

O problema de valor inicial (2.14) ndo admite necessariamente uma solucdo (de qualquer tipo).
Entretanto, se ele tiver uma solucao classica ou forte, o argumento apresentado para o modelo linear

garante que essa solucao u satisfaz a seguinte equacao integral:

t

u(t):S(t)u0+f S(t—3s)f(s,u(s)) ds;¥t>0. (2.15)
0

Definicao 2.16
Um solucio u € C° ([0, +00); X) da equacio integral (2.15) é chamada de solucéo branda (mild solution)

do problema nio-linear (2.14).

Definicao 2.17
Seja X um espaco de Banach. Uma funcio u: [0, +oo) — X é uma solucdo forte do problema (2.14)

se:

(i) v e wbhbl(0,+00; X);
(i) u(0) =uge u'(t)= Au(t) + f(t, u(t)) em quase todo ponto ¢ > 0.

Definicao 2.18
Seja X um espaco de Banach. Uma funcdo u € C°([0,+00); X) N C! ((0, +00); X) satisfazendo o

problema pontual de Cauchy (2.14) é chamada de solucdo (cldssica)

Teorema 2.19

Seja f:[0,+00) x X — X uma funcao continua na variavel t € [0,00) e Lipschitziana sobre a variavel
u € X. Se A é gerador infinitesimal de um Cy-semigrupo sobre o espaco de Banach X, entao para cada
ug € X o problema de Cauchy nao-linear (2.14) adimite uma Unica solucido branda u € C ([0, +00); X).

Além disso, a aplicacdo

X — C([0,+00); X)

U — U

é Lipschitziana.

Demonstracdo. Ver ((PAZY, 1983), p. 184). O
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A condicao uniforme de Lipschitz da funcao f no terema anterior garante a existéncia e
unicidade de solucao global, isto é de solucao definida para todo ¢ > 0. Contudo, essa condicao
restringe muito os termos nao lineares do problema. No préximo resultado, enfraqguecemos essa

condicao, mas garantimos apenas a existéncia de solucao local.

Teorema 2.20

Seja f : [0,+00) x X — X uma fungao continua na variavel ¢t = 0 e localmente Lipschitz sobre a
variavel u € X, uniformemente em ¢ sobre intervalos limitados. Se A é gerador infinitesimal de um
Cp-semigrupo sobre o espaco de Banach X, entao para cada g € X, existe um 0 < ;.4 < +00, tal
qgue o problema de Cauchy nao-linear (2.14) adimite uma Gnica solucado branda u € C ([0, +00); X)

sobre [0, + tax). Além disso, se fhax < +0o, entdo

lign lee(8)|| =00

—
max

Demonstracdo. Ver ((PAZY, 1983), p. 185-186). O

Teorema 2.21

Seja A o gerador infinitesimal de um Cy-semigrupo {S(1)};>¢ sobre o espaco de Banach X. Se
f e C([0,+00) x X; X), entdo a solucio branda do problema (2.14) é uma soluc3o classica quando
Uy € D(A).

Demonstracdo. Ver ((PAZY, 1983), p. 187). O

Teorema 2.22

Seja A o gerador infinitesimal de um Cy-semigrupo {S(f)} ;>0 sobre o espaco de Banach reflexivo X.
Suponha que f é Lipschitziana na variavel ¢ = 0, uniformemente para conjuntos limitados de X e
localmente Lipschitz sobre a varidvel u € X, uniforme em conjuntos intervalos limitados [0, T]. Se
up € D(A), entdo a solucao branda (mild solution) do problema (2.14) sobre [0, thax) € uma solucao

forte.

Demonstracdo. Ver ((PAZY, 1983), p. 185 e p. 189). O

2.2.2 Problema abstrato de Cauchy nao-autéonomo

Para concluir esta secdo, apresentaremos resultados de existéncia e unicidade de solucoes
estabelecidos em (KATO, 1985), aplicaveis a uma classe particular de problemas lineares autbnomos
de Cauchy. A caracteristica fundamental dessa classe reside no fato de que o operador linear
dependente do tempo associado ao problema possui um dominio independente do pardmetro
temporal. A combinacio desses resultados com aqueles fornecidos em (PAZY, 1983) fornece as
ferramentas necessarias para demonstrar a boa colocacdo do problema ndo auténomo (6.2)-(6.6)

proposto no Capitulo 6.
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Consideremos, para isso, o seguinte problema linear ndo auténomo:

{ u'()—Au=f(1); t=0 , (2.16)

u(0) = ug

onde A(1): D(A(#)) € X — X um operador linear tempo-dependente e f : [0, +o00) — X uma fungao

continua.

Definicdo 2.23
Seja ({A(D)} =0, X, Y) uma tripla, onde X e Y sado espacos de Banach separaveis, com Y c X e para
cada =0, A(t) : D(A(8)) € X — X é um operador linear. Dizemos que o sistema ({A(£)};>0,X,Y) é

um sistema CD de Kato se satisfaz as seguintes condicoes:

(i) Y estaimerso continuamente e é denso em X e D(A(t)) = Y para todo ¢ = 0. Em particular, o

dominio D(A(?)) do operador linear A(t) é independente de ¢.

(ii) Paracada t =0, o operador linear A(t): Y ¢ X — X é gerador de um Cy-semigrupo {S;(s)}s=o

sobre X, e existem constantes M =1 e w = 0 independentes de ¢, tais que

IS¢ ()l 2x) < Me®%;V¥t,s=0.

(i) Afamilia A: [0, +o00) — £ (Y, X) pertence ao espaco Lip. (0, +oo; £ (Y, X)). Equivalentemente,
d
temos que EA(I) € L (0,+00; £ (Y, X)),

onde L (0, +o0; £ (Y, X)) é o espaco das (classes de) funcdes essencialmente limitadas e
fortemente mensuraveis de [0, +oco) no conjunto £ (Y, X) dos operadores lineares limitados de Y

em X.

O leitor interessado pela definicao do espaco Lip. (0, +o0; £ (Y, X)), bem como na demonstra-
d
¢ao da equivaléncia A€ Lip. (0, +00; Z(Y, X)) < %A(t) € L (0, +00; £(Y, X)) pode consultar
(KATO, 1985), paginas 7 e 8.

Teorema 2.24
Seja ({A(8)} =0, X,Y) é um sistema CD de Kato.

(i) Se fe L' (0, +00; X), entdo para cada ug € X, o problema linear ndo-auténomo (2.16) tem uma

Unica solucdo branda (mild solution) u € C° ([0, +00); X)

(ii) Se fe WL ((0, +00); X), entdo para cada ug € Y, a solucdo u é um solucio forte satisfazendo:

ue C°([0,+00); Y) N C ((0, +00); X).
Demonstracdo. Ver ((KATO, 1985), p. 11 e (PAZY, 1983), p. 106-107). ]

Mais geralmente, tem-se o seguinte resultado:
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Teorema 2.25
Seja f : 10, +00) x X — X uma funcao continua na variavel ¢ = 0 e localmente Lipschitz sobre a variavel
u € X, uniformemente em t sobre intervalos limitados. Se ({A(#)};>0,X,Y) é um sistema CD de Kato,

entao para cada ug € X, existe um 0 < fyax < +00, tal que o problema de Cauchy

{ U+ ADu=f(t,u(®); t=0 ’ (2.17)

u(0) = uyp

adimite uma Unica solucado branda u € C ([0, +00); X) sobre [0, + tax). Além disso, se tyax < +00,

entao

ligp lu(®)|l =o0

max

Demonstracdo. Ver ((PAZY, 1983), p. 185-186; e (KATO, 1985), p. 11). O

Teorema 2.26

Seja ({A()} =0, X,Y) € um sistema CD de Kato.Suponha que f é Lipschitziana na variavel ¢t = 0,
uniformemente para conjuntos limitados de X e localmente Lipschitz sobre a varidvel u € X, uniforme
em conjuntos intervalos limitados [0, T]. Se ug € Y, entdo a solucdo branda (mild solution) do

problema (2.17) (ou a solucdo branda do problema (2.17) sobre [0, £1ax)) € uma solucao forte.

Demonstracdo. Ver ((PAZY, 1983), p. 185 e p. 189; e (KATO, 1985), p. 11). O

Corolario 2.27
Seja ({A(1)} =0, X, Y) é um sistema CD de Kato. Se uy € X, f:10,+00) x X — X uma fungao continua
na variavel ¢ = 0 e localmente Lipschitz sobre a variavel u € X, uniformemente em ¢ sobre intervalos

limitados, e h € L}OC(O, +00; X), entdo existe um 0 < a1 < +00, tal que o problema de Cauchy

{ u'(t)—A(u+ f(t,u() =h(t); t=0 , (2.18)

u(0) = ug

admite uma Unica solucdo branda no intervalo [0, + tyax), de modo que tligp lu(t)|| = oo, sempre
Imax
que fpax < +00.
Além disso, se up € Y, f:[0,+00) x X — X é Lipschitziana na variavel ¢ = 0, uniformemente
para conjuntos limitados de X e localmente Lipschitz sobre a varidvel u € X, uniforme em conjuntos
intervalos limitados [0, T],e h e Wll(;i(o, +00; X), entao a solucao branda é uma solucao forte sobre

[0’ tmax)-

Demonstracgdo. Basta combinar os Teoremas 2.24, 2.25 e 2.26. [

Observacao 2.28
Os resultados apresentados nesta secao permanecem vélidos para o problema de Cauchy com dado
inicial em um instante arbitrario 7¢ € R, mediante uma modificacdo minima na definicdo de solucao

branda.
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Com efeito, a representacao

t
u(t):S(t)uo+f S(t—1s)f(s,u(s))ds, >0,
0

corresponde ao caso em que o dado inicial € imposto em t =0, isto &, u(0) = uy.

Por outro lado, se o dado inicial é prescrito em um instante 7 € R, isto é, u(z¢) = u,,, entdo a

solucao branda é dada por

t
u(t):S(t—To)uTO+f S(t—9)f(s,uls)ds, t=1p.
To

2.3 Teoremas de Geracao e Estabilidade de Semigrupos

Até o presente momento, desenvolvemos diversos resultados de existéncia e unicidade para
problemas de valor inicial em diferentes contextos e sob distintas hipoteses estruturais. Esses
resultados constituem um marco essencial no estudo de equacodes diferenciais de evolucao, pois
asseguram que os modelos matematicos considerados admitem solucdes bem definidas e que estas

solucdes sao Unicas para cada dado inicial.

Contudo, um aspecto central permeia todos esses resultados: a parte linear do problema,
representada por um operador (em geral nio limitado) A, deve necessariamente ser o gerador
infinitesimal de um Cy-semigrupo de operadores lineares. Essa exigéncia nao é apenas técnica,
mas estrutural, uma vez que é justamente a teoria de semigrupos que fornece a linguagem e o
ferramental para a formulacdo abstrata e a analise dos problemas de Cauchy. Mesmo em situacoes
nao autdbnomas, a condicao nao se torna mais flexivel: para cada instante ¢ = 0, o operador A(t)
deve ser o gerador de um Cy-semigrupo.

Diante dessa exigéncia fundamental, o objetivo desta secao é duplo. Em primeiro lugar,
buscamos estabelecer condicdes necessarias e suficientes para que um operador ndo limitado A
seja, de fato, o gerador de um Cy-semigrupo. Esse estudo nos conduzira a resultados classicos,
como os Teoremas de Hille-Yosida e de Lumer-Phillips, que constituem pilares da teoria moderna de
semigrupos e oferecem critérios praticos para identificar geradores. Em segundo lugar, voltaremos
nossa atencao para a analise da estabilidade de semigrupos de operadores lineares, investigando
como as propriedades espectrais e dissipativas do gerador se traduzem no comportamento assintotico
das solucdes, o que permitird uma analise abrangente do comportamento assintético das solucoes

do problema linear (4.1)-(4.3) proposto no Capitulo 4.

A investigacao da estabilidade nao é apenas um desdobramento natural da teoria de geracao,
mas também um elemento crucial para aplicacdes em modelos fisicos, mecanicos e de controle. De
fato, compreender se as solucdes de um problema de evolucdo permanecem limitadas, decaem
assintoticamente ou ainda em que taxa se dissipam constitui informacao fundamental para a in-

terpretacdo do modelo. Assim, estudaremos diferentes nocoes de estabilidade (forte, uniforme,
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exponencial e polinomial), explorando suas inter-relacdes e condicdes de caracterizacdo. Destacare-
mos ainda resultados de grande relevancia, como os Teoremas de Arendt-Batty, Borichev-Tomilov,
Batty-Chill-Tomilov e Gearhart, que estabelecem vinculos profundos entre o espectro do gerador A

e o decaimento temporal da energia associada ao sistema.

2.3.1 Teoremas de Geracao de Semigrupos

Lembre-se de que, se A: D(A) € X — X é um operador linear (ndo necessariamente limitado),

o conjunto resolvente do operador A é definido como
p(A) ={1eC; AI—- A éinvertivel e (AI - Al e LX)

O conjunto complementar o (A) = C\p(A) € denominado o espectro do operador A. Um ponto A € C
é chamado de autovalor de A, quando o operador AI — A nao é injetivo. Neste caso, um elemento

nao nulo x € D(A), tal que Ax = Ax é chamado de autovetor associado ao autovalor A.

O conjuntos de todos os autovalores de A é denominado o espectro pontual de A e é denotado

por g, (A).

Teorema 2.29 (Hille-Yosida)
Um operador linear A: D(A) ¢ X — X é gerador infinitesimal de um Cy-semigrupo de contracoes

{S()}+=0 se, e somente se,

(i) Aéfechadoe D(A) é densoem X.
(i) p(A)>(0,+00) e para todo A >0, tem-se

_ 1
HAL = A Hex < 1

Demonstracdo. Ver ((PAZY, 1983), p. 8). O

A seguir, apresentamos o Teorema de Lummer-Phillips. Esse teorema é uma caracterizacao
mais pratica, do ponto de vista operacional, dos geradores infinitesimais dos Cy-semigrupos de

contracoes.

Inicialmente, lembre-se de que, se X é um espaco de Banach, para cada x € X, pelo Teorema

de Hahn-Banach, existe um funcional linear limitado L, € X’ tal que
(Lo, x) = 1 x15 = I L)%
Assim, para cada x € X, o conjunto de dualidade definido por
Jx)={Le X'; (L,x) = Ixl% = ILI5:}

€ nao vazio.
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Definicao 2.30
Seja A: D(A) ¢ X — X um operador linear. Dizemos que A é dissipativo se, para todo x € D(A),

existe um funcional linear L, em seu conjunto de dualidade J(x) tal que

Re(Ly, Ax) <0.

Observe que, no contexto de um espaco de Hilbert H, tem-se | - ||§{ ={,Yg,onde {:,Yg éo
produto interno de H. Nesse caso, o Teorema da Representacao de Riesz garante que é possivel

identificar H com o seu dual H’, identificando cada x € H ao funcional L, € H'.

Assim, se (H, {-,-Y ) € um espaco de Hilbert, entdo o conjunto de dualidade (via identificacdo)
é simplemente J(x) = {x} para todo x € H. Como (x, y) g = (¥, X); Vx,y € H, um operador linear

A:D(A) c H— H édissipativo se, e somente se
Re(Ax,x)g <0; Vx e D(A). (2.19)

Teorema 2.31 (Lummer-Phillips)

Sejam X um espaco de Banach e A: D(A) € X — X um operador linear tal que D(A) = X. Entao

(i) Se A é dissipativo e existe 1o > 0 tal que o operador Aol — A é sobrejetivo, entdo A é o gerador

infinitesimal de um Cyp-semigrupo de contracdes sobre X.

(ii) Se Aé o gerador infinitesimal de um Cy-semigrupo de contracdes sobre X, entdo A é dissipativo

e o operador A1 — A é sobrejetivo, qualquer que seja A > 0.

Demonstracdo. Ver ((PAZY, 1983), p. 14). O

Definicdo 2.32
Seja A: D(A) € X — X um operador linear sobre um espaco de Banach X. Dizemos que A é maximal

se Aol — A é sobrejetivo para algum 15> 0

Proposicao 2.33
Sejam X um espaco de Banach e A: D(A) ¢ X — X um operador linear dissipativo. Se A é maximal,

entdao A1 — A é sobrejetivo paratodo A > 0.

Demonstracdo. Ver ((PAZY, 1983), p 15-16). ]

2.3.2 Teoremas de Estabilidade para Semigrupos

Ao analisar um sistema dindmico regido por Equacoes Diferenciais de Evolucao, é fundamental
compreender o comportamento assintotico de suas solucoes e a taxa de decaimento da energia
do sistema quando t — oo. Para finalizar esta secao, introduziremos as nocoes de estabilidade do
semigrupo que caracteriza o decaimento da norma das solucoes, e de estabilidade da energia do

sistema, que descreve a dissipacao ao longo do tempo da quantidade de energia associada a solucao.
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Serao apresentadas condicoes necessarias e suficientes para a estabilidade de um Cy-semigrupo
de operadores lineares, bem como a relacao entre o tipo de estabilidade do semigrupo e o compor-
tamento assintotico da energia do sistema. Essa conexao € essencial para traduzir propriedades do
gerador infinitesimal, como a localizacao do espectro, em informacdes qualitativas sobre a dindmica

do problema de Cauchy associado.

Além disso, enunciaremos resultados importantes que estabelecem equivaléncias entre diferen-
tes nocoes de estabilidade para semigrupos e o decaimento exponencial ou polinomial das solucoes
(ou de sua energia). Tais resultados serdo posteriormente aplicados no estudo do comportamento

assintotico das solucoes do problema (4.1)-(4.3), formulado no Capitulo 4.

Definicao 2.34
Seja A: D(A) c X — X o gerador infinitesimal de um Cy-semigrupo {S(1)};>o sobre um espaco de
Banach X. A energia da solucdo u: [0,+00) — X do problema abstrato de Cauchy (2.6) é definida
como

1

1 2 2
E(t)=EIIM(I)IIX=EIIS(t)uo)IIX;VtZO. (2.20)

Definicao 2.35

Seja {S(1)} ;=0 um Cy-semigrupo sobre um espaco de Banach X.

(i) Dizemos que {S(1)};>¢ € fortemente (ou assintoticamente) estdvel quando

lim [|S(H)x]lx=0; Vxe X.
t—+o00

(ii) Dizemos que {S(1)};=0 € uniformemente estdvel quando

lim [1S(5)ll2(x) =0.
t—+o00

(ii’) Dizemos que {S(1)};>0 € exponencialmente estdvel quando existem constantesw >0e M >1
tais que

IS(O ) < Me™!; V= 0.

Proposicao 2.36

Um Cy-semigrupo é exponencialmente estavel se, e somente se é uniformemente estavel.

Demonstracdo. Seja {S(1)};>0 um Cy-semigrupo sobre um espaco de Banach X. Se {S(#)};>o €
exponencialmente estavel, é claro que ele é uniformemente estavel. Reciprocamente suponha
que {S(9)}s=0 € uniformemente estavel. Assim, existe ) > 0 tal que g := ||S(#p)ll #(x) < 1. Defina
My = sup [IS(s)ll#x), que existe, uma vez que a aplicacdo t — [|S(1)ll #x) € continua e [0, fy] €

0<s<i
compacto. Escrevendo t = kfgp+s>0,comkeNtalque ktgp<t=<(k+ 1)ty e 0=<s< 1 tem-se

1Sl zc0 = 1SNl 2x) - 1Skt 2x) < Moll S(to) Il 2 x) < Molls(to)llgp(X) < Moq"~.
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Note que g* = e*"9. Como g < 1, temos Ing < 0, e podemos escrever g* = e~ ¥IIndl  por
outro lado,como t=kity+se kty < t<(k+1)ty, tem-se que k= t/ty— 1, e portanto
%e—%llnql _

q
onde w:=|Ingqgl|/ty e M := (My/q) = 1. U]

N L
ISl 200 = Mog* = Moe™ 1 < Mge™ (671 = gy ¢! = Me™",

Em termos da Energia E(¢t) = %Ile”‘uo ||§{ associada ao sistema (2.6), temos as seguintes carac-

terizacoes de estabilidade:

(i) O semigrupo {e’4},>( é fortemente (ou assintoticamente) estavel, se, e somente se, o sistema

(2.6) for assintoticamente estdvel. Em outras palavras, isso ocorre quando:

lim E(f)=0
t—+o00

(ii) O semigrupo {e’};=( é exponencialmente (ou uniformemente) estavel, se, e somente se, o
sistema (2.6) for exponencialmente estdvel. Neste caso, existem constantes C>0e w >0

independentes da condicao inicial 1y, tais que:

E(t) < CE)e %! Vi>0.

Ha ainda um conceito de estabilidade que é mais abrangente do que a estabilidade assintoética,
pois, além de garantir que a energia decai para zero quando ¢ > 0 é suficientemente grande,é
suficientemente grande, ele descreve a taxa desse decaimento. No entanto, esse decaimento é mais
lento do que aquele observado na estabilidade exponencial. Trata-se do conceito de estabilidade

polinomial, cuja definicdo, em termos da energia do sistema (2.6), é dada por:
C
E(t) = t—wll upllpay; V>0,
onde C e w sao constantes positivas e a norma |yl p(a) € definida por:

luollpeay = lluoll x + | Augll x.-

Motivados pelo conceito de estabilidade polinomial aplicado ao sistema (2.6), apresentamos a

definicdo equivalente de estabilidade polinomial no contexto de semigrupos:

Definicao 2.37

Seja A: D(A) c X — X o gerador infinitesiamal de um Cy-semigrupo {S(#)};>¢ sobre o espaco de
Banach X. Dizemos que {S(%)};>( € polinomialmente estdvel se existirem constantes M >0e w >0
tais que

M
IS(Hx|x < t—wllxIID(A); Vxe DA eVt>0.

Finalmente, no que segue, apresentaremos os resultados de establidade que utilizaremos na

analise do comportamento assintético da solucdo do problema que sera estudado no capitulo 3.
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Teorema 2.38 (Teorema de Arendt-Batty)
Seja A: D(A) ¢ X — X o gerador infinitesimal de um Cy-semigrupo limitado {S(#)} ;>0 sobre um

espaco de Banach reflexivo X. Entao {S(#)};>¢ € fortemente estavel se satisfaz as seguintes condicoes:

(i) O operador A ndo possui autovalores no eixo imaginario, ou seja 0 ,(A) N{li € C;A R} = @.

(ii) Oespactrode A, contém, no maximo uma quantidade enumeravel de pontos no eixo imaginario.

Em outras palavras, 0(A) N {Ai € C; A € R} € um conjunto enumeravel.

Demonstracdo. Ver (ARENDT; BATTY, 1988) ]

Teorema 2.39 (Teorema de Borichev-Tomilov)
Seja A: D(A) ¢ H — H o gerador infinitesimal de um Cy-semigrupo limitdo {S(#)};>¢ sobre um
espaco de Hilbert H tal que {il € C; 1 € R} < p(A). Entao {S(#)}>0 é polinomialmente estavel, se, e

somente se,
1

|1/w

limsup

A€R, [A]—+oo |4 Jaar-a™ | 2an <o

Neste caso, existe uma constante M > 0, tal que

M
IIS(t)xIIHSt—wIIxIID(A); VxeD(A) eVt>0. (2.21)
Demonstracdo. Ver (BORICHEV; TOMILOV, 2010). O

Teorema 2.40 (Teorema de Batty-Chill-Tomilov)
Seja A: D(A) ¢ H — H o gerador infinitesimal de um Cy-semigrupo limitdo {S(#)};>¢ sobre um

espaco de Hilbert H tal que o(A) n{Ai € C; A € R} = {0}. Se existem constantes o = 1 e y > 0 tais que

O(AI™%), se|Al—0,

Al - Al m < )
(H) {o(mm,se Al — +o00.

entao, existe uma constante C > 0 tal que:

IS xll g =

IIxIID(A); Vxe DA NAH)et>0.

1
t maxio,y}

Demonstracdo. Ver (BATTY; CHILL; TOMILOV, 2016). L]

Teorema 2.41 (Teorema de Gearhart)
Seja A: D(A) € H — H o gerador infinitesimal de Cy-semigrupo de contracoes {S(#)};>¢ sobre um

espaco de Hilbert H. Entao {S(1)};>0 € exponencialmente estavel se, e somente se,

(i) p(A)>{AieC;AeR}.

(i) limsup [I(iA—A)" e < oo.
AER, |A|—o0

Demonstracdo. Ver (GEARHART, 1978). O



60 Capitulo 2. A Teoria de Semigrupos de Operadores Lineares Limitados e o Problema Abstrato de Cauchy

Uma observacao de carater pratico a respeito da segunda condicao (ii) da definicido de um

sistema CD de Kato (ver Definicido 2.23) é oportuna.

Observacao 2.42

Geralmente nas apicacdes, a condicio de estabilidade uniforme em t exigida em (ii):
1S¢($) |l 2x) < Me“’;Vt,s=0.

é dificil de ser verificada diretamente. Entdo é desejavel que existisse um critério pratico e suficiente
para obter essa condicdo. Um critério conveniente é que X admita uma norma equivalente | - ||;
tempo dependente que seja localmente Lipschitziana. Isto é, existe ¢ > 0 tal que:

1l
Il

clt—s|

<e , paratodo t,s=0e paratodo x #0em X,

Para mais detalhes, ver (KATO, 1985), pagina 10.
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Capitulo 3

Dinamica Nao Linear Autonoma e Nao-Autonoma

O mundo natural é intrinsecamente nao linear. Desde sistemas fisicos classicos até modelos
mais sofisticados da biologia, da mecanica ou da economia, as equacoes diferenciais que descrevem
tais fendmenos raramente apresentam uma estrutura linear simples. Nesse cenario, a nocao de
semigrupo, tdo poderosa no estudo da dindmica de sistemas lineares, pode ser magnificamente
generalizada para lidar com a evolucao temporal de solucdes de problemas de Cauchy nao lineares
auténomos. Essa generalizacao da origem a chamada Teoria de Semigrupos Nao Lineares de Opera-
dores Continuos, frequentemente interpretada sob a 6tica de Sistemas Dindmicos Autdnomos em

dimensao infinita.

A primeira secao deste capitulo sera dedicada a essa teoria. Diferentemente do caso linear,
onde as solucdes tendem a decair para zero (como discutimos na secao final do Capitulo 2, ao abordar
a estabilidade de energia e de semigrupos lineares), no contexto nao linear as trajetérias podem
apresentar comportamentos assintoticos mais ricos. Em vez de convergirem necessariamente para a
origem, as solucoes podem ser atraidas para um conjunto compacto invariante especial, denominado
atrator. Esse conjunto desempenha o papel de descrever, de forma qualitativa e geométrica, o regime

permanente das solucoes.

No caso puramente linear, o atrator reduz-se a um Unico ponto: tipicamente a origem do espaco
de fases X. Ja no cenario nao linear, o estudo torna-se substancialmente mais sofisticado, deslocando
o foco para a analise de sistemas dindmicos em dimensao infinita. Conceitos fundamentais como
atratores globais emergem, oferecendo uma descricdao abrangente do comportamento assintético.
Um atrator global é um conjunto compacto, invariante, que atrai todos os subconjuntos limitados
de X. Em outras palavras, independentemente da condicao inicial, todas as trajetérias do sistema
(solucdes) acabam sendo capturadas por esse conjunto, o que proporciona uma caracterizacao

completa do comportamento de longo prazo.

Surpreendentemente, existe uma generalizacdo ainda mais abrangente dessa estrutura. Muitos
sistemas fisicos, mecanicos e biologicos nao sao autébnomos, ou seja, as leis que os regem variam

explicitamente no tempo. Nesses casos, a estrutura de semigrupo, que depende apenas do intervalo
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de tempo decorrido (¢ — s), mostra-se insuficiente para descrever adequadamente a dindmica. Surge
entdo a Teoria de Processos de Evolucao, também conhecida como a teoria de Sistemas Dinamicos

Nao Autbnomos.

Um processo de evolucao é uma familia de operadores que depende de dois instantes tem-
porais, descrevendo a evolucdo do sistema desde um instante inicial s até um instante posterior ¢,
refletindo a natureza ndo estacionaria do operador ao longo do tempo. Essa teoria, que apresentare-
mos na segunda secao deste capitulo, representa o ponto culminante da estruturacao hierarquica
gue parte dos semigrupos lineares, passa pelos semigrupos nao lineares e chega aos processos nao

autdonomos.

No ambito dos sistemas ndo autdonomos, o estudo do comportamento assintético (dinamica
do sistema) é enriquecido por nocdes mais sutis, como o conceito de atrator pullback. Em contraste
com os atratores globais de sistemas autdbnomos, que atraem solucdes para um conjunto fixo quando
t — +o0, 0 atrator pullback incorpora a ideia de puxar solucoes a partir de condicdes iniciais situadas
em tempos cada vez mais distantes no passado (s — —oo) até o presente t. Dessa forma, ele se
adapta dinamicamente as forcas externas variantes no tempo, oferecendo uma caracterizacado mais

natural e robusta do regime permanente em sistemas nao auténomos.

Assim, este capitulo tem como objetivo complementar e expandir o estudo iniciado no contexto
linear. Primeiro, apresentamos a teoria de semigrupos nao lineares e o estudo de atratores globais; em
seguida, avancamos até a abstracado maxima dos processos de evolucao nao autébnomos, culminando
na analise sofisticada dos atratores pullback. Essa jornada fornece nao apenas técnicas avancadas de
analise e resolucdo, mas também uma visao unificada e profunda da dindmica de sistemas descritos
por equacoes diferenciais, iluminando os vinculos entre linearidade, nao linearidade e dependéncia

temporal explicita.

3.1 Teoria Semigrupos de Operadores nao Lineares Continuos

Nesta secao, estudaremos a teoria de semigrupos de operadores nao lineares continuos, cujo
objetivo central é analisar a dindmica das solucdes de problemas de Cauchy nao lineares autébnomos.
Esse arcabouco tedrico, também conhecido como teoria de sistemas dindmicos autbnomos em
dimensao infinita, amplia de maneira significativa a teoria de semigrupo de operadores lineares
limitados desenvolvida no Capitulo 2, permitindo compreender o comportamento de fenémenos

mais realistas, nos quais a presenca de nao linearidades desempenha papel essencial.

Ao contrario do caso linear, em que a andlise assintdtica das solucoes se baseia em critérios
espectrais e no estudo da estabilidade de semigrupos, conduzindo, na maioria das vezes, ao decai-
mento exponencial ou polinomial em direcao a origem, no caso nao linear, o comportamento de
longo prazo das solucdes revela uma rica estrutura geométrica. Em particular, as solucdes deixam

de tender, em geral, a um Gnico ponto (a origem) e passam a ser atraidas por conjuntos compactos
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invariantes especiais, denominados atratores.

Mostraremos como a teoria de semigrupos de operadores nao lineares caracteriza o compor-
tamento assintético do sistema. O conceito-chave sera o de atrator global, um conjunto compacto,
invariante e atrativo que resume o regime permanente do sistema. Esse atrator contém todas as
orbitas limite do sistema e fornece uma descricdo qualitativa completa da sua dindmica a longo
prazo. A existéncia de tal atrator frequentemente esta vinculada a duas propriedades fundamentais
do semigrupo: a dissipatividade (existéncia de um conjunto absorvente que atrai todas as orbitas
limitadas) e a compacidade assintética. Esta Gltima garante que as orbitas possuem subsequéncias

convergentes para tempos grandes, assegurando a compacidade do atrator.

No caso linear, o atrator global se reduz a um Unico ponto (tipicamente a origem do espaco
de fase X), ou algum compacto contendo a origem, enquanto, no contexto nao linear, ele pode
apresentar geometria mais complexa, revelando novos padroes de estabilidade e organizacao do
sistema dinamico. Outra estrutura importante a ser explorada é a dos semigrupos gradientes, que
sao aqueles munidos de uma funcado de Lyapunov estrita. Esta funcao, que decresce ao longo das
trajetorias, permite identificar o atrator global como a variedade instavel do conjunto dos pontos de

equilibrio, fornecendo uma caracterizacao precisa de sua geometria e dindmica.

Além disso, abordaremos a propriedade de quase estabilidade, uma ferramenta poderosa para
analisar a dindmica no atrator. Um semigrupo quase-estavel admite estimativas que permitem provar
a finitude da dimensao fractal do atrator global e obter ganhos de regularidade para as trajetérias

completas contidas nele, indo além da mera existéncia do objeto atrator.

Os conceitos discutidos nesta secao serao fundamentais para o estudo da dindmica do sistema
(5.3) (5.6), que sera desenvolvido no Capitulo 5, especialmente na demonstracdo da existéncia de

um atrator global para esse problema.

Considere o problema de Cauchy nao linear:

u' () =F(u(); t>0
: (3.1)
u(0) = ug
onde F: X — X é um operador continuo e X é um espaco de Banach.

Suponhamos que o problema (3.1) € bem colocado, isto é, que ele admite uma Unica solucio
global u: [0, +o0) — X. Assim, podemos definir uma colecio {T(¢)};>¢ de operadores continuos (ndo

necessariamente lineares), da seguinte forma:

r: X — X

ug — u(r),
paracada ¢t =0.

Observe que:

(i) T)=1I,0ondeI:X — X éo operador identidade.
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(i) T(t+s)=T()oT(s); Vt,s=0.

Com efeito, dado u € X, temos T(0)uy = u(0) = ug. Logo S(0) = I. Além disso, definindo
v(t)=u(t+s), temos que v'(t) = u'(t+s) = F(u(t+s)) = F(v(¢)) paratodo t >0, e v(0) = u(s) € X.
Logo:

(T oTSN)uy=TE(TSHuy) =T u(s)=vE)=u(t+s)=T(t+S)uy;, Vt,s=0.

Portanto T(t+s)=T(t)o T(s); Vt,s=0.

As propriedades (i) e (ii) acimam sugerem uma teoria de semigrupos para operadores continuos
relacionados a problemas de Cauchy nao lineares. O foco dessa teoria é entender o comportamento
do semigrupo {T(1)};>¢ para t suficientemente grande, e consequentemente, a dindmica da solucao

u(t) = T(H)uy, para cada up € X.

O comportamento a longo prazo de uma solucao é sempre descrito por um conjunto invariante

Ac X, para o qual a 6rbita u(t) converge quando t — +oo. Mais precisamente:

T(WA=A;Vt=0 e distancia(u(t),A) — 0, quando t — +oo. (3.2)

Veremos que para sistemas dissipativos existem conjuntos A c X satisfazendo (3.2), e fazem
parte de um “grande"conjunto compacto e invariante 2 que atrai todas as orbitas. Esse conjunto

sera chamado de atrator global do semigrupo {T(#)};>¢.

3.1.1 Semigrupo de Operadores Continuos Sobre um Espaco Métrico

Definicao 3.1
Seja X um espaco métrico. Uma familia de operadores continuos {T(#)} ;¢ de X sobre X chama-se

um semigrupo em X se satisfaz as seguinte propriedades:

(i) TO)=1I,ondeI:X — X éo operador identidade.
(i) T(h+6)=TH)T(); Vt,t =0.
(iii) A aplicacao
T:10,+00)xX — X

(t,x) — T(Dx,

é continua.

Semigrupos sao também chamados sistemas dindmicos auténomos. Observe que, da condicdo
(ii) da definicao de semigrupo, segue que o semigrupo é comutativo com respeito a composicdo. De
fato, dados 11,6, =0,temos T ()T () =Tt + ) =T (L + 1) = T () T(t).
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Os operadores T(t) : X — X podem nao ser injetivos. Quando o semigrupo {T(1)};>0 € tal que,
para cada t =0, o operador T(¢) : X — X é um homeomorfismo, entdo, para cada ¢ < 0, define-se
U(s)=T(-s)"': X — X. Afamilia {U(5)} ser, cOM

Uis)=T(s), se s=0
U(s)=T(-s)"' se s<0

é chamada grupo em X.

A Orbita ou trajetoria do semigrupo {T(1)};>0 que comeca em uy € X € o conjunto

U T(®) uo.

=0

Do mesmo modo, quando existe, uma 6rbita ou trajetéria que termina em 1, é um conjunto de
pontos

Uy,

=0
onde ¢ : (—o00,0] — X é uma aplicacao continua tal que &(0) = ug e (¢t + s) = T(f) uy, para todos os

ndmeros reais se ttaisque s <0, t = 0 e s+t < 0 (ou de forma equivalente u(t) € T(—#) " ug; Vit = 0).

As orbitas que comecam ou terminam em uy sdo também chamadas drbitas positivas ou
negativas através de uy. Uma trajetoria completa (ou drbita global) passando por u é a unido das

oOrbitas positivas e negativas através de .

A seguir formalizamos os conceitos discutidos acima.

Definicao 3.2
Sejam X um espaco métrico e {T'(#)};>¢ um semigrupo em X. Uma aplicacdo ¢ : R — X é uma solugdo

global para {T(t)};>0, quando

TE(S) =¢(t+9); Vi=0e VseR.

O conjunto imagem ¢(R) = {{(s); s € R} é chamada drbita global ou orbita completa da solucao
global é.

Definicao 3.3
Sejam X um espaco métrico e {T(#)};>o um semigrupo em X. Dado um conjunto Bc X e 1, =0,

definimos a semidrbita positiva do conjuno B a direita de ¢, relativa ao semigrupo {T'(#)};>¢ por:
Y}B(B) ={S(t)x; t=1tye x€ B}.

Quando % = 0, escrevemos 7y, (B) simplesmente por y*(B) e a chamamos apenas de Semidrbita

positiva do conjuno B relativa ao semigrupo {T(£)} ;0.

A seguir definiremos uma classe de subconjuntos do espaco de fase X que preservam a

dindmica do semigrupo {T(£)};>0-
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Definicao 3.4
Sejam X um espaco métrico e {T (1)} ;>0 um semigrupo em X. Um subconjunto A c X édito invariante

pelo semigrupo {T(£)};>0 quando
T(HA:={T(Hx;x€e A} =A; Vi=0.

Quando temos apenas T(f)Ac A; Vt =0, dizemos que o conjunto A é positivamente invariante por

{T()};=0. O conjunto A é dito negativamente invariante por {T(t)};>0 quando T(f)A> A; Vt=0.

Proposicao 3.5
A unido de qualquer familia de conjuntos invariantes por um semigrupo é também um conjunto

invariante por esse semigrupo.

Demonstracdo. Sejam {T(t)};>o um semigrupo sobre um espago métrico X e (Ay) 1z uma familia

arbitraria de conjuntos invariantes pelo semigrupo {T(#)} ;0. Considere o conjunto A = U A,. Entado
A€eL

T(HA=T(1)

U Ax

A€eL

=JUTmAay=JAr =4 vVr=0.
A€l A€eL

]

A intersecdo de conjuntos invariantes ndo é necessariamente um conjunto invariante. Contudo,
observe que, se T(t): X — X é injetivo para todo ¢ = 0, entdo a intersecao arbitraria de conjuntos
invariantes é também um conjunto invariante. Portanto em um grupo de operadores continuos essa

propriedade é valida.

As érbitas globais de um semigrupo sdo conjuntos invariantes e as solucoes globais sao aplica-

¢coes continuas, como veremos a seguir.

Proposicao 3.6

Toda 6rbita global de um semigrupo é um conjunto invariante para esse semigrupo.

Demonstracdo. Sejam {T' (1)} ;=0 um semigrupo sobre um espaco métrico X e ¢ : R — X uma solucao
global para {T'(1)};>9. Queremos mostrar que T(£)¢(R) = E(R); V= 0. Para tal, seja t = 0.

Se ue T()ER), entdo u= T(t)x para algum x = &(sp), com sp € R. Assim
u="T()x=T()S(s0) =¢(t+sp) €C(R).

Logo T(1)¢(R) < &(R).

Reciprocamente, se u € {(R), entdo u = £(sg) para algum sy € R. Escolha o ponto x =&(sg— 1) €
¢(R). Observe que:

T(x=T({@®)¢(so—1) =&(t+ 59— 1) =&(sp) = u.

Logo u e T()E(R). Portanto ¢(R) < T(1)¢E(R), o que completa a prova. ]
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Proposicao 3.7

Toda solucao global de um semigrupo é uma aplicacdo continua.

Demonstracdo. Sejam {T(1)};>0 um semigrupo sobre um espaco métrico (X,d) e { :R — X uma
solucdo global para {T(#)};=0. Do item (iii) da definicdo de semigrupo, dado € > 0 e xy € X, existe

6 > 0 tal que

d(T(t)x, T(ty)xo) <€, sempre que (t,x) € [0,+00) x X e |t— o] +d(x,xp) <0. (3.3)

Assim, dado sy e R, fixe re Rtalque 0 < d < so—71. Se s e R é tal que |s— sgo| < &, entdo

$—17,50—7>0.Definindo t=s—1, tg = sg— 7 € x9 = (1), temos que:
[s—spl=lt+T—tg—T|=t— 1ol =|t— tp| + d(x9,%0) <.
Ent3o, de (3.3) segue que

d(&(),¢(s0)=dE(s—T1+71),¢{(S0—T+71)) d(T(s—1)¢(1), T(so—1)¢(1))

d(T(t)xg, T(t)xg) <e.

Portanto ¢ : R — X é continua, como queriamos provar. OJ

Os conceitos de conjunto invariante e de solucdo global estao conectados por meio do proximo

resultado.

Teorema 3.8
Seja {T(t)} ;>0 um semigrupo sobre um espaco métrico X. Um subconjunto A c X é invariante pelo

semigrupo {T(t)};>0, S€ e somente se é uma reuniao de érbitas globais de {T(#)};>0.

Demonstracdo. Como vimos na Proposicao 3.6, toda érbita global € um conjunto invariante. Entao,

se A € uma reunido de 6rbitas globais, entao segundo a Proposicao 3.5, A é invariante.

Reciprocamente, suponhamos que A seja um conjunto invariante. Considere qualquer ponto
Xo € A. Como A é invariante, temos que T(1)xy € A paratodo ¢ = 0. Além disso (ainda pela invariancia
de A), existe um ponto x_; € A tal que xo = T(1)x_;. Analogamente, existe um ponto x_, € A tal
que x_; = T(1)x_». Continuando o processo indutivamente, para cada n € N, obtemos um ponto

x_p€ Atalque x_,y1 = T(1)x_,. Portanto T(n)x_, = xo. Mais geralmente, por inducao segue que:

T(n)X;m = Xn—m, SEMpPre que m = n.

Agora, defina ¢ : R — X por:

)

T(s)xp, se s=0
&(s) =
T(s+n)x_, se —n<s<l-n
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Por construcao, temos é(s) € A para cada s € R. Assim, resta apenas mostrar que ¢ é uma

solucao global para {T (1)} ;>0.

Sejam t=0e seR. Se s=0, entdo

TES) =TT (S)xg=T(t+5s)=E&(t+5s), pois t+s=0.

No caso em que s < 0, existe ng € N tal que —ny < s<1-ny. Noteque t+s=00u t+s<0.

No primeiro caso, temos:

TS =TT (s+n0)x—p, =T+l +n0)x=,=TE+ )T (n0)X=py = T(t+ )Xo =¢(L+5).

Finalmente, no casoem que s<0e t+s<0, considere n; e Ntalque n; < t+s<1-n;. Como

s< t+s, temos que n; < ng Entao

TS =TT (s+np)x—p, =T+ [s+noD)x=p, = T{t+s+m]+[no—mlx_y,
= T(+s+nm)T(ng—nyx_p,
= T+s+n)x_p

= &(t+5s).

Portanto T(1)&(s) =é(t+s); Vi=0e VseR. Logo ¢ é uma solucao global para o semigrupo

{T(8)} >0, 0 que completa a prova. O

Quando se deseja estudar o comportamento assintético dos sistemas dindmicos, uma ferra-
menta bastante Gtil é a semidistdncia de Hausdorff, a qual serd a “medida” responsavel por descrever

a nocao de proximidade entre os objetos relacionados a dindmica do sistema.

Definicao 3.9
Seja (X, d) um espaco métrico. Dados dois conjuntos nao vazios A, B c X, definimos a semidistancia
de Hausdorff entre A e B (nessa ordem) por:

distx (A,B) :=supinfd(x,y).
xeA YEB

Um fato que faz da semidistancia de Hausdorff uma ferramenta Gtil nesta teoria é que ela
satisfaz a desigualdade triangular. Contudo, ela ndo é simetrica. Além disso dist(A,B) =0 se, e
somente se, A c B. Assim por meio dessa semidistancia é possivel definir uma boa nocdo de atracdo

€m um semigrupo.

Para mais detalhes sobre a semidistancia de Hausdorff, vide (FEDERER, 1969).

Definicao 3.10
Seja {T(1)};=0 um semigrupo sobre um espaco métrico (X, d) e sejam A, B c X. Diz-se que o conjunto

A atrai B (ou que B é atraido por A) por meio (ou acdo) do semigrupo {T(1)};=0 quando

lim distx (T(t)B,A) =0.
t—+o00
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Mais precisamente, dado ¢ > 0 existe ty > 0 (que depende de ¢ e de B) tal que:

T(£)BcVe(A):= | Be(x) = {x € X;d(x,A) < ¢&}; VI> 1. (3.4)

XeA
Um conjunto A c X é dito atrativo se atrai todos os subconjuntos limitados de X.

No que segue definimos o conceito mais importante desta secao.

Definicao 3.11
Seja {T ()} ;>0 um semigrupo sobre um espaco métrico X. Um subconjunto 2l ¢ X chama-se um
atrator global (ou simplesmente atrator) para o semigrupo {T(#)};=o Se satisfaz as seguintes condi-

coes:
(i) 20 é um subconjunto compacto de X.
(i) 2 é invariante pelo semigrupo {T(1)};>0-
(iii) 2A atrai todos os subconjuntos limitados de X pela acdo do semigrupo {T()};>0.

Proposicao 3.12
Seja{T (1)} ;>0 um semigrupo sobre um espaco métrico X. Se existir um atrator global 2 para {T(£)} >0,

entao ele é Unico.
Demonstracdo. Sejam 2A; e %A, dois atratores para {T'(1)};>0. Da condicao (i) da definicido de atrator,
segue que A, é compacto (em particular é limitado). Como I, é atrator, da condic3o (iii), temos que:
lim dist, (T(HA5,%;) =0.
t—+oo
Contudo, 2, é invariante (condicao (iii)). Logo
0= lim dist, (T(O)A5,2) = lim dist, (As,2) =dist, (A,25).
I—+00 t—+o00
Portanto 2, c Ql_l =924, uma vez que 2, é fechado, pois é compacto.

De forma analoga, invertendo os papéis de 2; e 2, np argumento anterior, conclui-se que

2A; <2y, o que completa a prova. O

Proposicao 3.13
Seja {T (1)} ;=0 um semigrupo sobre um espaco métrico X. Se {T'(#)} ;>0 possui atrator global 2, entao

2l se exprime como a reuniao de todos os conjunto invariantes e limitados de X.

Demonstracdo. Seja ‘B a reunido de todos os conjuntos invariantes por {S(#)};>o e limitado em X.
Como %l é atrator, em particular e invariante e limitado, temos 2l < 8. Reciprocamente, seja Bc X

um conjunto invariante e limitado. Como %l é o atrator global, entdo I atrai B. Entao
0= lim distx(T(t)B,2) =distx (B,2l).
t—+o00

Logo B c A=92, e portanto B c 2, como queriamos mostrar. O
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Corolario 3.14
Se um semigrupo {T'(f)} >0 €m um espaco métrico X possui atrator global 2, entao 2l é a reuniao de

todas as oOrbitas globais limitadas de {T(#)} ;>0 .

Demonstracgo. Basta combinar o Teorema 3.8 com a Proposicao 3.13. ]

Definicao 3.15

Sejam X um espaco métrico e {T(t)};>o um semigrupo em X.

(i) {T(D};=0 diz-se limitado, quando a semiorbita positiva de qualquer subconjunto limitado de

X é um limitado de X.

(i) {T(6)};>0 diz-se eventualmente limitado, quando para cada subconjunto limitado de B c X,

existe ty = 0 (dependendo do conjunto B) tal que y;; (B) é um conjunto limitado em X.

Observamos que, se um semigrupo {T(1)};>o sobre um espaco métrico X admite atrator 2,
entao ele é eventualmente limitado. De fato, dado o conjunto limitado B c X, temos que 2 atrai B,
e portanto, tomando £ = 1 em (3.4), temos que y;:) (B) cV; (R). Como V1 () é limitado em X, segue
que y;;) (B) também o é. Em particular, se ¢ : R — X é uma solucao global para {T'(1)};>0, entdo para

todo numero real £, o conjunto {£(s); s = ¢} é limitado.

3.1.2 Conjuntos w-limites e Existéncia de Atrator Global

O objetivo desta subsecao é obter condicoes suficientes e praticas do ponto de vista analitico
para existéncia de atrator global para um semigrupo. Comecaremos definido o conceito fundamental

para esse objetivo.

Definiremos agora o conceito de conjunto w-limite que a peca fundamental do atrator global

de um semigrupo.

Definicao 3.16
Sejam {T'(t)} >0 um semigrupo sobre um espaco métrico X e B c X. O conjunto w-limite de B com
respeito ao semigrupo {T'(t)} ;>0 € definido por:

wB)=) (U T(T)B) =(riB.

=0 \t=t¢ =0

Lema 3.17
Sejam {T' (1)} ;=0 um semigrupo sobre um espaco métrico X e B c X. Entdo w(B) é fechado e x € w(B)

se, e somente se, existem sequéncias (£;;) seny €M [0, +00) € (X)) ey €M X tais que

t,— +oo, x,€B;VneN e x=Ilim T(t)x,.
n—oo

Demonstracdo. (Ver (ROBINSON, 2001), p. 265). O
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Teorema 3.18
Sejam X um espaco métrico e {T(#)};>0 um semigrupo em X. O semigrupo {T(f)};>¢ admite um

atrator global 2 se, e somente se, existe um conjunto compacto atrativo K. Nesse caso, 2 = w(K).
Demonstracdo. (Ver (ROBINSON, 2011), p. 117). O

Apresentamos agora, uma caracterizacao alternativa e mais analitica dos atratores em termos
de érbitas limitadas globais. Isso mostra que, embora esses objetos tenham uma definicio em

termos de dindmica, eles sao de interesse do ponto de vista das Equacoes Difereciais.

Corolario 3.19
O atrator global 2l de um semigrupo {T'(#)};>¢ sobre um espaco de Banach (X, || - ||), quando existe, é
dado por:

A = {ug € X; existe uma solucao global { : R — X, com £(0) = ug tal que [|E(s)|| < N; VseR,
para algum M > 0}.

Demonstracdo. (Ver (ROBINSON, 2011), p. 118). O]

Observe que para ug € X, a Unica solucao global do problema de (n3o linear) de Cauchy (3.1) é

dada por u =), : [0, +o0) — X.

Definiremos agora a nocao mais forte e mais pratica do que o conceito de atracao.

Definicao 3.20

Sejam X um espaco métrico, {T'(#)};>¢ um semigrupo em X e A e B dois subconjuntos de X. Dizemos
que A absorve o conjunto B pela acdo do semigrupo {T(#)};=0, quando existe fy = 0 (dependente de
B) tal que

T(t)Bc A, sempre que ¢ = (.

Um conjunto A c X que absorve todos os subconjuntos limitados de X é chamado conjunto

absorvente. Note que, todo conjunto absorvente é um conjunto atrativo.

Definicao 3.21
Seja {T (1)} ;=0 um semigrupo sobre um espaco métrico X. Dizemos que {T'(t)};>¢ € limitado dissipa-
tivo ou simplemente dissipativo, quando existe um subconjunto limitado B de X que atrai cada um

dos subconjuntos limitados de X sob a acao de {T'(#)};>¢-

Corolario 3.22
Sejam {T(t)};>0 um semigrupo limitado dissipativo sobre um espaco métrico X. Se o conjunto

absorvente B é compacto, entdo o semigrupo {T(t)} ;¢ admite (um Unico) atrator global dado por:

A =w(B).
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Demonstracdo. (Ver (ROBINSON, 2001), p. 269). O

E importante observar que nem sempre é pratico do ponto de vista das aplicacdes encontrar
conjuntos compactos. Contudo, existe uma nocao de compacidade mais computacional (analitica)
para um semigrupo, que também garante a existéncia de atrator. A saber, a de compacidade

assintotica.

Definicao 3.23
Dizemos que um semigrupo {T'(1)};>¢ sobre um espaco métrico X é assintoticamente compacto
guando para todo sequéncia limitada (x;)ny em X e toda sequéncia (£;,) ,en de nGmeros reais nao

negativos, com ¢, — +o0o, a sequéncia (T (t,) X,) ,en de X possui uma subsequéncia convergente.

Teorema 3.24
Sejam X um espaco métrico completo e {T'()};>¢ um semigrupo sobre X. Se {T(t)};>0 € limitado

dissipativo e assintoticamente compacto, entdo {T' ()} ;>0 admite um Unico atrator global 2 dado por
A =w(B),

onde B é qualquer conjunto limitado atrativo.
Demonstracdo. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 34). O

Finalizaremos a secdo apresentando uma condicao suficiente e analitica para compacidade

assintética de um semigrupo.

Definicao 3.25
Sejam (X, d) um espago métrico e B < X um conjunto limitado. Um aplicagao f: X x X — C é dita

contrativa sobre B x B se para qualquer sequéncia (x,),en < B, temos:

r}grolomfnglggosup f(xn,xm) =0.

Proposicao 3.26
Sejam {T'(£)};>0 um semigrupo sobre um espaco métrico completo (X,d) e B € X um conjunto
absorvente. Se dado qualquer € > 0, existe um nimero real positivo t* > 0 (dependente de B e de €)

e uma funcao contrativa f;«: Bx Bc X x X — C sobre B x B tal que:
d(T(t")x1, T(£")x2) < €+ fr~ (X1, X2); VX1, X2 € B,

entdo o semigrupo {T(#)};>¢ € compactamente assintético em X.

Demonstracdo. (Ver (CHUESHOV; LASIECKA, 2008), Proposicdo 2.10). O
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3.1.3 Semigrupo Gradiente e Funcao de Lyapunov

Definicao 3.27

Seja {T'(1)};>o uma semigrupo de operadores continuos sobre um espaco métrico X esejaY c X
um conjunto positivamente invariante por {T(#)};>9. Um funcional continuo ®: Y — R é chamado
funcao de Lyapunov para {T(t)} ;o sobre Y se a aplicacao t — @ (T(t)y) € nao crescente, qualquer

que sejaparacada yeY.

Se @ (T(1)y) = ®(y) paratodo >0 e algum y € Y, entdo y é um ponto fixo de {T(#)} o (isto

é, S(1)y=y; Yt>0), dizemos que a funcdo de Lyapunov ® é estrita sobre Y.

Um semigrupo gradiente ({T(£)};=0, ®) € um semigrupo {T(#)};>0 munido de uma funcao de

Lyapunov @ : X — R estrita sobre o espaco de fase X.

Teorema 3.28
Seja ({T()} =0, ®) um semigrupo gradiente e assintoticamente suave sobre um espaco de Banach X.

Suponha que

(i) Afuncdo de Lyapunov ®@: X — R é limitada por cima sobre qualquer subconjunto limitado de
X.

(ii) O conjunto ®f = {x € X; ®(x) < R} é limitado, qualquer que seja R > 0.

(iii) O conjunto dos pontos fixos (ou estacionarios) A& ={x€ X/ T(t)x = x; Vt > 0} é limitado.

Entdo o semigrupo ({T(8)};=0, P) admite um atrator global dado por A = #%(4), onde
MY (N) é a variedade nao estavel proveniente de .4 como o conjunto de todos os x € X tal

que exista uma trajetoria completa y = {u(s); s € R} satisfazendo:

u0=xe SEI}loodiStx(u(S),dV) =0.

Demonstracdo. (Ver (CHUESHOV; LASIECKA, 2010), Corolario 7.5.7). O]

Definicao 3.29 (Quase estabilidade)
Sejam X, Y e Z espacos de Banach Reflexivos tais que X p Y. Considereoespaco H=XxY x Z

munido da norma definida por:

Iy13; = luolls + llur I3 + 16011%; ¥ = (uo, u,60). (3.5)

Seja {T (1)} ;=0 um semigrupo de operadores continuos sobre H com operador de evolucao da

forma:

Ty = (u(t), us(1),0(0); y = (uop, u1,0p) € H (3.6)
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satisfazendo:

ue C([0,+00); X) N C! ([0, +00); ), (39
3.7
0 € C°([0,+00); Z).
Dizemos que o semigrupo {T' (1)} ;¢ € assintoticamente quase-estdvel sobre um conjunto Bc H
se existe uma seminorma compacta px (-) sobre o espaco X e funcdes a, b, c: [0, t) — R nao negativas
tais que:

(i) ae csaolocalmente limitadas.
(i) be L'(0,+c0) e lim b(t) =0.
t—+o0
(iii) Paratodo y;,y.€ Be t >0, tem-se

1Ty - T(Oyl5 < a®liyr — y2 1%

1T 31— Tyl < DD lyr — yoll + c(0) - sup [px (u'(s) - u?(9))]%,

O<s<t

onde T(1)y; = (uj(t), uf(t),ej(t))-

Teorema 3.30
Seja {T'(1)};>0 um semigrupo de operadores sobre o espaco H= X x Y x Z, onde X, Y, Z sdo espacos
de Banach Reflexivos e X ' Y. suponha que as condicdes (3.5)-(3.7) sdo satisfeitas. Se {T(£)}:=0

admite um atrator global 2l e é quase-estavel sobre I, entao o atrator 2 tem dimensao fractal finita.

Demonstracdo. (Ver (CHUESHOV; LASIECKA, 2010), Teorema 7.9.6). O

Teorema 3.31
Seja {T (1)} ;>0 um semigrupo de operadores sobre o espaco H =X x Y x Z,onde X, Y, Z sao espacos
de Banach Reflexivos e X ' Y. suponha que as condicdes (3.5)-(3.7) sdo satisfeitas. Se {T(£)}:=0

admite um atrator global 2l e é quase-estavel sobre 2l e ¢, := sup c(t) < oo (ver Defini¢do 3.29),
=0
entdo qualquer trajetéria completa {(u(s), us(s),0(s)); s € R} que pertence ao atrator global satisfaz

as seguintes propriedades de regularidade:
use L [®; X)nC’(R; Y)
Uss € L (R; Y) (3.8)
0s€ [®°(R; Z)
Além disso, existe R > 0 tal que:
lus($)I% + luss (DN + 105() 15 < R; YseR,

onde R depende da constante C,, da seminorma px na Definicdo 3.29, e também das propriedades

deimersiaiode X e Y.



3.2. Teoria de Processos de Evolucdo 75

Demonstracdo. (Ver (CHUESHOV; LASIECKA, 2010), Teorema 7.9.8). O

3.2 Teoria de Processos de Evolucao

Nesta secdo, desenvolveremos a teoria de processos de evolucio, cujo objetivo central é
analisar a dindmica de problemas de Cauchy nao auténomos, isto é, problemas em que o operador
responsavel pela evolucdo do sistema depende explicitamente do tempo. Esse arcabouco tedrico,
também conhecido como teoria de sistemas dindmicos ndo autbnomos em dimensao infinita, amplia
de maneira decisiva a teoria de semigrupos estudada anteriormente, permitindo a compreensao
de fendbmenos mais realistas, nos quais as leis que regem a dindmica do sistema ndo permanecem

invariantes no tempo.

Ao contrario do caso autbnomo, no qual a evolucao temporal pode ser descrita por um se-
migrupo {T(1)};>0, dependendo apenas do intervalo de tempo decorrido (¢ — s), no cenario ndo
autonomo tal estrutura se mostra insuficiente, pois a dindmica passa a depender de dois instantes de
tempo distintos: o inicial s e o final ¢. Para lidar com essa complexidade, introduziremos o conceito
de processo de evolucao, isto é, uma familia de operadores {P(t, s)};>s que generaliza a nocao de

semigrupo e captura a dependéncia explicita do tempo.

Mostraremos como essa teoria descreve de maneira qualitativa a dindmica pullback de sistemas
nao auténomos, sendo que o conceito de atrator pullback desempenha, no contexto ndo auténomo,
papel analogo ao do atrator global em sistemas autébnomos. Enquanto o atrator global captura o
regime permanente quando t — +oo, 0 atrator pullback reflete a influéncia de condicgdes iniciais
vindas do passado remoto (s — —oo), adaptando-se dinamicamente as variacoes externas no tempo

e fornecendo uma caracterizacao robusta do comportamento de longo prazo.

Desenvolveremos condicoes para a existéncia de atratores pullback, destacando o papel crucial
da dissipatividade pullback (existéncia de uma familia de conjuntos absorventes) e da compacidade
assintética pullback, que garante a convergéncia de subsequéncias para tempos iniciais tendendo a
—o00. Exploraremos também a nocao de conjuntos w-limite pullback, que constituem a base para a

construcao do atrator.

Um aspecto fundamental desta teoria é a generalizacdo proporcionada pelo conceito de
universo de subconjuntos 2, que permite definir atratores pullback com bacias de atracao mais
amplas. Essa abordagem nos permitird estudar a atracdo de familias de conjuntos dependentes
do tempo, indo além da atracao de conjuntos limitados fixos. Apresentaremos resultados sobre 2-
atratores pullback, incluindo condicoes suficientes para sua existéncia baseadas na 2-compacidade

assintética pullback.

Os conceitos abordados nesta secdo serao fundamentais para estudar a dinamica pullback do
sistema (6.2)-(6.6), que sera tratado no Capitulo 6, especialmente na demonstracio da existéncia de

um 92- atrator pullback para esse problema.
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Considere o problema de Cauchy nao linear e ndo autébnomo:

u()=F(t,u(®); t>1
, (3.9)

u(T) = uy
onde F:R x X — X é uma aplicacao continua e X é um espaco de Banach.

Suponhamos que o problema (3.9) seja bem colocado, isto é, paracadaTeR e u; € X, ele
admite uma Unica solucao global u : [t, +00) — X. Dessa forma, podemos definir uma familia de

operadores continuos (ndo necessariamente lineares) {P(t,7)}:>;, da seguinte forma:

Pt,7): X — X

uT i u(t)y

paracada t>T7.

Observe que:

(i) P(r,7)=I;VT€R,onde I: X — X é o operador identidade.

(i) P(t,7)=P(t,s)oP(s,1); VEt=s=T.

Com efeito, dado u; € X, temos P(t,1)u; = u(r) = u;, logo P(r,7) = I. Além disso, se v(t) =

P(t,8)us e us = P(s,7)u;, entdo v(t) resolve:
{ V() =F(t,v(D); t>s

v(S) = ug

Como u(s) = P(s,t)us; = ug, a unicidade da solucao implica que v(f) = u(t) para cada t € R, com
t=s=1.Assim:
P(t,s)oP(s,T1)u; = P(t,7)u;; Vuy € X.

Portanto P(t,s)o P(s,7) = P(t,1); Vi=s=T.

Essas propriedades caracterizam um processo evolutivo (ou sistema de evolucdo), que ge-
neraliza a nocado de semigrupo para o caso nao auténomo. O objetivo dessa teoria é estudar o
comportamento assintético das solucoes u(t) = P(t,7)x;, quando t — oo, analisando a dinamica do

sistema em relagao a conjuntos invariantes.

Em sistemas ndo autébnomos, o comportamento de longo prazo é frequentemente descrito

por uma familia {A(#)};cr de subconjuntos de X pullback invariantes, isto é:
P, AL (T)=AL(t); VYt=T1, (3.10)
gue atrai as orbitas no sentido pullback:

distancia(u(t), A(t)) — 0, quando 7 — —o0; YVt eR. (3.11)
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Para sistemas dissipativos ndo autbnomos, existe frequentemente um atrator pullback 2A(z),
que é compacto, invariante e atrai todas as solucoes uniformemente em certas classes de funcoes.
Esse conceito generaliza o atrator global do caso autonomo e desempenha um papel central na

analise da dindmica assintoética de sistemas dependentes do tempo.

Neste contexto, estudaremos as propriedades do processo evolutivo {P(t,T)};>;, a existéncia

e estrutura de atratores pullback, e suas implicacdes na dindmica nao auténoma.

3.2.1 Processos de Evolucao

Definicao 3.32
Seja (X, d) Um espaco métrico. Um Processo de Evolugcdo em X é uma familia {P(t,s);t = 1} de

operadores continuos P(t, s) : X — X, satisfazendo as seguintes propriedades:

(i) P(t,t)=1I; VteR,onde I: X — X é o operador identidade.
(i) P(t,s)=P(t,7)P(1,7); VE=T=5.

(iii) A aplicacdo P:A x X — X dado por P(t,s)x é continua, em que A = {(¢,s) e R?; t = s}.

E comum denotar um processo evolutivo simplemente por {P(t, s)};=s. Processos evolutivos
sao também chamados sistemas dindmicos ndo-autébnomos. Essa nomeclatura tem relacdo com
0s semigrupos que sdo comumente chamados de sistemas dindmicos auténomos. No que segue

exploraremos a relacio entre processos e semigrupos.

Observe que, a partir de um semigrupo de operadores continuos {T(1)};>o (ver Definicdo 3.1),

pode-se definir um processo evolutivo correspondente, fazendo Pr(t, s) := T(t — s). De fato:
(i) Pr(t,)=T(t—-t)=T(0) =1.
(i) Pr(t,)Pr(1,)=Tt-1)Ta-8)=T(t-1)+@T—=95)=T({t—35) =Pr(t,s); Vt=1=5.

(iii) Sejam (fg, S0, x0) € A x X € (ty, Sn, Xn)neny Uma sequéncia em A x X tal que (ty, Sp, Xn) —

(to, S, Xo). Entao:

d (P7(tp, Sp)Xn, Pr(to— so)xo) = d (T (¢, — sp) xn, T (o, So) Xo) — 0.

Reciprocamente, a partir de um processo evolutivo tempo-independente, isto é um processo

{P(t, $)};>s que satisfaz a condicao:
P(t,s)=P(t—s,0); V=5,

é possivel definir uma semigrupo, fazendo Tp(f) := P(¢,0). De fato:

(i) Tp(0)=P(0,0)=1.
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(ii) Da condicao de independéncia temporal, tem-se P(t,s) = P(t—s,0)=P(t+h—(s+ h),0) =
P(t+h,s+h)paratodo heRe t=s. Entdo

Tp(ri+r2) =P(r1 +12,0) = P(r1 + 12,12)P(12,0) = P(r;+1r2—12,0)P(r2,0)

P(ry,0)P(r2,0)

Tp(r) Tp(rp); VYri,ra =0.

(iii) Sejam (fp, xp) € [0, +00) x X € (t,, Xn) nen UMa sequéncia em [0, +oo) x X tal que (¢, x,) —
(to, Xp). Entao:
d (Tp(tn) xn, Tp(to) Xo) = d (P(ty,0)xy, P(tp,)Xo) — 0.

Definicao 3.33
Seja{T (1)} ;>0 um semigrupo sob um espaco métrico X. O processo de evolucao {Pr(t, )} ;>s, definido

por Pr(t,s) = T(t—s) é chamado de processo induzido pelo semigrupo {T(£)};>0.

Observacao 3.34
No inicio da primeira secao deste capitulo apresentamos o sistema CD de Kato, que garantia solucao
para o problema de Cauchy ndo-auténomo. (ver Definicdo 2.23). O sistema CD de Kato pode ser

definido em um dominio triangular:
A={(t,T)eR? t=s}.

Nesse caso, uma tripla ({A()};>7, X, Y) é um sistema CD de Kato, se X e Y sao espacos de Banach
separaveis,com Y c X eparacada t =71, A(t) : D(A(t)) € X — X é um operador linear, e satisfaz as

seguintes condicoes:

(i) Y estaimerso continuamente e é denso em X e D(A(t)) = Y para todo ¢ = 7. Em particular, o

dominio D(A(t)) do operador linear A(t) é independente de ¢.

(ii) Paracada t > 7, o operador linear A(t): Y ¢ X — X é gerador de um Cy-semigrupo {S;(s)}s>r

sobre X, e existem constantes M =1 e w = 0 independentes de ¢, tais que

1S:()lexy = Me“’;Vt,s=1. (3.12)

(iii) Afamilia A: [1,+00) — £ (Y, X) pertence ao espaco Lip. (1, +oo; £ (Y, X)). Equivalentemente,
d
temos que EA(I) € LY (1,+00; Z (Y, X)),

Como foi observado na Observacao 2.42, a condicdo (3.12) é dificil de ser verificada diretamente.
Entdo é desejavel que existisse um critério pratico e suficiente para obter essa condicao. Um critério
conveniente é que X admita uma norma equivalente || - | ; tempo dependente que seja localmente

Lipschitziana. Isto &, existe ¢ > 0 tal que:

”x”t < ec|[—5|

% , paratodo t,s =1 e paratodo x #0 em X.
Xlls
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Dado um sistema CD de Kato, ({A(f)};>7, X, Y), existe um processo de evolucao {P(¢,7)};>s de

modo que a Unica solucao branda do problema linear ndo-homogéneo:

"H-ADu=f(); t=
{u() (Du=f(0) T (3.13)

u(t) = uy
é dado por:
t
u(t):P(t,T)uTJrf P(t,s)f(s)ds,

onde f e L'(1,+00; X) e u; € X.
Sendo uma solucio forte u € C° ([1, +00); Y)NC! (7, +00); X).quando u; € Y e f € Whl(7, +o0; X).

Observe que o crescimento da solucao é controlado pelas constantes uniforme da familia

{{S4(8)}s>1} s> de semigrupos (condicao (ii) da Definicdo 2.23), garantindo:

t
lu(®llx < Me® " u | x + M f e\ £(9) I xds.
T

Quando f =0, o problema (3.13) € homogéneo, e a solu¢ado é dada por u(t) = P(t,7)u,. Note
0 0 processo {P(t, s)};=s substitui o semigrupo {S(t — 1)} ;>; do caso autdnomo, mas agora depende

explicitamente de 7 e ¢ (ndo apenas da diferenca ¢ — 7).

Mais geralmente, o problema nao-linear e ndo-homogéneo:

"O+ADu=f(t,ut); t=
{u() (Du= f(t,u(t) T (3.12)

u(t) = uy

adimite uma Unica solucao branda local dada por

t

u(t)=P(t,T)u; +f P(t,9)f(s,u(s)ds,

T
onde u; € X, f € uma funcao continua na variavel ¢t = 7 e localmente Lipschitz sobre a variavel u € X,
uniformemente em ¢ sobre intervalos limitados e {P(¢, )} ;> € 0 processo dado pelo sistema CD de
Kato.

Agora se consideramos o problema

U —ADu+ f(t,u(®)=h(); t=1
: (3.15)

u(T) = uy
deve-se ter u; € X, f:[1,+00) x X — X continua na variavel ¢ = 7 e localmente Lipschitz sobre a

variavel u € X, uniformemente em ¢ sobre intervalos limitados, e h € L}OC(T, +00; X), para obter a

solucao branda local dada por:
t
u(t) = P(t,T)uy +f P(t,5) [h(s) - f(s,u(s)] ds.

A solucao forte é obtida quando u; € Y, f :[r,+00) x X — X Lipschitziana na variavel t = 1,
uniformemente para conjuntos limitados de X e localmente Lipschitz sobre a variavel u € X, uniforme

em conjuntos intervalos limitados, e h e W/} (7, +00; X).
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A seguir definimos a nocao de conjunto invariante e de atracao no contexto dos processos

evolutivos.

Definicao 3.35
Seja {P(t, $)} ;=5 um processo evolutivo sobre um espaco métrico X. Uma familia tempo-dependente

{A()};er de subconjunto A(f) c X é invariante pelo processo {P(t, )} ;=5 quando

P(t,s)A(s) = A(t); Vt=s.

A nocio de solucdo global fornecida na Teoria de semigrupos (ver Definicdo 3.2) se encontra

bem mais intuitiva no contexto dos processos evolutivos.

Definicido 3.36
Seja {P(t, s)};>s um processo evolutivo sobre o espaco métrico X. Uma solucdo global para {P(t, $)} ¢
é uma funcao ¢ : R — X tal que

P(t,8)é(s) =&(D); VE=s.

Proposicao 3.37

Toda solucao global de um processo evolutivo € uma aplicacao continua.

Demonstracgo. Analoga a demonstracao da Proposicao 3.7. ]

Proposicao 3.38
Seja {P(t, $)};=s um processo de evolucao. Uma familia tempo-dependente {A(£)},cr € invariante

pelo processo {P(t, s)};=s, S€ € somente se ela consiste em uma colecao de solucoes globais.
Demonstracdo. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 9). O]

A nocao de invariancia definida para processos, difere da nocao de invariancia fornecida para
semigrupos na Definicao 3.4. Na verdade, o que ocorre é o seguinte. Enquanto qualquer solucao
global ¢ de um semigrupo {T'(1)};>o € invariante para o processo induzido {Pr(t, s)};>s, € toda érbita
¢(R) que é invariante para o semigrupo {T'(f)};>o. Note que a familia constante {y(¢) =¢{(R); Ve R}
também é invariante para {Pr(t, 5)};>s. Mais geralmente, se {A(1)};cg € invariante para {P7(t, $)};=s,

entao U A(?) é invariante para {T(1)};>0; em particular, se A(t) = A paratodo t € R, entdo A é
teR

invariante para {T (1)} ;>0 Se € somente se {A(%)};>¢ € invariante para {Pr(t, $)} 5.

Definicao 3.39

Seja {P(t, s)} =5 um processo evolutivo sobre um espaco métrico X. Dizemos que

(i) Um conjunto A c X pullback atrai um conjunto B < X no tempo ¢ € R por meio (ou pela acio)
do processo {P(t, )} ;=5 S€
lim distx (P(¢t,s)B,A) =0.
§——00
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(ii) Uma familia {A(#)};er de subconjuntos de X pullback atrai um conjunto B c X se para cada
t € Rtem-se
lim distx (P(t,s)B, A(t)) =0,
§——00

(iii) Uma familia {A(?)};er de subconjuntos de X pullback atrai uma familia B = {B(t)};ep de

subconjuntos de X, se para cada t € R, tem-se

SEr_n distx (P(t,8)B(s), A(1)) =0,

onde distx é a semidistancia de Hausdorff apresentada na Definicao 3.9.

Uma familia {A(#)};cr de subconjunto de X é dita pullback atrativa se pullback atrai todos os

subconjuntos limitados de X.

Da mesma forma que foi feito para semigrupos, precisamos de uma nocao de atrator global

para processos evolutivos, que faca sentindo a nossa nocao de invariancia e de atracao.

Definicao 3.40
Seja {P(t, s)};=s um processo evolutivo em uma espaco métrico X. Uma familia {(#)},;cr de sub-
conjuntos de X é o atrator pullback para o processo {P(t,s)};>s Se as seguintes condicoes sao

satisfeitas:

(i) 2A(t) € X é compacto para todo t € R.
(ii) A familia {2(1)},er € pullback invariante pelo processo {P(t, $)} ;5.

(iii) A familia {((1)};er pullback atrai todos os subconjuntos limitados X pela acdo do processo
{P(t, )} 5.

(iv) {2A(0)},er € a familia minimal de subconjuntos fechados de X que satisfaz a condicao (iii). Mais
precisamente, se {A(1)};cg € uma familia de subconjuntos fechados de X que pullback atrai

todos os limitados de X pelo processo {P(t, s)};>s, entdo A(¢) c A(¢t) paratodo t € R.

As trés primeiras condicoes da definicido de um atrator pullback sdo analogas as do atrator
global para semigrupos. A condicdo adicional (iv) garante a unicidade do atrator pullback. No caso
de semigrupos, as trés primeiras condicoes ja asseguram a unicidade do atrator global, mas para o

atrator pullback, a condicao (iv) é essencial como veremos a seguir.

Proposicao 3.41
Se 1 (D} er € Rlo(H)} e Sa0 atratores pullback para um processo evolutivo {P(t,s)};>s, entao
() =Ao(r) paratodo teR.

Demonstracdo. O atrator pullback {2(;(£)};er € em particular, uma familia de conjuntos fechados

gue atrai subconjuntos limitados de X. Como {2(,(1)};er € atrator pullback, do item (iv) da Definido
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3.40, segue que A, (1) < 2, (¢) para todo t € R. Revertendo os papeis de {21; ()} ;er € o ()} teRr,
obtém-se que 21, (1) c A, (1) para cada t € R. ]

Teorema 3.42
Seja {T (1)} ;>0 um semigrupo sobre um espaco métrico X e considere o processo evolutivo induzido
{P7(t,8)} =5 (isto &, Pr(t,s):=T(t—s); YVt =s). Entdo {T(1)}:>0 possui atrator global 2l se, e somente

se, {Pr(t, $)};=s possui atrator pullback {2(()},;cr. Nesse caso, tem-se 2((¢) =2 para todo t € R.

Demonstracao. Suponha que {T'()};>¢ possua atrator global 2 e defina {2((1)} ;cr por 2A(#) =% para

todo r € R. Portanto {2((1)};cg € compacto para todo r € R. Agora, para t = s, tem-se
Pr(t,s)A(s) =T(t—s)A=A=2(1),
mostrando a invariancia.

Além disso, temos que {(1)};er pullback atrai conjuntos limitados pelo processo {Pr(t, $)} 5.

De fato, se reR e B < X é limitado, entao

SEr}loodistX(PT(t, $)B, (1)) = SEI_IloodiStX(T(t_ $)B,2) = ugrfmdistX(T(u)B,Ql) =0.

Por fim, seja {A(#)};eg uma familia de conjuntos fechados que pullback atrai subconjuntos

limitados de X. Entao,
distx (A(1), A(2)) = distx (Pr(z, $)2L(s), A(2)) = distx (Pr(z, 92, A1),

e tomando o limite quando s — —oo, concluimos que 2((t) = A(t) < A(t). Portanto, {(f)};cg € O

atrator pullback.

Por outro lado, suponha que {Pr(t,s)}~; tenha o atrator pullback {(#)};cg. Entdo, para

qualquer t € R e qualquer B <€ X limitado, temos

lim_distx (Pr(1,9)B,2A(0) = lim distx(T(z~$)B,2A(1) =0,

Seja fy € R arbitrario e defina {A(#)} ;er por A(f) :=21(ty) paratodo teR. Parate Re B X

limitado, temos que
Jim_distx(Pr(t,5)B, A(t) = lim distx(T(t - 5)B, (1)) =0.

Assim, pela minimalidade, segue que 2(t) < A(¢) para todo r € R, ou seja, 2((t) < 2 (ty) para todo
t € R. Como fy € R é arbitrario, de forma analoga, concluimos que 21(#y) < 2(t) para todo ¢ € R, ou
seja, A1) = A(ty) =: A para todo t € R.

Resta provar que 2l é o atrator global para {T(f)};>o. De fato, 2 é compacto e, para t = 0,
tem-se
T(HA = Pr(t,0)20(0) = A(1) = 2.

Logo, X é invariante.

Finalmente, dado B < X limitado, temos tlir+n distx (T (t)B,2() = 0. O
—+00
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3.2.2 Conjuntos w-limites e Existéncia de Atrator Pullback

O objetivo desta subsecao é obter condicoes suficientes e praticas do ponto de vista analitico
para existéncia de atrator pullback para um processo de evolucdo. Comecaremos definido o conceito

fundamental para esse objetivo.

Definiremos agora o conceito de conjunto pullback w-limite que a peca fundamental do atrator

pullback de um processo.

Definicao 3.43
Sejam {P(t, $)} ;=5 um processo de evolucao sobre um espaco métrico X e B < X. O conjunto pullback

w-limite de B no tempo t € R com respeito ao processo {P(t, )} ;> € definido por:

wB, 1) =) (U P(t,r)B).

=S5 \s=T

Lema 3.44
{P(t, )} =5 um processo de evolucao sobre um espaco métrico X e B < X. Entdo w(B, t) é fechado e
x € w(B, t) se, e somente se, existem sequéncias (s;) ey €M R, com s, < t; VrREN € (X,) ey €M X

tais que

Sp——00, X,€B;VneN e x= r}im P(t,sp)x,.
—00
Demonstracdo. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 25). ]

Observe que, se {T(1)};>0 € um semigrupo e {St(t, s)};>s 0 processo por ele induzido, entdo
w(B, t) é independente de ¢ e coincide com a definicdo de conjunto w—Ilimite para semigrupos, ou

seja,

=w(B).

wB,10) =) (U T(s)B

h=0\s=h

Teorema 3.45
Sejam X um espaco métrico e {P(t, s)};>s um processo de evolucdo em X. O processo {P(t,$)} s
admite um atrator pullback 2((#) se, e somente se, existe uma familia de compacto pulback atrativa

{K(8)}ser. Nesse caso,

(1) = | J{w(B, 1); B< X e B é limitado}. (3.16)
Demonstracdo. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 28-29). ]

Definiremos agora a nocao mais forte e mais pratica do que o conceito de pullback atracao.

Definicao 3.46

Sejam X um espaco métrico e {P(t, s)} ;=5 um processo de evolucao em X. Dizemos que
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(i) Um conjunto A c X pullback absorve um conjunto B < X pela acdo do processo {P(t, $)} ;=5 NO

tempo r € R, quando existe T = T'(B, t) < t (dependente de B e ¢) tal que

P(t,s)Bc A, paratodos<T.

(ii) Uma familia {A(1)};er de subconjuntos de X pullback absorve um conjunto B c X se para cada
teR, existe T=T(B,t) <t (dependente de B e t) tal que

P(t,s)Bc A(t), paratodos<T.

(iii) Uma familia {A(1)};er de subconjuntos de X pullback absorve uma familia B= {B()};er de
suconjuntos de X, se para cada r € R, existe T = T(B, t) < t (dependente da familia B e 1) tal

que

P(t,s)B(s) c A(t), paratodo s<T.

Uma familia {A(#)},er de subconjunto de X é dita pullback absorvente se pullback absorve
todos os subconjuntos limitados de X. Observamos que, toda familia pullback absorvente é uma

familia pullback atrativa.

Definicao 3.47

Seja {P(t, $)} ;=5 um processo de evolucao sobre um espaco métrico X. Dizemos que {P(t, $)} ;s
é pullback limitado dissipativo ou simplemente pullback dissipativo, quando existe uma familia
{B(1)};ecr de subconjuntos limitados de X que pullback atrai cada um dos subconjuntos limitados de

X sob a acao do processo {P(t, $)};=s.

Corolario 3.48
Seja {P(t, s)} ;=5 um processo de evolucao pulback limitado dissipativo sobre um espaco métrico X.
Se a familia absorvente {B(1)};cgr € formada por conjuntos compactos, entdao o processo {P(t, $)} ;s

admite (um Unico) atrator pullback dado por (3.16).
Demonstracdo. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 30). O

E importante observar que nem sempre é pratico do ponto de vista das aplicacdes encontrar
conjuntos compactos. Contudo, existe uma nocao de compacidade mais computacional (analitica)
para um processo de evolucao, que também garante a existéncia de atrator pullback. A saber, a de

pullback compacidade assintdtica.

Definicao 3.49

Dizemos que um processo de evolucao {P(t, s)};>s; sobre um espaco métrico X é pullback assintoti-
camente compacto quando para todo ¢ € R, toda sequéncia limitada (x,,) ,eny €m X e toda sequéncia
($n) nen de nUmeros reais, com s, < t e s, — —o0o, a sequéncia (P(t, $,)X,) nen de X possui uma

subsequéncia convergente.
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Definicao 3.50
Dizemos que um processo de evolucao {P(t, s)};>s Sobre um espaco métrico X é fortemente pullback
limitado dissipativo se para cada t € R, existe um subconjunto limitado B(t) < X que pullback atrai
subconjuntos limitados de X no tempo 1 para cada 7 < t, ou seja, dado um subconjunto limitado
Bc Xert<t,temos

sl_i,I_noodiStX (P(t,8)B,B(1)) =0.

Teorema 3.51
Sejam X um espaco métrico completo e {P(t, s)};>s um processo de evolucdo sobre X. Se {P(t, $)} ;s
é fortemente pullback limitado dissipativo e pullback assintoticamente compacto, entdo {P(t, $)} ;>

admite um Unico atrator global 2l dado por:
AN =w(BO),1); VieR,

onde {B(1)}:cr € qualquer familia que atraia suconjuntos limitados de X no tempo 7, com 7 < t.

Além disso, tem-se
[ 2U(2) é limitado para cada r € R.

S<t

Demonstracdo. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 34). O

3.2.3 Atratores Pullback com Bacias de Atracao mais Gerais

Nas subsecoes anteriores, concentramo-nos em conjuntos que pullback atraem subconjuntos
limitados de um espaco métrico X. Uma consequéncia disso é que, a menos que o atrator pullback
seja limitado no passado, ele nao pertence a classe de conjuntos que ele deve atrair. Isso impede a
deducao da unicidade dos atratores pullback se a condicdo de minimalidade (ndo necessario no caso
autdonomo) for abandonada. Observe que, para garantir a compacidade do atrator pullback, tivemos
de impor uma dissipatividade pullback forte (Teorema 3.51), o que também implica que o atrator
pullback deve ser limitado no passado. Mas o atrator pullback pode ser compacto sem ser limitado

no passado, como se pode ver no Teorema 3.45.

A atracao pullback de conjuntos limitados fixos implica na atracao pullback de familias depen-
dentes do tempo que sao limitadas no passado. No entanto, € comum em aplicacoes que exista um
atrator pullback que atraia familias dependentes do tempo mais gerais, e nesta subsecao desenvol-
veremos um pouco de uma teoria que permite essas bacias de atracdo mais gerais, uma vez que
esse tipo mais geral de atrator pullback serd necessario na resolucao do problema nao auténomo

proposto no Capitulo 5 desta tese.

Teria sido possivel desenvolver toda a teoria anterior neste contexto mais geral, mas a maior
generalidade nao pareceu merecer a complicacao resultante da apresentacdo. Nao obstante, dentro
desta estrutura podemos provar a unicidade de atratores e a sua compacidade a partir das definicoes

apropriadas de processos pullback dissipativos e pullback assintoticamente compactos
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Definicao 3.52
Sejam X um espaco métrico e ./ acolecao de todas as familias (tempo dependentes) de subconjuntos
nao vazios de X. Dizemos que um subconjunto & < .# é um universo de subconjuntos do espaco

métrico X se for fechado por inclusdo. Mais precisamente, se satisfaz a seguinte condicao:
(i) Se D={D(0)}cr€D, C=1{C(t)}ser € A € C(t) < D(1) para todo t € R, entdo C € 2.

Note que, devido ao requisito de que 2 deve ser fechado por inclusao, a colecio de todas as
familias constantes D = {D(1)}er, onde D(t) = D; YVt € R ndo forma um universo de subconjuntos
de X. Em vez disso, o universo minimo que inclui esses conjuntos (o universo limitado ) consiste
em todas as familias dependentes do tempo D = {D(1)};eg tais que, para algum conjunto limitado
D c X, tem-se D(t) c D paratodo teR.

Definicao 3.53
Sejam {P(t, s)};=s um processo evolutivo sobre um espaco métrico X e 2 um universo de subcon-

juntos do espaco métrico X. Dizemos que uma familia {A(#)};eg de subconjuntos de X é

(i) @-pullback atrativa se pullback atrai todas as familias D do universo 2.
(i) @2-pullback absorvente se pullback abserve todas as familias D € 2.

Definicao 3.54
Sejam {P(t, s)};>s; um processo evolutivo sobre um espaco métrico X e 2 um universo de subcon-
juntos de X. Uma familia {(#)};cr de subconjuntos de X é o Z-atrator pullback para o processo

{P(t, $)};>5 se as seguintes condicoes sao satisfeitas:

(i) 20(¢) € X é compacto para todo ¢ € R.
(ii) A familia {2((1)};er € pullback invariante pelo processo {P(t, §)};=s.
(iii) A familia {2((8)};er € 2-pullback atrativa.

(iv) {RU(D)}ser € a familia minimal de subconjuntos fechados de X que satisfaz a condicéo (iii). Mais
precisamente, se {A(1)};er € uma familia de subconjuntos fechados de X que pullback atrai

todos os limitados de X pelo processo {P(t, s)} =5, entdo 2(f) c A(t) para todo t € R.

As nocdes de conjunto pullback atrativo (Definicao 3.39), conjunto pullback absorvente (De-
finicdo 3.46) e de atrator pullback (Definicdo 3.40) coincidem com as respectivas definicbes de
conjunto Z-pullback atrativo, conjunto 2 -pullback absorvente e de @-atrator pullback, quando
consideramos 2 como sendo o universo limitado 2 de todas as familias (tempo dependentes)

D = {D(8)} 1R tais que, para algum conjunto limitado D c X, tem-se D(¢) < D para todo € R.
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Exemplo 3.55
Diferentes universos fornecem diferentes bacias de atracao, e dardo origem a diferentes atratores,
refletindo diferentes aspectos da dinamica. De fato, considere o seguinte problema:

{ X =ft,x);t=1

x(1)=x;€R

M

onde
—x, sexe[-ete
flt,x)4 —x—x(x—eHel, see!<|x|<2e’!.

—2x, se|x|=2e7 !

Se o universo @ contém D = {[—e~f,e"!]; YVt € R}, entio o D-atrator Pullback A5 ()} rer ird
satisfazer
[—e ! el cUy(t) c [-2e7 1,277

Por outro lado, se desejarmos atrair apenas conjuntos limitados, entdo o atrator pullback sera
{20(D)} ter, com 2A(2) = {0}.

Um forma de escolher (de foma natural) a bacia de atracdo do atrator pullack de um deter-
minado problema é tentar encontrar o maior universo possivel 2 para o qual existe um 2-atrator

pullback. Por exemplo, se consideramos o problema:

{ X =-kx+f();t=1

x(1)=x;€R

gue possui a seguinte solucao explicita:

t
x(t) = e KDy +f e_k(t_”f(s) ds,
T

0 t
observamos (essencialmente) que se f eksf(s) ds converge, entao x* () :f e‘k”_s)f(s) ds

pullback atrai conjuntos limitados de cc;ﬁ%Iigées iniciais. No entanto, é evidente_ocTue se pode, de
fato, permitir que x() cresca quando T — —oo, desde que e*"x(7) — 0 quando T — —oco. Assim,

poderiamos considerar a colecao de todas as familias do tipo
{{x(s)}seR; eksx(s) — 0 quando s — —oo}
como universo 9.
Para finalizar a secdo, definiremos o conceito de conjunto w-limite para 2-atratores pullback,

bem como os principais conceitos e resultados que utilizaremos para mostrar a existéncia de atrator

pullback para o problema ndo auténomo que sera estudado no capitulo 5.

Definicao 3.56
Sejam {P(t, s)};>s; um processo evolutivo sobre um espaco métrico X e 2 um universo de subcon-
juntos de X. Dado D = {D(1); t € R} em 2, o pullback w-limite de D é definido por:

w(D, = Pt1)D).

[=sS=2T
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Definicao 3.57

Sejam {P(t, s)};=s um processo evolutivo sobre um espaco métrico X e 2 um universo de subcon-
juntos de X. O processo {P(t, s)};=s € dito @-pullback assintoticamente compacto se, para qualquer
t € R, qualquer D={D(); VteER} € D e, quaisquer sequéncias {s;}sen €M (—00, t] € {x,} ey €M
X taisque s;, — —oc0 € x,, € D(s,,); Vr eN, a sequéncia {P(t, $;) X,}nen POSSUIi UMa subsequéncia
convergente em X.

Teorema 3.58
Sejam {P(t, s)};>s um processo evolutivo sobre um espaco métrico X e 2 um universo de subconjun-
tos de X. Se o processo {P(t,s)};~s € Z-pullback assintoticamente compacto e admite uma familia

B= {B(8)}er @-pullback absorvente, entdo a familia {2 (1)} ;e definida por
Az = |J oD, D.
Deo
€ 0 @-atrator pullback para o processo {P(t, $)};=s.

Além disso, se B € 2, entdo Ay () =w(B, 1) € B(1) e {gy(1)}er € D.

Demonstracdo. (Ver (CARVALHO; LANGA; ROBINSON, 2013), p. 51-52). O

Proposicao 3.59
Sejam {P(t, $)};=s um processo de evolucdo sobre um espaco métrico completo (X,d) e e 2 um
universo de subconjuntos de X. Suponha que existe uma familia B= {B(1)};cr de subconjuntos
de X, 9-pullback absorvente. Se para qualquer ¢ € R e qualquer € > 0, existe um nimero real 7*
(dependente de B e de €) e uma funcio contrativa (ver Definicdo 3.25) fr+ :B@*)xB(T*)c XxX —C
tal que:

d(P(t,7")x1, P(t,T")x2) < €+ fr+ (X1, X2); VX1, X2 € B(T"),

entdo o processo {P(t, s)};=s € D-pullback assintoticamente compacto em X.

Demonstracdo. (Ver (MA; SOUZA, 2017), Teorema 3.2). O
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Capitulo 4

Sobre um sistema de ponte suspensa do tipo
Timoshenko com amortecimento interno fraci-

onario

Varios problemas em diversas areas do conhecimento podem ser representados por meio de
expressoes matematicas, com destaque para aqueles em Fisica e Engenharia. No caso da Engenharia,
um modelo de viga amplamente conhecido foi inicialmente introduzido pelo o engenheiro mecanico
ucraniano Stephen Prokofievich Timoshenko. Em 1921, Timoshenko formulou, em (TIMOSHENKO,
1921), uma equacao matematica para descrever as vibracoes transversais de uma viga de comprimento

L, a qual se tornou uma referéncia na area, sendo expressa pelo seguinte sistema de equacoes:

Pld’tt - k((bx +1V)x =0,
P2V it — bWy + k(P +y) =0,

onde 0 < x < L é a variavel posicao que denota a distancia ao longo da linha central da viga,e t =0 a
variavel tempo. A funcao ¢ = ¢(x,, t) representa o deslocamento transversal, enquanto v = y(x,, 1)
corresponde a rotacao das fibras transversais da viga. Os coeficientes sdo nimeros reais positivos:
p1=pA,p2=pl,b=Ele K=«xGA, onde p é adensidade de massa do material, A e I representam
a drea e o momento de inércia de uma secao transversal da viga, G e E denotam os médulos de

cisalhamento e de elesticidade de Young, e x € um fator de corecao do cisalhamento.

Sobre esse sistema pioneiro, temos uma vasta literatura; veja, por exemplo, (ADNANE; BE-
NAISSA; BENOMAR, 2023; BENAISSA; BENAZZOUZ, 2017; RAPOSO et al., 2005; SOUFYANE, 1999).

Uma ponte suspensa, Figura 2, € uma estrutura mecanica que transporta cargas verticais por
meio dos cabos principais modelados por uma corda elastica que é acoplada a uma viga por meio de

cabos de suspensdo. Um sistema para ponte suspensa, em que o tabuleiro (deck) é modelado pela
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teoria de vigas de Timoshenko, é dado por:

U — Uy —T(p—u) =0,
P1Ps — k(px + ) +1(p—u) =0,
P2Y tt — by xx + k(px +w) = 0.

Cabos de suspensao ..
Cabo principal

AN

A

Pilar Tabuleiro Pilar

Figura 2 - Ponte suspensa. Esta figura foi extraida da referéncia (RAPOSO et al., 2023).

Nesse modelo, considerou-se que o tabuleiro tem dimensdes de se¢ao transversal insignifican-
tes em comparacdo com seu comprimento (vao da ponte). Presume-se que os cabos de suspensao
sejam molas elasticas lineares com rigidez padrao 7 > 0. A funcao u = u(x, t) representa as vibracoes

verticais do cabo principal e a constante a > 0 é o médulo de elasticidade dos cabos de suspensao
(que prende o cabo principal ao tabuleiro)

Uma das pontes suspensas mais antigas do mundo foi construida em Viena, na Franca, em
1829; a ponte de Vienne, Figura 3, atravessa o rio Rhéne. Atualmente, ela est4 aberta apenas para

pedestres, mas continua sendo uma maravilha histérica da engenharia.

Figura 3 - Extraido de www.bridgemeister.com/imgdda/ddfrvienne1.jpg

A ponte suspensa mais longa do mundo é a Ponte Canakkale de 1915, Figura 4, no Estreito de

Dardanelos, na Turquia, que liga a Europa a Asia.

Figura 4 - Extraido de www.azernews.az/region/190860.html
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Historicamente, a necessidade de entender como essas estruturas se comportam foi e é
fundamental para o desenvolvimento humano. H& muitos casos em que as pontes suspensas
precisam de reparos devido a acao de forcas naturais, como o vento, as correntes maritimas e a
passagem de pedestres e veiculos. Na Ponts des Arts, em Paris, milhares de cadeados presos a
estrutura por casais foram removidos em 2015. Além de afetar a estética, eles causaram danos a

integridade da prépria ponte, o que poderia causar acidentes.

A Tacoma Narrow Bridge, Figura 5, teve sua estrutura destruida, poucos meses apés sua
inauguracao devido a falhas de projeto que nao previram os efeitos da ressonancia do vento e da

vibracdo aeronautica.

Figura 5 - Extraido de www.azernews.az/region/190860.html

Em 2022, a Ponte Rio-Niterdi, Figura 6, que liga as cidades do Rio de Janeiro e Niteréi no Brasil,
também foi atingida por um navio e teve que ser parcialmente fechada por cinco dias para reparo de
sua estrutura. Devido a instalacdo de Atenuadores Dindmicos Sincronizados, desenvolvidos e paten-
teados pelo Professor Ronaldo Battista do Programa de Engenharia Civil da COPPE na Universidade

Federal do Rio de Janeiro, a Ponte Rio-Niteréi ndo desabou.

Figura 6 - Extraido de https://www.marinha.mil.br/dphdm/ponte-rio-niteroi

Em (ARIOLI; GAZZOLA, 2015), Arioli e Gazzola, sugeriram um novo modelo para a dindmica de
uma ponte suspensa por meio de um sistema de equacoes diferenciais hiperbdlicas ndo lineares e
nao locais, em que as equacdes sdo de segunda e quarta ordem e descrevem o comportamento dos
principais componentes da ponte. Bochicchio et al. (AOURAGH; BAZ; SEGAOUI, 2020) estudaram
um problema linear das vibracoes de uma ponte suspensa acoplada como uma viga termoelastica

dada pela lei de Fourier, em que o tabuleiro é modelado pela teoria de vigas de Timoshenko.

Mais recentemente, Aouragh et al. (AOURAGH; BAZ; SEGAOUI, 2024) discutiram o compor-
tamento assintético das vibracdes de um problema de ponte suspensa acoplada, em que um leito

de estrada de um Unico vao foi modelado como uma viga termoelastica extensivel e amortecida,
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apoiada nas extremidades e usando a lei de Cattaneo para descrever a conducao de calor. Raposo et
al. (RAPOSO et al., 2023), provaram a existéncia e a unicidade de uma ponte suspensa modelada
pela teoria de vigas de Timoshenko com amortecimento interno, obtendo, além do decaimento
exponencial, a analiticidade da solucdo. Posteriormente, esse trabalho foi generalizado por Nas-
cimento et al. (NASCIMENTO; NONATO; RAMOS, 2025), que consideraram o mesmo modelo sob
mecanismos nao lineares de amortecimento interno localizado, afetando todas as trés equacoes
de onda. Especificamente, eles demonstraram que um amortecimento aplicado em um intervalo
arbitrariamente pequeno, mas com medida positiva, é eficaz, independentemente do seu tama-
nho. Além disso, estabeleceram a existéncia e unicidade das solucbes e determinaram algumas
taxas de decaimento para essas solucoes sem assumir qualquer relacao entre os coeficientes. Por
fim, provaram um resultado sobre a observabilidade interna do sistema conservativo, garantindo o

comportamento assintotico mencionado.

Uma ponte suspensa com vigas laminadas, ou seja, duas vigas de Timoshenko conectadas
em paralelo, foi considerada em (RAPOSO, 2023) e provou a existéncia, a unicidade da solucdo e
a estabilidade exponencial. O monitoramento da salde estrutural de pontes a partir de eventos
dinamicos foi considerado em (ARAGON: PUCHOL; ASTIZ, 2024). A analise de estabilidade de uma
ponte suspensa parcialmente amortecida por atrito foi estudada por Gutemberg et al. (GUTEMBERG

et al., 2024).

Motivado pelos trabalhos citados anteriormente, este capitulo tem como objetivo analisar um
modelo de ponte suspensa cujo tabuleiro é representado com base na teoria das vigas de Timoshenko
e submetido a influéncia de mecanismos de amortecimento internos, descritos por operadores do

tipo derivada fracionaria. Mais precisamente, o modelo é dado por:

utt—auxx—r(d)—u)+claf’"u:O; xe(0,L) e t>0,
P1pri— k(P + W) +T(p— 1)+ 207 p=0; x€(0,1) e >0, (4.1)
pgl//”—blllxx+k((px+'(,U)+Cga?’f’l/J=0; x€(0,L) e t>0.

ondecj>0e 6@"’5 é o operador derivada fraciondria de Caputo exponencialmente modificada de

ordem w e peso 6.
O sistema (4.1) esta sujeito a dados iniciais:
u(x,0) = uo(x), ui(x,0) =u(x); xe(0,L),
¢(x,0) = do(x), Ps(x,0) =d1(x); x€(0,L), (4.2)
Y(x,0) =yo(x), ¥:(x,0) =y1(x); x€(0,L),
e as condicoes de contorno de Dirichlet-Dirichlet-Neumann:
u0,)=u(lL,)=0; t=0,
¢, ) =¢(L,1)=0; t=0, (4.3)
W, (0,8) = (L, ) =0; t=0.
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Este capitulo esta dividido em trés secoes. Na primeira secao, definimos o conceito de derivada
de Caputo exponencialmente modificada e, a partir de suas propriedades fundamentais, realizamos
uma mudanca de variavel que permite, apos essa transformacao, reescrever o problema (4.1)-(4.3)

na forma de um problema linear abstrato de Cauchy.

Os resultados apresentados neste capitulo foram publicados no periédico Acta Mechanica,

conforme o artigo (JESUS et al., 2025a).

4.1 Derivada Fracionaria e Modelo Ampliado

Nesta secdo, definiremos de maneira clara e concisa o conceito de derivada de ordem fraci-
onaria, destacando sua relevancia, origem e aplicacoes. Diferentemente do calculo diferencial e
integral classico, o Calculo Fracionario abrange diversas no¢des de derivadas e integrais de ordem nao
inteira, cada uma com suas particularidades e utilidades. Nosso foco serad na formulacao introduzida
pelo matematico italiano Michele Caputo, apresentada em (CAPUTO, 1967), que se destaca por sua

aplicabilidade em problemas fisicos e de engenharia.

Em seguida, transformaremos o sistema (4.1)-(4.3) em um sistema equivalente ampliado,
por meio de uma mudanca de variavel inspirada no trabalho desenvolvido em (MBODIJE, 2006).
Essa transformacao tem como objetivo principal substituir o operador de derivada fracionaria por
um termo integral mais tratavel computacionalmente, o que simplificarad a analise matematica do

problema.

Com essa reformulacao, o sistema sera reescrito na forma de Cauchy, uma estrutura que
permite a aplicacao direta da teoria de semigrupos discutida na secdo anterior. Essa abordagem nao
s6 facilita a analise matematica, mas também possibilita o estudo de propriedades fundamentais,
como existéncia, unicidade e comportamento assintético das solucdes. Dessa forma, estabelecemos
as bases necessarias para uma compreensao mais profunda e uma aplicacao pratica do modelo em

questao.

Por fim, apresentaremos lemas técnicos relacionados ao termo integral obtido com a ampliacao
do sistema. Esses lemas serdo essenciais para as estimativas desenvolvidas nas secoes posterio-
res, onde estudaremos a boa-colocacao (existéncia e unicidade de solucdes) e o comportamento

assintotico do sistema ampliado e, consequentemente, do sistema original (4.1)-(4.3).

4.1.1 Derivada de Ordem Fracionaria

Dado um numero real x > 0 e um inteiro positivo n, é simples calcular a poténcia x”, que

corresponde a x" = x-x---x. No entanto, expressdes como x" ndo sio tao diretas de calcular,

n fatores
T

embora sejam bem definidas. De maneira analoga, pode-se imaginar que ﬁf(t) nao seja tao
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n

dat"
dessa generalizacao esta enraizada na extensao de expressoes originalmente definidas para nimeros

intuitiva quanto f(t) para n inteiro, mas que ainda assim faca algum sentido. A ideia por tras

inteiros para todo o conjunto dos niimeros reais. Por exemplo, para a € R, define-se x% = e®n ¥,

Um caso semelhante ocorre com o fatorial. Para neN, temos n!=n-(n-1)-(n—-2)---3-2-1.
Essa operacao pode ser generalizada para todo nimero complexo com parte real positiva. De fato,

temos z! =T'(z+1),onde T : {z € C; Re(z) >0} — C é a funcdo gamma de Riemman, definida por:

+00
I'(z) :f oc“ e do.
0
A funcao I' é caracterizada pelas seguintes propriedades fundamentais:

Tn+1)=n;VrneN e I'(z+1)=zI(z), VzeC, com Re(z) > 0. (4.4)

O calculo fracionario, que estuda integrais e derivadas de ordem real ou complexa arbitraria,
ganhou popularidade e relevancia significativas nas Ultimas décadas. Esse crescimento deve-se, em
grande parte, as suas aplicacdes bem-sucedidas em diversos campos da ciéncia e da engenharia. Por
exemplo, ele tem sido utilizado em bioengenharia (MAGIN, 2006), dindmica de particulas, campos
e meios (TARASOV, 2011), modelos de transmissdo da COVID-19 que simulam a interacdo entre
morcegos, hospedeiros, reservatérios e pessoas, incluindo medidas de controle e resposta individual
(SHAIKH; SHAIKH; NISAR, 2020), circuitos elétricos (ALSHABANAT et al., 2020), e em diversas areas
da matematica e engenharia (PODLUNY, 1998; KILBAS; SRIVASTAVA; TRUJILLO, 2006; ZARRAGA et al.,
2019).

A particularidade do célculo fracionario reside no fato de que derivadas e integrais de ordem nao
inteira sdo nao locais, ou seja, levam em consideracao o histérico e os efeitos distribuidos ao longo do
tempo ou do espaco. Isso permite uma representacao mais fiel de fendémenos naturais, oferecendo
uma perspectiva mais rica e abrangente para descrever sistemas complexos. Recentemente, Ammari
et al. (AMMARI; HASSINE; ROBBIANO, 2022) desenvolveram métodos unificados para estabilizar
sistemas de evolucao fracionaria. Eles abordaram a estabilizacdo de equacdes de evolucio abstratas
com amortecimento fracionério, validando os resultados teéricos com exemplos concretos. Alguns
casos particulares ja foram estudados anteriormente. Recentemente, destacam-se os seguintes
trabalhos (AMMARI et al., 2025; JESUS et al., 2025b; OLIVEIRA; CORDEIRO; CUNHA, 2024).

Os avancos mais recentes em dindmica nao linear tém demonstrado o papel crucial do amorte-
cimento fracionario na modificacdo do comportamento de osciladores em diversos sistemas fisicos.
Coccolo et al. (COCCOLO et al., 2023) revelaram como parametros fracionarios governam tanto as
amplitudes de oscilacdo quanto os tempos transitérios em osciladores de Duffing, sendo que seu
estudo de 2024 (COCCOLO; SEOANE; SANJUAN, 2024) identificou ainda fenémenos ressonantes que
emergem exclusivamente em sistemas com amortecimento fracionario. Estas descobertas comple-

mentam trabalhos anteriores de Ortiz et al. (ORTIZ et al., 2020) sobre o oscilador de Helmholtz, nos
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quais o amortecimento fracionario demonstrou alterar significativamente a dindmica de escape e a

geracao de caos por meio do controle da ordem da derivada fracionaria.

A interacao entre amortecimento e sistemas com atraso temporal foi igualmente investigada
por Cantisan et al. (CANTISAN et al., 2020; COCCOLO et al., 2021), que demonstraram como atrasos
temporais podem neutralizar efeitos de amortecimento através de mecanismos de ressonancia em
osciladores de Duffing. Coletivamente, estes estudos estabelecem que pardmetros de amortecimento
fracionario modificam fundamentalmente a dindmica dos sistemas de maneiras que modelos de
ordem inteira ndo conseguem capturar; particularmente no controle de comportamentos transitérios,
fendbmenos de ressonancia e transicoes cadticas, fornecendo insights cruciais para a modelagem de

sistemas mecanicos complexos como pontes suspensas, onde tais efeitos sao fisicamente observados.

Acredita-se que o conceito de calculo fracionario tenha se originado de uma questdo proposta
em 1695 pelo Marqués de L'Hopital (1661-1704) a Gottfried Wilhelm Leibniz (1646-1716). L'Hopital
guestionou o significado da notacdo de Leibniz d"x/dt", para n = 1/2, marcando o inicio das
investigacoes sobre derivadas de ordem nao inteira. Posteriormente, o matematico e fisico suico
Leonhard Paul Euler, em 1730, sugeriu uma abordagem para definir derivadas de ordem negativa ou
nao inteira (racional) para funcdes da forma x = t™. A ideia de Euler, de forma simplificada, foi a

seguinte:

Observe que, para m, n €N, temos:
arem
datn

m-n

=m-m-1)-(m-2)-(m—-n+1)t
No entanto, pela propriedade da funcao gama, sabemos que:
ITm+1)=m-(m-1)-(m-2)-(m—-n+1D)I'm—n+1).

Portanto, a derivada pode ser reescrita como:

d"t™  T(m+1)
dt"m  Tm-n+1)

m-n

Aplicando essa ideia para m =1e n=1/2, por exemplo, otemos:

d'?t T 2 _ 1! 12
dx'2  T(3/2) ra/2+1)

1
Sabendo queT (5) = /7 e utilizando a propriedade (4.4), obtemos:

1/2 /77

dx'2  T(1/2)/2 VT2 n

Embora Euler tenha comecado a explorar ideias relacionadas ao calculo fracionario em 1730,
o artigo (EULER, 1738) contém algumas das primeiras discussdes relevantes sobre o tema, espe-
cialmente no contexto da interpolacao de séries e da generalizacdo do conceito de diferenciacao.

Posteriormente, derivadas fracionarias foram mencionadas em diferentes contextos por diversos
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matematicos, como Lagrange em 1772, Laplace em 1812, Fourier em 1822, Liouville em 1832 e Riemann

em 1867.

Por muito tempo, o céalculo fracionario permaneceu esquecido. No entanto, nas Ultimas
décadas, ele retornou com forca total devido a alta demanda por modelos cada vez mais realistas
em engenharia, fisica e outras areas. A seguir, apresentamos dois dos conceitos mais populares de

derivada fracionaria desenvolvidos recentemente:

Definicao 4.1
Sejam w € C tal que Re(w) >0, e n € N tal que n—1 < Re(w) < n. A derivada fraciondria de ordem w
segundo Riemann-Liouville de uma funcao f : [0, +o00) — C é dada por:

w _ dn
Do = T(n-w)dt"

t
f (t—s)"" @V (1) ds
0

A integral fraciondria de ordem w segundo Riemann-Liouville de f é definida por:

w _ 1 ! w-—1
T f(t)—r(w)fo(t YT () ds
Note que
dn
Def=—2J" f0) e DJf(0) = f(2).
Além disso:

JUD" f (1) =f(l‘)—kZ:0f (O)E'
Em particular para w = 1, temos:

J'D'f(1) = f(5) - f(0).

Para mais detalhes sobre as propriedades da derivada e da integral fracionaria de Riemann-
Liouville, consulte (KILBAS; SRIVASTAVA; TRUJILLO, 2006); secdo 2.1.

Definicao 4.2
Sejam w € C tal que Re(w) >0 e n € N tal que n—1 < Re(w) < n. A derivada fraciondria de ordem w

segundo Caputo de uma funcao f: [0, +o0) — C, é dada por:
w n-w a" 1 ! n—(w+1) g(n)
Def() =] ﬁf(t):mﬁ(t—s) 70s) ds,

Observe que, quando w € N, a derivada de Caputo coincide com a n-ésima derivada ordinaria.

Para n =1, temos:

t
! f (t—3$)"“f'(s) ds, para 0<Re(w) <1
w) Jo

a —
Def) = Ta-a)

Uma observacao é oportuna. A derivada de Caputo estad em concordancia com o calculo feito

por Euler em 1730. De fato:

1 o 1 01 2Vt
DYt = ds=——L [T L g, =2"
ra-1/2)Jo Vi—s ras/n)J: Vu T
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Observamos que a definicao de Caputo da derivada fracionaria é uma reformulacao da definicao
de Riemann-Liouville. Ela possui uma interpretacao simples, porém interessante: se a funcao f ()
representa o histérico de deformacao em um material viscoelastico cuja funcdo de relaxamento
é [T(1 -w)t”]™!, entdo o material sofrera, a qualquer momento, uma tens3o total em ¢ dada a
expressao D‘C“f(t). De fato, em (CAPUTO, 1969), Caputo utilizou essa formulacio para resolver um

problema relacionado a viscoelasticidade.

No problema (4.1)-(4.3) e em outros problemas que estudaremos neste trabalho, utilizamos
uma variacao da derivada fracionaria de Caputo (com 0 < Re(w) < 1) como um sistema de amor-
tecimento, visando obter um sistema dissipativo. Em (CHOI; MACCAMY, 1989), Choi e MacCamy
definiram operadores integro-diferenciais fracionarios de Caputo com peso exponencial da seguinte

forma:

Definicao 4.3
Sejam0<w<1ed =0.A derivada fraciondria de Caputo exponencialmente modificada de ordem

a e peso § de uma funcio f € W1([0,+00)) é definda por
1 t
aw,& f :—f -6(t—s) F— )" F(s)ds. .
cFO=ra ) e (t=9)"“f(9)ds (4.5)

A integral fraciondria de Caputo exponencialmente modificada de ordem a e peso § de uma

funcio f € L1 ([0, +o0)) é definda por

t
J20 (1) = ﬁ fo e 09— 9)* L f(s)ds. (4.6)

Os operadores D‘C'i e 6';"5 diferem apenas em seus nucleos. O operador 6‘;"5 é essencialmente
a derivada fracionaria de Caputo, mas com um fator exponencial adicional que depende do peso
6. Quando 6 = 0, temos 6‘;”0 = D¢. Além disso, os operadores definidos em (4.5) e (4.6) estao

relacionados pela seguinte identidade fundamental:

3O f() =10 (. (4.7)

4.1.2 Modelo Ampliado

Proposicao 4.4
Sejam0<w<1,6=0e p:R— Rdefinida por p(y) = |y|203;1. Ent3o para cada % € C°([(0, +00)], a

solucao ¢ : [0, +oo) x R — C do problema:
06, )+ (y*+6)p(t,y) = p(NU(1); yeRe >0,
@0,y)=0; yeR,

satisfaz a seguinte relacao:
YfR pWe(t,y) dy =T"""0u 1),
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1 B sen(w)
Tw)lT(1l-w) 7

ondey =
Demonstracdo. Primeiro, note que a solucao ¢(t, y) é dada por:

¢ 2
ot y) = p(y)f e+ =9gy(5) ds. (4.8)
0

Para verificar isso, multiplicamos a equacao diferencial pelo fator integrante e(y2+5)t, obtendo:
(V' +9) ‘o.(t,y) + (¥ +9) (V' +9) Lp(x, 1) = p(y)e(y2+5) ' (1).

Isso pode ser reescrito como:
0

3 (e(y2+6)t(p(t, y)) — p(y)e(y2+6)t%(t).
t

Integrando ambos os lados de 0 a t e utilizando a condicao inicial ¢(0, y) = 0, obtemos:
(Wi, y)) = p(y)f()te(y2+5)s%(s) ds.
Portanto:
(t,y) = p(y)fote_(y2+6)te(y2+5)s%(s) ds= p(y)f()te_(y2+5)(t_s)%(s) ds,

como afirmado em (4.8).

Agora, definimos:
(1) :)/pr(y)cp(t,y) dy, (4.9)

onde y = (T(w)['(1-w))~ L.

Substituindo a expressao de ¢(t, y) dado por (4.8) em (4.9) e aplicando o Teorema de Fubini,

temos:

O (1)

t
Y‘[I;/(; [p(y)]Ze—(yZHS)(t—s)%(s) ds dy

t +00
on fo 2|y|2“’_1e_(y2+5)(t_3)02/(s) dy ds. (4.10)

Fazendo a mudanca de variavel o = y?(t - s), temos do = 2y(t — s)dy. Observe que:

w-1

2w-1 r—s)¥
g = y .( S)

y t—s

Portanto:
o’ (t-9)"%do=2y**"1dy (4.11)

Substituindo (4.11) na integral, (4.10), obtemos:

t +00
O(t) :Yf (t—s)_“’e_‘s(t_s)f o e do U(s) ds.
0 0
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Como I'(w) = [y 1e @, temos

I3
o) = mfo (t—5)"Ye I (W) U(s) ds
_ 1 ! -w ,—0(t—5)
= F(l—w)fo(t s) e 9 (s)ds
= J7% ),
o que prova (4.4). O]

Agora, como destacado anteriormente, utilizaremos a Proposicao 4.4 para ampliar o sistema
(4.1)-(4.3) em um sistema equivalente, substituindo os amortecimentos fracionarios por termos
integrais mais trataveis computacionalmente. Aplicando a Proposicao 4.4 comw =a,6 =ne % = uy,
garantimos a existéncia de uma funcao ¢; : [0, L] x [0, +oo] x R — C tal que:

@D e(x, 6, )+ (Y2 +n)@r1(x, 1, 1) = pPus(x, 1); x€O,1), t>0e yeR,
¢1(x,0,y)=0; x€(0,L) e yeR,

— l-a,

ylpr(yypl(x, ty)dy=7J, “"ui(x,1), xe(0,L) e r>0.

20-1 -1
onde p(y)=Iyl 'z ey1=I(@l'd-a)]".
Além disso, pela relacdo fundamental (4.7), temos:

thp(y)q)l(t, »dy=cl, “Mu ) =0 (),

C1
Fralrl-a)
Procedendo de forma analoga para (8,{,¢:) e (0,¢,v;), podemos reformular o problema

(4.1)-(4.3) no seguinte sistema ampliado equivalente:

onde y; =

un—auxx—r(d)—u)+71pr(y)<p1(y)dy=0; x€(0,L) e t>0,
@)+ P +me1() —pWur=0; x€(0,L), t>0 e yeR,

p1</>n—k(¢>x+w)x+r(</)—u)+yszq(y)<pz(y)dy=0; x€(,L) e t>0, (4.12)
4.12

@2): (N + (VP +) 20— q()p; =0; x€(0,L1), t>0 e yeR,
pzt//n—wax+k(¢x+1//)+7f3er(y)<p3(y)dy=0; xe(0,L) e t>0,

@3): (N + (V> +E) @3 —r(Nw,;=0; xe(0,1), t>0 e yeR.
e _ &
F(ﬁ)F(l—,B) 1“(6)1“(1—9)'

O sistema (4.12) esta sujeito aos seguintes dados iniciais:

onde q(y)zlylg,r(y):lylze%,yﬁ eys=
u(x,0) = up(x), us(x,0)=u;(x); xe(0,L),
(p(xyo) = (po(x)) (p[(xyo) = (pl(x); X € (O)L))
Y (x,0) =yo(x), ¥(x,0) =y1(x); x€(0,L),

(4.13)

P1(x,0,y) =92(x,0,y) = ¢3(x,0,y) =0; x€[0,L] e yeR,
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e as condicoes de contorno de Dirichlet-Dirichlet-Neumann:

uO,t)=u(L,t)=0; t=0,
¢0,0)=¢(,1)=0; t=0, (4.14)
Y0, 0) =yy(L,1)=0; £=0.

Para finalizar esta secao, apresentaremos alguns lemas técnicos que serao utilizados nas
estimativas das préximas secoes, onde estudaremos a boa-colocacao e a estabilidade do semigrupo

associado ao problema ampliado (4.12)-(4.14).

Lema 4.5

Seja0<w<lesejamd,AeRtaisqued=0e A >-§. Entdo

Clw, 5, A):= ﬂd -C w=1
,0,A): fquy2+5+/1 y 16+ 1) < +o0.
e
D(a) S /1)'=fﬂdy:C2(5+/l)w_2<+oo
T (246412 '

Além disso, para hj € L*(®; L*(0, L)) (j = 1, 2, 3), temos:

V1% hi(x, 9)
Hj(x,w,é,ﬂt)::fu

dye %0, L).
R Y*+06+A1 yel oL

Demonstracao. Primeiro, note que:

|y|2w—1 2 f+m |y|2w—1
Clw, 0, ) := dy= ——dy.
@0, .Ly2+5+l V=51 ly T Y

1
1A

2
+1, obtemos |y| = (0 — 1)/2(§ + 1)!/2, e portanto

. y
Fazendo a mudanca de variavel g =
¢ )

2 +00 -1 w-1/2 S+ A w-1/2 1
Clw,0,1) = f (o ) ©0+A _(5+/D1/2(0._ 1)—1/2d0_
o0+Ah o 2
1 +00 1
= do. .
(5+/1)1_‘”‘[1 oo —1)1-o o (4.15)

Para mostrar que a integral em (4.15) é de fato finita, observe que, para o suficientemente

grande, vale:
1 1

<
0-(0-_1)1—w 0-1+w

(4.16)

De fato, multiplicando ambos os lados da desigualdade (4.16) por o'+ = ¢>*® temos:

0.0.1+a) 02+w

< =
U(O‘—l)l_w 01+w
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Assim

1 1 o?
< f——t <
0'(0'—1)1_“’ 0-1+w (0’—1)1_“’

. .. o
Considerando o suficientemente grande, de tal modo que 0> >30 -1, temoso—1> —— > 1.

Como0<w<1, temos

o\ o
( ) < <o-1.

o—1 o—1
Portanto o® < (0 —1)'7%, o que prova (4.16). Assim:

[“’0 do - fN do +f+°° do
1 O'(O'—l)l_w - 1 0'(0'—1)1_“’ N 0-1+w

' do 1
K+ lim o =K+ — =y,
=400 JN O T wN—®

onde K e N s3o constantes.
Assim, de (4.15) e (4.17) concluimos que C(w,5,1) = C; 6 + 1) ! < oo

Para majorar a integral D(w, 6, 1) fazemos a seguinte mudanca de variavel:

v N

= 2
6+ 1)2 * 6+

+ 1.

Desse modo y4 +2(0 + )L)y (c—-1)(d + 1)? =0, e portanto:

yl= @+ )2 (V2= 1),

Portanto, de maneira similar, obtemos:

2 +00 2w—-1
D(,5,1) = —zf B "
O+ Jo Y +1

y
+2
G+M? 6+A

1 f+°° 1
= — do
20+0 0 g32(grz_1)1
C(6+ 0 ? <0

IA

o-—1

(4.17)

(4.18)

Por fim, a partir da desigualdade de Cauchy-Schwarz (Proposicao A.8) e do fato de que h; €

L?(R; L?(0, L)), segue-se que:

IA

dx

2w—-1
2
[ pnay

L
2
Hj(w,é,m::fo |Hj(x, w,6, V)|"dx ioiA

K

i)
(fuze (72 +6 + A)2 |hj(x, y)I* dy dx

D((,U,(S, A/) ”h ”LZ(R;LZ(O,L)) < 0.
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Lema 4.6
Sejam0O<w<led,LeRtaisqued =0e A #0. Entdo
20—-1
. y dy ~w—1
Cw,0,Ai)=] =—————=C1(6+A ,
@0M)= | s @AY

edado hje L*(R; L*(0, L)) (j =1, 2, 3), temos:

yI*T hj(x, y)dy
Hi(x,w, 0, Al ::f /I € L%(0, L).
]( ) R y2+5+ﬂi ( )
Demonstracgo. Considere a funcao Fs: Ds — C, defina por:
2w—-1
yrdy
Fs(z)= | 5——=,
2(2) RV2+6+z
onde Ds={zeC; Rez>—0 ou Imz # 0}.
Note que:
|y|2w—l |y|2w—l |y|2w—1 |y|2w—1
< .
y?+6+z| y*+6+Rez y2+6+z| y*+6+|Imz]
Entao: 2w—-1 2w—-1 2w-1 2w—-1
3 2 ly1=~ 3
3o = T i e (419
ye+0+z| y+6+0do ye+0+z| yc+6,
ondeRez=0p>-6e|lmz|=d; >0.
2w-1
Portanto, de (4.19), segue que a funcédo f} : R — C definida por f)(y) = % é integravel,

e portanto F5 é holomorfa em Dgs para todo 6 = 0.

Agora, considere a funcdo Gs : Ds — C, definida por Gs(z) = C1(6 + 2)“~!. Do Principio do
zeros isolados (Teorema A.12), se a funcao holomorfa H = F — G é ndo-constante, ent3o existe uma
vizinhanca V < D e um Unico ponto zy € V tal que H(zy) = Fs(z9) — Gs(zp) = 0. Contudo do Lema

4.5, segue que:

2w—1
_ _ [y dy
B =Cw,5,0) = [

7= Ci( 6+ 1 =Gs(\); VA > -6.

Assim, H(A) =0, para todo A > -0, e portanto H deve ser constante igual a 0 em todo intervalo
(=6,+00) N V. Da continuidade de H em D, segue que F =G.
Em particular, temos:

y2w—1 dy

R Y240+ AQ =F(Ai) =GA)=C (6 +A)* ' ;YA#0e65=0.

Clw, 6, Ai) :=

Além disso, da desigualdade de Cauchy-Schwarz (Proposicao A.8) edofatode 1 € L2(R; L%(0, L)),

segue-se que:

L
Hj(w,6,Ai) := f|Hj(x,w,6,/1i)|2dx
0

|y|2w—1dy L ,
([{Rm)fo fmz'hj(x» MIcdydx < +oo.
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De fato. Definindo:

2w-1 1 2w-1 +00 2w-1
E(w,a,m::flzy'—dy: fu f _dy
R (2+02+12 "o P40+ A2 ) (P+w?+2?

observe que em ambos os casos, (6 >0e AeR) ou (6 =0e A #0), obtemos

ly Uy
(2 +0)2+A2 6%2+22

|2w—1 |2a)—1

quando |y| — 0, (4.20)

|2w—1 |2w—1

ly ly 1
Z+0)2+A2 g4 [yp 2o quando |y| — +oo. (4.21)

Lembre que uma funcao do tipo |y|d pode possuir uma sigularidade em y = 0. Lembre que
f_kklyld dy <oo,quandod>—1 e f__olfjlyld dy, [7®1yl1? dy < oo, quando d < —1. Assim, como

0<w<1,de(4.20)e (4.21), segue que E(w, 5, 1) < oo, € consequentemente, Hj(,6,Ai)<oco. [

4.2 Boa-Colocacao

Nesta secdo, deduziremos a energia associada ao problema descrito pelas equacoes (4.12)-
(4.14) e provaremos que essa energia é decrescente no tempo, o que evidencia o carater dissipativo
do sistema. Em seguida, definiremos um operador linear adequado, de modo que o problema
possa ser reformulado como um problema de Cauchy linear associado a esse operador. Além disso,
utilizaremos a expressao da energia obtida para definir o espaco de fase, isto é, o espaco no qual o

operador esta definido. Esse espaco sera essencial para a analise das propriedades do sistema.

Por fim, aplicaremos a teoria dos semigrupos de operadores lineares limitados, desenvolvida
no Capitulo 2, para demonstrar que o problema estd bem colocado. Isso implica que existe uma

Unica solucdo que satisfaz as equacoes (4.12)-(4.14), garantindo a existéncia e a unicidade de solucéo.

4.21 Formulacao do Semigrupo

Proposicao 4.7

A energia associada ao problema (4.12)-(4.14) é dada por:
E(t):—f lux(x, 1) dx+—f [(p— ) (x, D)l dx+—f [y +y)(x, D)|"dx
2 0 2 0 2 0
b rL 1 L L L
+ —f e (x, O2dx+ —f |1, (x, DPdx + ﬁf 1 (O2dx+ @f s (x, D2 dx
2 Jo 2Jo 2 Jo 2 Jo

1 (* Yo [ (* ys [ [*
+—ff le(x,t,y)lzdxdw—ff Iwz(x,t,y)lzdxdy+—ff lps(x, t,y)*dxdy, (4.22)
2 JrJo 2 JrJo 2 JrJo

e satisfaz:

d L L
_E(t):_Ylff (y2+n)l<p1(x,t,y)lzdxdy—yzff P +Olpa(x, t,y)Pdxdy
dt rJo rRJo

L
—stRfO (Y +0)|@2(x, t, ) *dxdy. (4.23)
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Demonstracdo. Multiplicando a equacao (4.12); por u; e integrando em relacio a x no intervalo de
0 a L, obtemos:

L =L L L
f U Uy dX— all Uy +af UsUix dx—1 | (p—wu;dx
0 x=0 0 0
L
+71 f U fR pp1(y) dy dx =0. (4.24)
0
Note que
0,t+h)—u,t Lt+h)—u(lt
us(0,£) = lim ul }1 wo.n oLy = lim ul })l uL, 1)

Assim, das condicbes de contorno (4.14);, segue que u;(0, t) = u;(L, t) = 0, e portanto:

x=L

auyl; = auy (0, Hus0,8) —au, (L, Hus (L, t) =0. (4.25)

d d
Como d—lutl2 =2uUs U e E'quz = 2U Uy = 2Uy Usy, de (4.24) e (4.25), obtemos:

Zdtf ] dx+——f o2~ rf @ u)utdxmf utfp(y)q)l(y)dydx 0 (4.26)

Multiplicando as equacao (4.12)3 e (4.12)5 por ¢; e y, respectivamente, e agindo de maneira

semelhante, obtemos:

p1 d (L L L
f || dx+kf (bx+ W)yt dx+rf (o-—u)p; dx
2 dt 0 0
+Y2f0 (Ptqu(J/)(PZ(J/) dydx=0 (4.27)
e
5 dtf lyel? dx+ f [ x| dx+kf (px+y)y, dx
+y3f0 wter(y)q)g(y) dy dx=0. (4.28)
Somando (4.26), (4.27) e (4.28), e observando que
d
5|¢—u|2:2[¢—u1[¢[—ut1:2[¢—u1¢t—2[¢>t—u1ut
e
d 2
El‘bx"‘lm :2[¢x+W][¢xt+Wt]:2[¢x+w1¢xt+2[¢x+W]WD
segue que

Zdtf qul dx+ f | — ul dx+——f |y + | dx+——f |1/Jx| dx

+——f Iutl dx+ f |</>[| dx+ f [ ¢] dx+ylf utf pMe1(y) dy dx

+Y2f0 </>tch/(y)<pz(y) dy dx+ysf0 wter(y)q)g(y) dy dx=0. (4.29)
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Por outro lado, ao multiplicar as equagdes (4.12),, (4.12), € (4.12)g por Y11, Y22 € Y22

respectivamente e, em seguida, integrar com respeito a variavel y sobre R, obtemos:

> dtf lp1 (P dy+Y1f (¥ +n)lp1 () Pdy = Ylutf p(Ve1(y) dy, (4.30)
> dtfl(pz(y)l dy+)/zf(y +0) o2y 1Pdy = wptf ae2y) dy (4.31)
e
d
Ba f lps(MIPdy +73 f (2 +&) o3 1Pdy = ysw, f r(1)ps(y) dy. (4.32)
2dtJr R R

Substituindo as expressoes (4.30), (4.31) e (4.32) em (4.29), obtemos:

L
2atls [ty dx+—d—f lp—ul dx+—d—f |y + ] dx+—d—f [y dx

+11 Llutl dx+——f lpe|*dx+ f [y 2 dx+ ff lp1 (Y Pdxdy
Zdt/:[Iwﬂwldxdy+-—3;]1fIwﬂwldxdy+yhfj)J/+n|¢ﬂw|dxdy

+7’sz[0 (* +0) lp2(n) P dx dy+yszf0 (¥ +&) lp3(y)*dx dy =0. (4.33)
Denotando a energia E(t) por (4.22), temos que (4.33) estabelece (4.23). O]

Queremos agora reescrever o problema (4.12)-(4.14) como um problema abstrato de Cauchy
linear. Paraisso, introduzimos a funcao vetorial U = (u, v, @1, ¢, w, @2, ¥, z,3), emque u; = v,¢p; = w
eyY;==z.

Assim, temos:

v
u
! auxx+r(<b—u)—)’1fP(J/)(Pl(y)dy
V¢ R
oy —(P+me1 () + p(y)v
op 1 w
vi=| we |=| S lkocrm—ro-w=r. [ apeaay] [=au. Gz
(2) ~(+ 0PN+ g w
Yy z
1
Zt ——Uwux—ka+u0—Y;[rUOWﬂde]
((p?))l' p2 2 )
-y + 3 +r(y)z

Nosso objetivo é reescrever o problema (4.12)-(4.14) em um problema de Cauchy abstrato da

seguinte forma:

U'(t)-«LU{) =0; t>0,
(4.35)

U(0) = Uy,



106 Capitulo 4. Sobre um sistema de ponte suspensa do tipo Timoshenko com amortecimento interno fraciondrio

onde Uy = (ugp, u1,0, g, $1,0,¥o,w1,0) e o operador linear «f : D(of) € A — A € definido con-

forme (4.34), para um espaco de fase .# apropriado.

Para determinar o espaco de fase adequado #, podemos observar a expressao da energia
E(t) definida em (4.23). De acordo com a teoria de semigrupos lineares apresentada no Capitulo 2

(ver Definicao 2.34), precisamos garantir que:
1 2 _ 1 2
E(t):EHU”Jﬁ:E”S(t)UO”Jf; (4-36)

onde {S(#)} ;>0 representa o semigrupo de operadores lineares limitados gerado pelo operador linear
.

De acordo com as condi¢des de Dirichlet (4.14); », uma vez que, pelo Teorema do Traco (Teorema
1.63), tem-se:
H}(0,L) = {ue H (0, L1); u(0) = u(L) = 0}.

Assim, é natural considerar a norma do espaco H& (0, L) (ver Corolario 1.18), definida por:
- ”H&(O,L) . H&(O; Ly — C
u — ” u”H&(O,L) = ” ux”LZ(O,L)-
Por outro lado, para as condicdes de Neumann (4.14);, ndo ha um espaco normado natural
como H(} (0, L). Contudo, o termo lWxllz20,r) @aparece naturalmente na expressao da Energia E(t).
Diante disso, seria fundamental considerar um espaco onde valha a desigualdade de Poicaré, mas

sem que ¥ € Hg (0, L), ou seja, sem a necessidade de impor, além das condicoes de contorno de

Neumann, as condicdes de Dirichlet para y.

Observe que, se assumirmos a condicao:

L
f w(x) dx=0, (4.37)
0

dispomos da Desigualdade de Poincaré (Teorema 1.17). Com efeito, pela desigualdade de Poincaré-

Wirtinger (Teorema 1.22), segue que:

< 2L|wx||L2(O,L)-

1 L
“W—zfo w(x) dx

12(0,1)
Assim, da condicdo (4.37), tem-se:
vl r20,) = 2LIWxll 20,1, (4.38)
Considere o espaco:
H! = {fe Hl(o,L);fOLf(x) = o}.
Dessa forma, a partir da desigualdade (4.38), define-se a seguinte norma:

Il HAO,L) — €

u ” uqu (0,L) = “ ux||L2(0,L)'
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Afirmamos que (Hi 0,L0); |- ||Hi(0,L)) é um espaco de Banach. De fato, note que Hi (0,L) =
H'(0,L)nL%(0,L), onde
L%(0,L) = {fe LZ(O,L);fOLf(x) = 0}.
Assim, basta mostrar que L2(0, L) é subespaco fechado de L?(0,L). Seja (f,) neny Uma sequéncia de
Cauchy em L2(0,L). Logo (f)nen € uma sequéncia de Cauchy em L2(0,L), e, como L?(0,L) é um
espaco de Banach, existe uma funcao f € L?(0, L) tal que I fn— fllf2(0,) — 0. Daimersao continua
L?(0,L) — L'(0,L), temos || f, — fll 110,y — O. Portanto:

L L L L
UO f(x)dx fofn(x) dx—f0 fx)dx fo(fn(x)_f(x))dx:”fn_flllLl(O,L)_’O-

Fazendo n — oo, obtém-se fOLf(x) dx=0,istoé feL2(0,L). Logo L%(0, L) é fechado em L?(0,L), e,

portanto H!(0,L) é um espaco de Banach, como afirmado.

=<

Assim, o espaco de fase (A, | - ||) é definido por:
7€ = [H}(0,1) x I2(0, 1) x L*®; L*(0, L))]* x [HL(0, D) x L*(0, L) x LA(®; L2(0, )],
sendo munido da norma | - || s : # — R, definida em (4.36).

Para simplificar a notacdo, denotaremos a norma e o produto interno do espaco L?(0, L)

simplesmente como | - || e {-,-) respectivamente. Dessa forma, temos:
2 2 2 2 2 2 2 2
1UNS, = aluxll”+Ivl®+p1llwl”+ p2llzl” + bllyl”+ Tl —ul”+ klldpx + vyl

2 2 2
+Yl ”(pl ”LZ (R;LZ(O,L)) + YZ ||(P2 ”LZ(R;LZ(O,LD + Y3 ||(p3 ”LZ(R;LZ(O,L))’

Na Definicdo 2.4, vimos que U € D(«f), se, e somente se o/ U € A#. Além disso, a condicao de

fronteira (4.14); deve ser satisfeita. Assim, o dominio de <« é dado por:

u,¢p€ H*(0,L) N Hy (0, L),
y € H(0,L) n HL(0, L),
v, w € H;(0,L)
ze H(0,L)

D(ef) =<3 (U, v,¢1, ), W, P2, 9, Z,P3) ®1,92, 93 € L*(R; L*(0, L)), )
lylpj e L*®;L*(0,1))(j = 1,2,3),
—(yl>+me1+p(y)ve L*(R; L*(0, L)),
—(yP+ 2+ q(y)w e L*(R; L*(0, L)),
—(yI? + &3+ r(y)z € L*®; L*(0, L)).

onde HZ% (0, L) := {y € H*(0,L); ¥ (0) = (L) = 0}.
Observe que D(«f) é denso em . Além disso, (A, (-, ).») € um espaco de Hilbert, com
1UI1%, = (U, U}, onde
U, Mg = altg, ) + (0, D) + p1{w, D) + p2(2, 2) + bW, W) + TP — 1, p— D)
+ kpx + W, x+ ) +Y1{P1, P 2@ 120, 1) + V2(P2 P2) 2 ®s 1200, 1)

+Y3@3, ¥3) 12®; 12(0, 1))
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~ o~ o~ o~

para U= (u, Uy(ply(,br w»(l)zﬂ//, Zr(p3) e ﬁ: (ﬁ, 5;@;(’51 w»(PZ;U/; Z;%)-

4.2.2 Existéncia e Unicidade de Solucao

Teorema 4.8 (Teorema de Existéncia e Unicidade)
Se Uy = (up, u1,0,¢9,¢1,0,%0,w1,0) € #, entdo o problema de Cauchy (4.35) admite uma Unica

solucao branda (ver Definicao 2.9, item (i)):
U e C° ([0, +00); ), (4.39)

dada por U(¢) = e*? U,.

Se Uy € D(<#), entdo a solucdo obtida é uma solucao regular (Classica) (ver Definicdo 2.9, item

(ii)) com a seguinte regularidade:

U € C° ([0, +00); D (£)) N C* ([0, +00); 7). (4.40)

Demonstracdo. Dado o Teorema 2.8, é suficiente mostrar que o operador «f : D(of) € A — S é
gerador infinitesimal de um Cy-semigrupo {e*?},>¢. Para isso, utilizaremos o item (i) do Teorema de

Lummer-Phillips (Teorema (2.31)).

Inicialmente, afirmamos que o operador «f é dissipativo (ver Definicdo 2.30). Para verificar

essa propriedade, seja U = (i, v, @1, ¢, W, @2,¥, z,¢3) € D(<Z). Temos:

L L L L
(AU, U) 70 = af vxu_xdx+af uxxvdx+rf ((p—u)vdx—)/lff pVei1(y)vdxdy
0 0 0 RJO
L L L
+kf0 (c/)x+1//)xwdx—rfo ((/)—u)wdx—yngfO g2 wdxdy
L L L
+bf0 wxedx—ka (gbx+1//)2dx—y3fRf0 r(es(Nzdxdy
L L L
+bf zxﬂdx+rf (w—v)((p—u)dx+kf (wy +2)(Ppx + ) dx
0 0 0
L L
—YlfRfO @ +mlp1 (1) dxdy+71fRf0 pye1(y)vdxdy
L L
—YszfO (y2+é)|<pz(y)|2dxdy+yzfo ay)p2(y)w dx dy

L L
_stRfO * +8)lps(y)Pdx dyﬂ/gfo r(Yes(Nz dx dy.

Como U € D(«f), segue que v, w € H& (0, L). Logo, utilizando integracao por partes, temos:

L L L L
f UyyV dX = —f UyUyx dx e f (Px+yY)ywdx= —f (b +yYV)wy dx.
0 0 0 0
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Simplificando os termos semelhantes, obtemos:

L L e —
(AU, U)zp = af [vxu_x—vxu_x]dx+rf (w—-v)(p—u) —(w—-v)(p—u)ldx
0 0

L L
+Icf [(wx+z)(¢)x+1p)—(wx+z)((,bx+1//)]dx+bf [2xWx — ZxWx]ld x
0 0

L L
+Ylj|;‘/‘0 p(y)[U‘Pl(y)_V‘pl(J/)]dx dy—yljl;‘/(; (y2+77)|(P1(J/)|2dx dy

L L
+7’2fﬂf0 q(y)[wq)Z(y)_W(pZ(y)]dxdy_nfRfo G2 +Olpa () Pdx dy

L — = L
+Y3fﬂfo r(y)[z(P3(J/)—z<P3(y)]dxdy_ygijfo 2 +)lga () Pdx dy.

Portanto:

L L
(AU, Uy zp = Ziaf Im[vxu_x]dx+2irf Im[(w-v)(¢p—-u)ldx
0 0
L L
+2ikf Im[(wx+z)(¢>x+w)]dx+2ibf Im [z%) dx
0 0
L L
+2iY1fRf0 p(y)lm[vq)l(y)]dxdy—ﬁfu%fo G+l Pdx dy
L L
+2iY2fRf0 q(y)lm[w@(y)]dxdy—yszfO P +Olp2(0*dx dy

L L
+2i)/3fRf0 r(y)Im[Z(pg(y)]dxdy—yngfO (y2+€)|(p3(y)|2dxdy.

Finalmente, tomando a parte real, temos:

L L
Re{(dU, Uy zp = —YlfRfo (y2+17)|(P1(y)|2dXdy—Yszf0 Y +Olp2(y)Pdxdy

L
—stRf (* + )3 (y)Pdxdy < 0. (4.41)
0
Isso demonstra que o operador «f € dissipativo.
Mostraremos agora que < é um operador maximal (ver Definicio (2.32)). Mais precisamente,

devemos provar que, dado W € A, existe um vetor U € D(<f) tal que (I — «/)U = W. Isto equivale a

resolucao do seguinte sistema de equacoes:

u-v=fi, (4.42)

v—auxx—r(dJ—u)+y1Ap(y)¢1(y)dy:g1, (4.43)

P10+ P+ M1 () — p(Yv = I (y), (4.44)

b—w=f, (4.45)

prw —k(px+y), +7(p—u) +Y2fR g e2(y)dy = p182, (4.46)
P2(3) + P +M@2(y) — g w = hy(y), (4.47)

Y—-z=fs (4.48)

P22 — by xx+ k(b +v) + yng r(Mes3(y)dy = p28s, (4.49)

P3(1) + (PP +3(y) — (1) z = h3(y). (4.50)
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Nesse sistema, W = (fi, 81, h1, f2, 82, ho, [3, 83, h3) € U = (1, v, 01, ¢, w, 92, Y, 2, >).
De (4.42), (4.45) e (4.48), segue que:
v=u-fi, w=¢-f, e z=y-fs. (4.51)

Substituindo (4.51) em (4.44), (4.47) e (4.50) respectivamente, obtemos:
my) _ pA  pOu

(pl(y):y2+17+1 y24n+1  y2+n+1’ (4.52)
P2(y) = yzhj((y J)r = y;’ iy 2{? o+ yfiyg(f o (4.53)
P3(y) = yzhj(gy J)r = yzr iy ;{f o yzr iy ;u: - (4.54)
Aplicando o Lema 4.5 s expressdes (4.52), (4.53) e (4.54), obtemos:
Y1 fR pMe1(dy =y [Hi(x,a,n,1)+Cla,n,D)(u-fi)], (4.55)
Ysz qe2(Ndy =7v2 [Ha(x,8,{, 1)+ C(B, {, 1) (- f>)], (4.56)
Y3 fR r(Vesdy=v3[H3(x,0,E,1)+CO, & Dy - f)]. (4.57)

Aplicando as expressoes (4.51), (4.55), (4.56) e (4.57) nas equacoes (4.43), (4.46) e (4.49) res-

pectivamente, temos:

u—aux—1(p-—u)+y:1Cla,n,Du=fi+g+7:1Cla,n, D i-yv1iHi(x,an]), (4.58)
P10 —k(px+W)x+T(D—w)+Y2C(B, (NP =p1(fo+8)+7Y2CB,{,1) fo—v2Ha(x,B8,{,1), (4.59)
P2 — by + k(P + ) +y3CO, ¢, Dy = p2(f3+ g3) +v3C0, ¢, 1) f3 —y3H3(x,0,¢,1). (4.60)

Multiplicando as equacdes (4.58), (4.59) e (4.60) por & € H; (0, L), 5 €Hy(0,L) e ¥ e HY0, L)
respectivamente, integrando sobre x de 0 a L e, em seguida, aplicando a integracao por partes,

obtém-se o seguinte sistema equivalente:

L _ L L . L
le uﬂdx+af uxﬁxdx—rf (cp—u)ﬂdx:f FLudx,
0 0 0 0

A

L — L — L — L —

C2f Pppdx +k (¢x+w)<5de+Tf (cp—u)fﬁdx:f Fpdx, (4.61)
0 0 0 0

x=L L __ L _ L

+bf W Pdx+ kf (cpx+u/)¢dx:f Fswdx,

x=0 0 0 0

G [ yiax- w7
onde os coeficientes sao dados por:

Ci=14+7Cla,n,1), Co=p1+72C(B,(,1) e C3=p2+73CH,¢,1).
e os termos do lado direito sao:

Fl = []- +71C(a,77, 1)]fl +gl _YlHl(x)a»n)]-)r FZ = [Pl +Y2C(ﬁ)()1)]f2 +P1g2 _YZHZ(xrﬁ»Cr ]-) e
F3=[p2+7v3C0,8, D] f3 +p283—7y3Hsz(x,0,¢,1).



4.2. Boa-Colocacao 1M1

Assim, temos que F; € L2(0,L), uma vez que, pelo Lema 4.5, Hj(x,w,6,1) € L%(0,L).

Observe que ndo necessariamente se tem:
—|Xx=L
—byyyy| =0, (4.62)
x=0
pois nem toda funcdo em H! (0, L) satisfaz as condicdes de Neumann. Para contornar esse problema,
considere o problema variacional auxiliar de encontrar um vetor (u, o, w) € [H& (0, L)]2 x Hi (0,L)
tal que

B(w, b, w), (&L, p, 1)) = L@, d, ¥); V(@I b, %) € [Hy (0,L)]* x HL(0, L), (4.63)

onde % [(H, (0, L))*> x H}(0,L)] x [(H, (0, L))*> x H}(0,L)] — C é a forma sesquilinear definida por:

L — L __ L __
B(u, ¢, ), (i, P, V) = le utidx + sz Pppdx + Cgf wydx+ af Uy lydx
0 0 0 0

L L _ L _
+bf wxi/?xdx+rf (</>—u)(</>—17)dx+kf (px+ W) (P +W)dx
0 0 0

e £ :[H,(0, L)]* x H}(0,L) — C ¢ a forma antilinear definida por:

L

_ L — L _
fﬁ(zj,éﬁ,w):f Flﬁdx+f Fggbdx+f Faydx.
0 0 0

Usaremos o Teorema de Lax-Milgram (Teorema A.9). Primeiramente note que 28 é continua.
Dados (u, ¢, w), (&, ¢, ¥) € [Hy (0, L)]* x Hy(0, L), da desigualdade de Cauchy-Schwarz (Proposico

A.8) e das desigualdade de Poincaré (Teorema 1.17) e Poicaré-Wirtinger (Teorema 1.22), temos:

|2 ((w, ¢, v), (@¢, ¥))| < C1 Ku, @) + Co|<p, §)| + C3 [<w, )| + al{uy, Tiy)|
+b [, U | + T (P — 1, p— |+ k(P + 1, fr+ )|
< Cillux el + Coll el pscll + Cally Tl + Tl T + T el b
+K Il Pl + Kl ll bl
< C- 11 )N 111 0,912 x 12 0,10 | (B ¢, Pl [H1(0,1)12x HL (0, L)
onde C; = (Ci+1)[*+a, Co=(Co+1)[2+k, C3=(C3+ k)L +b, T=7L%, K=kLe
C =max{C;,C5,Cs, T, K}.

Agora mostraremos que 98 é coerciva. Para (u, ¢, y) € [H& 0,L)]% x Hi (0, L), da desigualdade

de Young (Proposicdo A.3), segue que:

2 2
1 G 0 oy = (1l + 1l + 1yel)

(Nl + b+l + llll + lyll)?
Aluel® + 4l + I + 41wl + 4w l?

IA

IA

IA

4 4 4
Crllull? + Callpl* + Ecgnwnz + Eanuxn2 + Ebnu/xnz +7)p— ull?
3

4
+ =kl syl
C'%((u)(p)W)) (u)(p)W))

I\
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onde C = max{Cy,C,,4/Cs,4/a,4/b,1,4/k}.

Por fim, vamos demonstrar que £ ¢ limitada. Para (i1, $, ) € [Hy (0, L)]* x H}(0, L), temos:

L@@, )| = KF, W+ |(Fa, )| + |(Fs, )|
LIF Nzl + L- I E2 I gell + LI F3 @« |

IA

IA

2

onde C = L-max{l|Fy I, | F21l, | F3 1}

Portanto, do Teorema de Lax-Milgram (Teorema A.9), existe uma Unica solucado (u, ¢, ¥) €

[Hy (0, L)]* x H; (0, L) para o problema variacional (4.63).

Como g1, g2, 83 € L?(0, L), pela regularidade do sistema de equacdes: (4.43), (4.46) e (4.49),
segue que u,¢, ¥ € H*(0, L). Além disso, como fi, f> € H}(0,L) e f3 € H}(0,L), definindo v, w
e z como as expressdes dadas em (4.51), temos que v, w € H(} (0,L) e z € HL(0,L). Por outro
lado, hy, hy, hs € L*(R; L2(0, L)). Assim, definindo ¢;(3), ¢2(y) e p2(y) pelas respectivas expres-
sdes dadas em (4.52), (4.53) e (4.54), é evidente que |y|p, € L*(R; L2(0, L)), |ylp, € L*(R; L?(0, L)),
Iylgs € L2®R; L2(0, L), — (y* +m) @1 +p(y)v € LAR; L2(0, 1)), - (2 +) 92 + q(y)w € L2(R; L2(0, L))
e —(y*+&) g3+ r(ze [*®; L*(0, L))

Assim, para que U = (u, v,¢1,$, w,@2,v, z,p3) € D(<f), resta apenas mostrar que 1y satisfaz
as condicoes de Neumann. Note que o problema variacional (4.63) é equivalente ao sistema (4.61),
quando supomos (4.62). Portanto, a solucao (u, ¢, ) € [Hé 0, L)% x H.(0, L) do problema variacional

(4.63) satisfaz:

L _ L L . L
le uﬁdx+af uxﬁxdx—rf ((p—u)iidx:f Fiudx,
0 0 0 0

-

L — L — L — L —
sz ppdx+k | (px+w) (/)xdx+rf (- u)c/)dx:f Fypdyx, (4.64)
0 0 0 0

L _ L _ L _ L _

Cgf w{ﬁdx+bf YxWydx+ kf (t,bx+1//)fﬁdx:f Fsydx,
0 0 0 0

para toda terna (i1, ¢, ¥) € [H} (0, L)]* x HL(0, L).

Em particular, de (4.64)3, segue que

L L L L
C3 f yodx—b f Yo dx+k f (px+W)Tdx = f F3odx; Yo € Cy(0,L)n HL(0, L),
0 0 0 0

Como g,(0) =04(L) =0, temos:
L L L L
Cs f yodx—b f Yoodx+k f (px +W)Tdx = f F30dx; Yo e Cy(0,L)n H, (0, L),
0 0 0 0
Portanto:

C3y — by + k(px + ¥) = Fs. (4.65)
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Multiplicando a equacio (4.65) por uma funcio ¥ € H1(0, L) e integrando por partes, obtemos:

L L _ L _ L __
0 +bf0 W Pdx+ kfo (px +v)ydx :fo Fsydx (4.66)

X
X

L __ __
Cs fo yydx— by P
Finalmente, combinando (4.64); e (4.66), temos:

—|x=L L _ L e =
by Yy ot bfo YPrdx = bfo VW dx; Y€ HLO, L).

Logo

by (0T (0) — by (L)@ < (L); Y € HL(0,L). (4.67)

Agora, considere as funcoées M :[0,L] — C e N : [0, L] — C definidas por:

X 4L
e N(x)=—2Lcos(i)+?.

Tx\ 4L
M(x)=2L sen(z) — 7

Note que M, N € H(0,L), M, (0) = Ny (L) = m € M(L) = N (0) = 0. Assim, aplicando ¢y = Me ¢ = N
em (4.67) respectivamente, obtém-se: 1,(0) =0 e w,(L) =0, logo v € HIZV(O,L).

—X
Portanto U = (u, v,¢1,¢, w,@2,¥, z,93) € D(<f), € COMO nesse caso —wau?x =0, temos
xX=

que o sistema (4.64) é equivalente ao sistema (4.61). Assim, o vetor U = (u, v, 1, ¢, W, p2,v¥, 2,¢3) é
solucdo do sistema (4.42)-(4.50). Isto é, (I —«/)U = W. Portanto </ é maximal. Logo, do Teorema
de Lummer-Phillips (Teorema 2.31) segue que o operador «f é gerador infinitesimal de um Cy-
semigrupo de contracdes {e”},-o sobre o espaco de Hilbert #. Assim, do Teorema 2.8, segue que
U : [0, +oo] — # definido por U(t) = e"* Uy é a Gnica solucio do problema (4.35) satisfazendo (4.39)
e (4.40). O

O Teorema anterior pode ser reformulado exclusivamente em termos do Problema original

(4.1)-(4.3) como segue:

Teorema 4.9 (Teorema de Existéncia e Unicidade)
Se ug, o € Hy(0,L), wo€ HL(0,L) e uy, 1,91 € L*(0,L), entdo o problema de valor inicial e de

contorno (4.1)-(4.3) admite uma Unica solucdo branda (u, ¢, v) satisfazendo:

u,¢ € C°([0,+00); H,(0,L)) nC* ([0, +00); L*(0,L)),
€ C°([0,+00); HL(0,L))nC!([0,+00); L*(0, L))

Se ug, o € Hy (0,L) N H*(0, L), wo € H5(0,L) N HL(0,L), u1 =¢1 =1 =0, entdo o problema
de valor inicial e de contorno (4.1)-(4.3) admite uma Unica solucao regular (u, ¢, w) com a seguinte

regularidade:

u,¢ € C°([0,+00); H*(0,L) N Hy(0,L)) nC* ([0, +00); Hy(0,L)) nC?([0,+00); L*(0,L)),
y € C°([0,+00); H5(0,L) N H,(0,L)) N C* ([0, +00); H,(0,L)) N C*([0,+00); L*(0, L))
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Demonstragdo. Note que, se uy, o € Hy(0,L), wo € HL(0,L) e uy, 1,91 € L*(0,L), temos Uy =
(o, U1,0,¢0,$1,0,90,11,0) € H, e quando uy,Ppo € Hy(0,L) N H*(0,L), o€ H%(0,L) N H}(0,L)
e u; =¢; =y, =0, obtemos U = (uy, u1,0, g, ¢1,0,9¥9,¥1,0) € D(«Z). Portanto, basta aplicar o
Teorema 4.8. [

Para obter uma solucido que evolua continuamente no espaco de fase .# (que inclui as
energias cinéticas, potenciais e das varidveis de memoéria, basta que o dado inicial U, pertenca
a . lIsso significa que as velocidades iniciais u;(0) = uy, ¢;(0) = ¢; e ¥,(0) = ¥; podem ser
quaisquer funcdes em L?(0, L) (energia cinética finita) e as variaveis de meméria devem comecar
"descarregadas"((pj(O, y) = 0). Neste caso, a evolugdo temporal U(t) = e’ U, é bem-definida e
continua, mas nao necessariamente diferencidvel. A solucdo satisfaz as equacoes de forma integral,

acomodando assim um estado inicial com movimento.

Contudo, para obter uma solucao que seja continuamente diferencidvel no tempo e que
satisfaca as equacoes no sentido pontual, é necesséario que o dado inicial Uy pertenca ao dominio do
operador «f, D(<f). Este dominio além de exigir mais regularidade para os dados iniciais, impoe
que as velocidades inicias u;(0) = u =0, ¢+(0) = ¢, =0 e ¥,(0) = y; = 0 sejam nulas. Observe que a
condicao de velocidade inicial nula, necessaria para a existéncia de solucao regular, é plenamente
plausivel do ponto de vista fisico no contexto do modelo de ponte suspensa apresentado. Considere,
por exemplo, que o cabo principal e o tabuleiro da ponte sdo inicialmente deformados devido a
uma carga estatica ou a uma acao constante do vento, e mantidos nessa configuracdo deformada,
caracterizada pelos deslocamentos iniciais ug, ¢¢ € (. No instante ¢ = 0, o sistema é liberado. A
exigéncia de que as velocidades iniciais sejam nulas, isto €, u; =0, ¢p; =0 e y; =0, significa que, no
exato momento da liberacao, a estrutura encontra-se em repouso. Toda a energia do sistema esta,
portanto, armazenada sob a forma de energia potencial elastica, contida nas deformacdes iniciais

Uy, o € Yo, nao havendo ainda conversao em energia cinética que implique movimento.

As condicbes iniciais ¢ (0, y) = 0 impostas as variaveis auxiliares que representam os termos
de memodria, indicam que, no instante inicial, os mecanismos internos de dissipacao associados a
cada componente do sistema (o cabo, o deslocamento transversal e a rotacio das fibras), ndo se
encontram tensionados. Casos as velocidades iniciais u;, ¢p; ou 1, fossem nao nulas, surgiria uma
inconsisténcia instantanea. Para ilustrar, tome a equacao de evolucio para o termo de memoria com

respeito as vibracoes do cabo principal:

(@) (t, )+ (P +n)e(t,y) — p(y) u; =0.

No instante ¢ =0, como ¢; (0, y) = 0, deduz-se que (¢1);(0, ¥) = p(y)u;. Contudo, a fungao p(y) =
|y|(20,’—1)/2

assim a regularidade requerida para uma solucao regular.

nao é de quadrado integravel em R, o que implica que (¢1):(0,)) ¢ I? (IR; 2 (Q)), violando

Esta condicao é fundamental porque os amortecimentos fracionarios incorporados ao sistema

sao nao locais no tempo, e as forcas dissipativas deles decorrentes dependem de toda a histéria
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pregressa das velocidades u;, ¢, e w;. O sistema dispoe de "graus de liberdade internos", repre-
sentados por ¢, @2 € @3, 0s quais armazenam informacao sobre o passado. Um estado inicial que
inclua velocidades nao nulas demandaria que estes graus de liberdade internos fossem excitados
de maneira instantanea, com um aporte infinito de energia, decorrente do espectro singular das
funcdes p(y), q(y) e r(y), o que é fisicamente irrealizavel. A imposicao u; = ¢, =y, =0 assegura
que o sistema parta de um estado de equilibrio, sem que haja um salto inicial incompativel com a

natureza dos materiais modelados.

Este comportamento reflete a fisica inerente ao modelo. Os amortecimentos fracionarios
destinam-se a capturar o comportamento de materiais dotados de memoéria de longo prazo, como
os cabos de aco e o tabuleiro de concreto com propriedades viscoelasticas, os quais ndo reagem
instantaneamente a perturbacoes bruscas. Em contrapartida, um amortecimento viscoso convencio-
nal é puramente instantaneo. Por conseguinte, a condicdo de velocidade inicial nula é inerente a
modelagem que incorpora memoria fracionaria, ao passo que se torna dispensavel na modelagem
com amortecimento viscoso. No contexto de pontes suspensas, tal condicdo corresponde a um
cenario no qual a estrutura é liberada a partir de uma configuracao estaticamente deformada, sem
qualquer impulso inicial, situacdo comum em testes de vibracdo ou sob a acdo de cargas que variam

gradualmente.

4.3 Comportamento Assintotico

Nesta secdo, analisaremos o comportamento assintético da solucdo obtida anteriormente.
Para isso, utilizaremos os resultados de estabilizacao de semigrupos apresentados no final da terceira

secao do Capitulo 2.

Iniciaremos com o estudo das propriedades espectrais do operador <7, responsavel por gerar o
semigrupo associado ao problema. A partir dessas propriedades, aplicaremos o Teorema de Arendt-
Batty (Teorema 2.38) e concluiremos que o semigrupo é fortemente estavel, isto é, a solucdo decai

pontualmente para zero quando ¢ — co.

Na sequéncia, recorreremos ao Teorema de Gearhart (Teorema 2.41) para demonstrar que o
semigrupo em questao nao apresenta estabilidade exponencial. Finalmente, aplicando o Teorema de
Borichev-Tomilov (Teorema 2.39), estabeleceremos que o decaimento ocorre de forma polinomial,

caracterizando assim a estabilidade polinomial do semigrupo associado ao nosso problema.

4.3.1 Analise Espectral

Proposicio 4.10
Sejam 1 € R e «f o operador definido em (4.34). Entdo o operador Ail — </ é injetivo.

Demonstracdo. Sejam AeRe U = (u, v, 1, , w, g2, V¥, z, p3) € D(f) tais que /U = A1iU. Equiva-



116 Capitulo 4. Sobre um sistema de ponte suspensa do tipo Timoshenko com amortecimento interno fraciondrio

lentemente:
v=A>Aiu, (4.68)
auxx+T(¢—u)—ylfu%p(y)wl(y)dy:Mv, (4.69)
G +n+ADe1(y) = pW)Y, (4.70)
w=Aig, (4.71)
k(px+vw), —1(p—u) - ysz qp2(y)dy = pr1diw, (4.72)
2+ + AD)p2(y) = g w, (473)
z=Aiy, (4.74)
by xx = k(bx+v) —73 fR r(Nes(y)dy = p2Aiz, (4.75)
() +E+ADgs(y) = (y)z. (4.76)
De (4.41), segue-se que
0=ReAiU, Use = =11 [ 0+ 0lor g @y =72 [ 0+ 0102,y
s [ 0P+ OIpaI sy dy =0
Portanto
Q1(x, ) =0=@2(x, y) = @2(x, y) =0, em quase todo ponto (x, y) € (0, L) x R. (4.77)

Substituindo (4.77) nas equacoes (4.70), (4.73) e (4.76) respectivamente, obtemos:
v(x) = w(x) = z(x) =0, em quase todo ponto x € (0, L). (4.78)
Agora, substituindo (4.78) nas equacoes (4.68), (4.71) e (4.74), obtemos:
Aiu(x) = Aigp(x) = Aiw(x) =0, em quase toda parte x € (0, L). (4.79)
Se 1 # 0, entdo de (4.79), segue que u(x) = ¢(x) = y(x) =0, em quase todo ponto x € (0, L).

Portanto U =0 em #, logo Ail — </ é injetivo. Caso contrario (1 =0), substituaA=0e ¢, =@, =

@3 = 0 nas equacoes (4.69), (4.72) e (4.75). Assim, obtemos o seguinte sistema:
—auxx —T(p—u)=0,
—k(px+¥)x+1(p—1) =0, (4.80)
by ix+ k(P +v) =0.
Multiplicando as equacdes (4.80);, (4.80), e (4.80); por u, a W respectivamente, integrando por
partes e usando o fato de que u,¢ € H*(0,L)n H, (0,L) e y € H5,(0, L) N H}(0, L), obtemos:
allugl®* —t(p—u,uy=0
+k{px +W, ) + TP —u,p) =0, (4.81)
bly:l? + k(s +y,9) =0.
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Somando (4.81);, (4.81), e (4.81)3, obtemos:

allull® + bllylI? + 7l — ull® + kllp +w|* = 0. (4.82)

De (4.82), segue que u = ¢ = ¥ = 0. Assim, em qualquer caso temos U = 0. Portanto
ker (Ail — /) = {0}, para todo 1 € R. ]

Corolario 4.11

O escalar Ai ndo é um autovalor do operador ¢, qualquer que seja 1 € R.

Proposicao 4.12
Seja «f o operador definido em (4.34). Senp=0o0u { =0 ou ¢ = 0, entdo «f nao é invertivel, e

consequentemente 0 pertence ao espectro do operador <, isto &, 0 € o ().

Demonstracdo. Suponha que n = 0 e escolha o vetor W, = (sen(7x/L),0,0,0,0,0,0,0,0) € A.
Suponha que existe um vetor U = (u, v, ¢, w, ¥, z, @1, P2, P3) € D() tal que o/ U = W,. Nesse caso,
P1(y) = IylzaT_5 sen(wx/L). Como 0 < a < 1, temos que ¢; ¢ L?(R; L?(0, L)), o que é um absurdo.

Com efeito:

L
2a-5 2 (X
Llyl fo sen (—L )dxdy

-1 1 +00
f |y|2a—5dy:f |y|2a—5dy+f |y|2a—5dy+f |y|2a—5dy.
R —00 -1 1

2
”(Pl ”LZ(R;Lz(O,L))

I\

1 _
Mas, [, |yI**°dy < oo, se e somente se a > 2.

Os casos em que { =0 ou ¢ = 0 sdo semelhantes. Basta escolher um vetor U € D(«/) tal que
SU=(0,0,0, sen(zx/L),0,0,0,0,0) ou U =(0,0,0,0,0,0, cos(rx/L), 0, 0). OJ

Proposicao 4.13
Seja o/ o operador definido em (4.34). Entao:

(a) Sen=00ul =00u¢ =0, entdo ooperador 1il—<f é sobrejetivo, qualquer que seja o nimero
real A #0.

(b) Sen,(,&>0,entdo Ail — o/ é sobrejetiva, qualquer que seja 1 € R.

Demonstracdo. Seja W = (f1, g1, h1, f2, &, ho, f3, g3, h3) € A. Nosso objetivo € mostrar que existe
umvetor U = (i, v, 1, P, w,@2,v, z,¢3) € D(</) tal que (1il—-</)U = W. Ou seja, valem as seguintes

equacoes:
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Aiu-v=fi, (4.83)
Aiv—auxx—r(cb—u)+Y1fRP(y)<p1(y)dy=g1, (4.84)
*+0+A)@1(y) = p(y)v = hi(y), (4.85)
Aip—w=f, (4.86)
prAiw —k(px+ u/)x +7(p—u) +y2qu(y)<pz(y)dy =pP182, (4.87)
(Y +{+ADpa(y) — () w = ha(y), (4.88)
iy —z=fs, (4.89)
P2Aiz—byxx+ k(px+9) +73 fR r(Ne3(y)dy = p28s, (4.90)
(Y + &+ A3 (y) — (1) 2 = h3(y). (4.91)

Das equacoes (4.83), (4.86) e (4.89), segue que:
v=Aiu-fi, w=>Aipg—fr e z=Aiv-fs. (4.92)

Substituindo (4.92), nas equacdes (4.85), (4.88) e (4.91), respectivamente, obtemos:

ny=1s T;i)/u B yzpz)fu " ygifmi' (4.93)
P2l =3 Tc(i)/u ) yij?f Ai y/;iqé?(/ll)i' (4.94)
P30 =1 ngu ) yzri?fgu yilfé% 14.95)
Aplicando o Lemma 4.6 nas expressoes (4.93), (4.94) e (4.95), temos:
Y1 fR pWp1(dy =y [Hi(x,a,n,A) + Cla,n, AD)Aiu— f)], (4.96)
Ysz a@2(Ndy =y2 [Ha(x,8,{,A)) + C(B, {, \D(Aip— f2)], (4.97)
s [ rps)dy =y [ Ha(,0,6,10)+CO, & AD iy = )], (4.98)

Assim, aplicando as expressoes (4.92), (4.96), (4.97) e (4.98) nas equacdes (4.84), (4.87) e (4.90),

respectivamente, obtemos:

—A%u— auyy —1(p—uw)+y1AiCla,n, Au=2Aifi+&

+71C(a, n, AD) fi —y1 Hi(x, a,n, Ai), (4.99)
—PIAP— k(s + ) +T(P— w) +72AiC(B, {, AD)p = p1(Ai f + &)
+72C(B, ¢, AD) fa —y2Ha(x, B,(, AQ), (4.100)

— P2 APy — by i + k(e + W) +Y3AiCO, &, M)y = pa(Aif3 + g3)
+v3C(0, ¢, Ai) f3 —y3Hs(x,0,¢, Ai). (4.101)
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Se A =0, por hipotese, temos 1,{,¢ > 0. Nesse caso, temos:

—auxx—1(p—u) =g +71C(a,n,0) fi —y1Hi(x,a,n,0), (4.102)
- k((Px +U/)x + T((,b_ u) = Plgz +Y2C(,B) (} O)fz _YZHZ(x)ﬁ)() O)y (4103)
—byx+k(px+v) =p2g3+7v3C(0,¢,0) f3-y3H3(x,0,¢,0). (4.104)

Multiplying as equagdes (4.102), (4.103) e (4.104) by @i € H} (0, L), p € H} (0, L) e § € HL(0, L) respec-
tivamente, integrando sobre x de 0 a L e, em seguida, aplicando a integracao por partes, obtém-se o

seguinte sistema equivalente:
L L _ L _
af uxilxdx—rf (gb—u)ﬁdx:f Fudx,
0 0 0

L — L — L —
<ka (c/)x+1/1)(/)xdx+rf0 (¢>—u)¢>dx:f0 Fr¢pdx, (4.105)

x=L L ___ L _ L
+ bf WP xdx+ kf (¢x+w)1/7dx:f Fsydx,
x=0 0 0 0

—by Py
onde

Fl :Y1C(a,n,0)f1 +gl _YlHl(xrarn)O)) F2 :YZC(ﬁ)()O)fZ +p1g2 _YZHZ(xr,B)(’O) e
F3=73C(0,¢,0) f3+ p283 — Y3 Hs3(x,0,¢,0).

Considere o problema variacional auxiliar de encontrar um vetor (u,¢,v) € [Hé (O,L)]2 X
H}(0,L) tal que:

B((u,d, W), (TG, §)) = L&, 9); VY (w,,p) € [HL0,D)]° x H0, L), (4.106)

9B : [(Hy (0, L))* x H}(0,L)] x [(H} (0, L))* x H1(0,L)] — C é a forma sesquilinear definida por:

L L L
B(u, ¢, V), (ﬁ,c’ﬁ,{ﬁ)):af uxﬁxdx+bf wxi/}xdxﬂf (p—u)(p—ihdx
0 0 0
L
+k fo (P + ) (Px+P)dx (4.107)

e £ :[Hy(0, L)]* x H}(0,L) — C é a forma antilinear definida por:
_ L L L
2L (u,d, ) :f F iidx+f Fngdx+f Fydx. (4.108)
0 0 0

Agora, basta utilizar o Teorema de Lax-Milgram e proceder de maneira semelhante a abordagem
usada na prova do Teorema 4.8. Assim, encontramos um vetor U = (u, v, @1, ), w, 2, ¥, z,¢3) € D(H)
talque AiI-«AHU=W.

Por fim, suponha que A # 0. Defina o operador auxiliar 4 : D(.#) c H— H dado por:

u auxx+1(p—u)—Li(a,n,Nu
M P |=| kpx+y)x—T(P—w) - LB, |,
W bi!/xx—k(%ﬂﬂ)—ls(e,f,/l)w
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onde H := [L*(0,L)]* x L3(0, L)], D(#) = [H*(0, L) n Hy (0, L)]* x [H5,(0,L) N H;(0,L)] e
Ij(,6,1) =y;jAiC(w,6,A1) (j=1,2,3).
De maneira similar, do Teorema de Lax-Milgram, conclui-se que é um isomorfismo. Assim,

temos que o sistema (4.99)-(4.101) é equivalente a:

1 u F
A2 oy | =T @ |=7 F |, (4.109)
P2 4 B

F=[Ai+y1Cla,n ADIfi+g —y1Hi(@,n,A), F2 = [p1Ai +y2C(B,{, AD1 fi + p182— Y2 Ha(B,{, Ai) €
F3=[paAi +y3C(0,&, M) f5+ pags — Y3 H3 (0, &, A1).

Como o operador ./ é um isomorfismo e H1(0,L), H!(0,L) ‘=~ I2(0,L), do Teorema de
Rellich-Kondrachov (Teorema 1.28), segue que D(.4) i H. Entao o operador .4 tem resolvente
compacto. Logo .# ! é um operador compacto de H em D(.#). Consequentemente, da alternativa
de Fredholm (Teorema A.10), seque que, mostrar a existéncia de um vetor (u, ¢, w) € D(.#) solugao

de (4.109) se reduz a provar que:

1 0
ker | A2 01 M T = 0
P2 0

1

Com efeito, se (&, ¢, ) e ker| =A% | p; |.4~'-1I|, entdo;

p2
1 u 0
A2 py |I-|] ¢ |=| 0
P2 Y 0

Isto é,

(I (a, 0, A) = A2 i — gy — T(p— 1) = 0
(LB, {, 1) = p1A2)p— k(py + ) +T(P— ) =0 (4.110)
(300, & A) = p2A?) P — b x + k(px + ) =0

Multiplicando (4.110), por i, 5 e @ respectivamente, integrando por partes, segue-se que
(i, Eﬁ ¥) = (0,0,0). Portanto, pela alternativa de Fredholm (Teorema A.10), existe solucdo (u, ¢, w) €
[H?(0,L) N H} (0, L)]* x [H5,(0,L) n HL(0, L)] para (4.109). Agora, definindo v, w, z como dado em
(4.92) e 1, @2, 3 como dado em (4.93)-(4.95). Evidentemente, U = (u, v, 1, ¥, W, ©2,Y, 2,@3) €
D(f)e Ail-)U=W. [
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4.3.2 Estabilidade Forte e Falta de Estabilidade Uniforme

Teorema 4.14
Seja o/ o operador definido em (4.34). O Cyp-semigrupo de contracdes {e'<} ,~( sobre # é fortemente

estavel (veja Definicdo 2.35). Isto é
im U] = lim 03th0 H —0; YU, € 7,
t—+00 t—+00 w4

onde U: [0, t] — .# é a solucdo do problema (4.35).

Demonstracdo. Do Corolario 4.11, segue-se que o operador «f nao possui autovalores puramente
imaginarios. Observe que como o operador of é gerador infinitesimal de um Cy-semigrupo de
contracoes, do Teorema de Hille-Yosida (Teorema 2.29), segue que < é um operador fechado, no
casoemquenn=0ou{ =0oué =0, aProposicdo 4.12 e o item (a) da Proposicdo 4.13, implicam que
o (/) n{Ai; A € R} ={0}. Por outro lado, no caso em que 1,{,¢ > 0, a Proposicao 4.10 e o item (b) da
Proposicao 4.13, garante que o («f) N {Ai; 1 € R} = @. Portanto, em ambos os casos, podemos aplicar

o Teorema de Arendt e Batty (Teorema 2.38) e, assim, obter o resultado desejado. O]

Teorema 4.15
O Cy-semigrupo de contracdes {e*”},>o ndo é exponencialmente estavel (Veja Definicdo 2.35). Isto

é, ndo existem constantes w > 0 e M =1 tais que:
le? Nl o < Me™®%; Vi = 0.
Em termos da solucdo do problema (4.35), ndo existem constantes w >0 e C = 1, tais que:

IUO Nl < ClUpllze-e ™% Yi>0

Demonstracdo. Inicialmente, observe que, conforme mostrado na Proposicao 4.12, paran =0 ou
( =0o0u¢ =0, temos que 0 € g(«), e, portanto {iA; A € R} £ p(«), onde p(«/) é o conjunto
resolvente do operador «f. Assim, de acordo com o Teorema de Gearhart (Teorema 2.41), segue-se
gue o semigrupo (eM)tzo nao é exponencialmente estavel e, consequentemente, a solucdo U(t) do

problema (4.35) ndo decai exponencialmente.

Por outro lado, se 1,{,¢ > 0 a Proposicao 4.10 e o item (b) da Proposicao 4.13 garantem que
{Ai; 1€ R} c p(«), pois do Teorema de Hille-Yosida (Teorema 2.29), segue que o operador «f é
fechado. Para esse caso, mostraremos que um nlmero infinito de autovalores de «f se aproxima do
eixo imaginario e, isto é:

limsup [GAI— o) o = +oo.
AER, |A|—o00

Dessa forma, novamente pelo Teorema de Gearhart (Teorema 2.41), conclui-se que o problema (4.35)

nao é exponencialmente estavel.
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Considere o operador auxiliar A: D(A) ¢ H — H, definido por:

—auyx—T(p—u)

1
= E[_k((bx"'w)x‘*"[((b_u)] , (4.111)

b
< & <

1
— [_bWxx + k(px +1//)]
P2

onde H = [L*(0,L)]* x L%(0,L) e D(A) = [H*(0, L) n Hy (0, L)]* x [H5,(0, L) N H,(0, L)].

Inicialmente note que A é um operador positivo, e portanto, seus autovalores sao nimeros

reais positivos. De fato, se X = (i, ¢, ), entao:
(AX, Xyp = allugll® + Tl — ull® + blly«l* + kllpx + wl* = 0,
onde, para X = (u,¢, %) e X = (I, ,¥), tem-se:

(X, Xy g = (w i) + pr{p, @) + p2(w, W).

Além disso, como HO1 (0,L) e H(0, L) estdo compactamente imersos em L?(0, L), do Teorema de
Rellich-Kondrachov (Teorema 1.28), segue que D(A) i H. Portanto, o operador A tem resolvente
compacto. Assim, pelo Teorema Espectral para Operadores Autoadjuntos com Resolvente Compacto
(Teorema A.11), existe um sequéncia de autovalores reais positivos (Afl)neN para A, tendendo ao

infinito e correspondente a uma base ortonormal de autovetores (X;,) nen = (Un, Gn, Wi nen €M H.

Isto é:
,}L‘Bﬁi =400 e AX,=A2X,; VneN. (4.112)
Considere o vertor
U, ! (1) ! (¢2) ! (¢3)
=\|—Unp, Uy, y A ) ) y oA ) ) )
n il nm Uny \P1)n Mn</>n Cpn P2)n iAHWn Y, (P3)n
onde uy, ¢,, ¥, sao as componentes do vetor X,, e
py) q(y) r(y)
= —_— , =]/ = . |
(pV)n(y) Trntin (@2)n(y) I Mncbn e (¢3)n(y) y2+€+iﬂtnw" (4.113)

Note que U,, € D().

Seja Wy, = (V) n, (80, (B, (f2) 1y (82) s (B2) ) € A tal que (i, — ) U, = W,,. Em termos
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das suas componentes, temos:

1

ianmun —up=(f1)n, (4.114)
) a T
Ay — ——(Up)xx — ——(Pn — up) + Ylf pM(@)n(Mdy =(81)n, (4.115)
ily il R

Y+ +id) (@D n (1) = PP un = (h)n(y), (4.116)

1
iMp—n—bn=(f2)n, (4.117)

il
) k T

lpl/lngbn - 7 (((pn)x +1//n)x + W(an —Up) +Y2fR q(y) ((PZ)n(y)dy = p1(82)n, (4.118)
P+ + i) (@) n () — G pn = () n (1), (4.119)

1
iAn._Wn —Yn= (f3)n; (4-120)

ily
b k
10200 — —— W) xx + —— (((l)n)x + Ufn) + Y3f r(Ms3)n(Ndy = p2(83)n, (4.121)
ily ily R
P +E+idn) (@3)n() — T(NWy = (h3) 0 (). (4.122)
Das Equades (4.114), (4.117) e (4.120), segue que

(fl)n:(fz)n:(]%)n:o; VneN. (4-123)

Por outro lado, como 1,{,¢ > 0, aplicando as expressdes em (4.113) nas equacgoes (4.116), (4.119) e

(4.122) respectivamente, obtemos:

. »
(h)n() = (P +n+ M;ﬁﬁun -pNup=pWu,—pPNu,=0; YneN (4.124)
e
(hz)n(y) =6](y)¢>n—6](y)</>n=0 e (h3)n(J/) = r(y)Wn_r(J’)V/n:Oy VneN. (4-125)
Agora como /1%, ¢é autovalor para o operador Auxiliar A definido em (4.111) (veja expresao (4.112)),
temos que:

—a(Up) xx —T(pp—Uy) = A%; Up,

1=k (@) +¥n)  +T(Pn—un) = p1Aiey,

—b(Wn)xx+k (((,bn)x + 1//;1) = pg/l,zlwn.

Multiplicando cada equacao do sistema anterior, por 1/(iA,,), obtemos:

a T .
—m(un)xx_ m((/)n —Up) =—iAylUy,
k T .
1 (((Pn)x +T,Vn)x+ —(pp—up) =—ip1Andn, (4.126)
ily il
L et (et wa) =—ipo
it Yn)xx it G)x+Wn)=—ip2AnY¥n.
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Finalmente, aplicando as respectivas equacoes do sistema (4.126) e as expresoes (4.113) nas equacoes
(4.116), (4.119) e (4.122), obtemos:

_ [pW)? _ . ,
(81)n _YlfR—y2+n+Mn u, =71C(a,n,id,)u,; VneN. (4.127)
(82)n = Yzfﬂ(pn dy= BC(ﬂ,( iAp)n; YneN. (4.128)
p1Jr Y2 +{+idy 1 ’
Y3 [r()? _rs . ,
(83)n = 07 f y2+€+mnwn dy= pZC(G,é,Mn)wn, vneN. (4.129)

Do Lema 4.6, segue que C(w,8,il,) =C1 (0 +idl,) L VA, #£0e 8 =0.

Portanto, das equacoes (4.127)-(4.129), temos:

I(gDnll < CE% l(g2)nll < ’CZ% e l(gnll = ’CE% (4.130)
onde
Ci=711C, G= LRI 6§=Y3—C1
P1 P2
Como ’}1_1}30/12 =400 (Ver (4.112)) e 0 < a, B,0 < 1, de (4.130) segue
lim lI(gD)nl =0, lim [I(g2)xll=0 e lim [(g3)nll = 0. (4.131)

Por fim, como (X,,) nen = (Un, On, W i) nen € UMa base ortonormal de vetores em H, temos que
1X, 0% = llu,ll? + 01 ||(/>n||2 + P2 ||1//n||2 = 1. Assim, das Desigualdade de Poincaré (Teorema 1.17) e da
desigualdade (4.38), segue que:

1UnII%, = a||(un)x||2+b||(u/n) 12+ kll () x + Wl
> L2||un|| 4L2||u/n|| + Kl () x +Wall?
> L +—||wn|| 24 kL%l

12 212
Cs (Il unll® + p1lpnll® + p2llyall®) = C4; YnEN,

v

onde

= { b k} |a k2 b
k = min e Ci=mink —,—,—¢.
4L2 L2 P1 2L2p2

Portanto, dos limites em (4.131), temos:
limsup [GAI—o/) 'leun = supllidad—o) " em
A€ER, |A|—oc0 neN
1A — )" Wl 2
neN | Wyl 7

I Unll.7
n=0 | Wyll.z

Y

Y

lim VG =
n—oo ||(g1) pll + P111(g2) nll + 0211(g3) 2l

v




4.3. Comportamento Assintdtico 125

4.3.3 Estabilidade Polinomial

Teorema 4.16
Seja o/ o operador definido em (4.34) e suponha que 1,{,¢ > 0. O Cy-semigrupo de contracoes
{150 é polinomialmente estavel (veja Definicio 2.37). Mais precisamente, se Uy € D(<f), entdo

existe uma constante M > 0 tal que:

M
1Tl = lle" Upll e < ————— Ul pry; YUo € D(?),

t 2—2min{a, 5,6}

onde U : [0, t] — A é a solucao do problema (4.35).

Demonstracdo. Sejam AeRe W ={f1, g1, h1, f2, 82, ho, f3, 83, h3} € A. Considere a equacao resol-

vente
Ail-<L)U=W (4.132)

Do item (b) da Proposicdo 4.13, existe um vetor U = (u, v, 1, y, w, 92,V, z,@3) € D(<f) satisfazendo

a equacao resolvente (4.132), e portanto, satisfazendo o sistema (4.83)-(4.91).

Tomando o produto interno de (iAI — o/)U com U em 4, obtemos
AilUV%p = (AU, U) 70 = (W, U) . (4.133)
Tomando a parte real da Equacao (4.133) e aplicando a desigualdade de Cauchy-Schwarz, obtemos:
Re(—(/U,U) ) = Re (W, U) ) < KW, U) 7| < | Ul 7| Wl 7. (4.134)
Usando a expressao (4.41), obtemos:
71 [ GF o 0 v+ 7 [0+ Olge Iy dy+7a [ 0P +OIpaI g 1y

< Ul IW z. (4.135)

Por outro lado, das equacoes (4.85), (4.88) e (4.91), segue que:

pNIVI< P +n+1ADI@1 (D] + 1Ry ()] (4.136)
gwl < (¥* ++ D12 + [ ha ()] (4.137)
r(lzl < (¥* +E+ADIps (] + [ hs (). (4.138)

Multiplicando a equac&o (4.136) por (y + 1+ I}LI)_1 p(y), obtemos:

(32 +n+1A) " Ipon2Ivl < po)lgr )|+ (Y2 + 0+ A1)~ podl ). (4.139)

Integrando com relacao a variavel y em R, e aplicando a desigualdade de Cauchy-Schwarz, temos:

ly12* 1| f flyl = h ()]
- T dv+ | ———2d
Iy dy< IyI |<,01(y)| y Vn+iA y

|y|2a—1 ) ) 1/2 |y|2a 1 1/2
(R yEn y) (fmzl(y Do) y) (fR T y) (fl el y)
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Portanto
) ) 1/2 ) 1/2
Cla,n, A - v| < v/Cl(a, ,O)U( +mMlp1(Y)°d ) +1/D(a, ’W)Ulh ) 12d ) . (4.140)
N m0)| J 0 +mlier(idy \/ Dla,n Iy
onde
| |2a—1d | |2a—ld I |2a—ld
C(“”?"M):f%y Clann=| X e D(a,n,uu):f A
RIyI+n+IAl R 1yZ+7 R (1> +1+1AD)

sdo constantes (veja o Lema 4.5).

Aplicando a desigualdade de Young (Proposicao A.3) em (4.140), obtemos:

1/212

[Cla,n, | ADI?|v)* <

1/2
v/ C(a,n,0 2 Zd) +4/D /l(fh Zd)
(a,n )UR(y mler1(MI-dy (a,m, LD R| 1Mcdy

s2C(oc,n,0)fR(y2+n)|<p1(y)|2dy+2D(a,n,I/ll)fRIhl(y)lzdy. (4.141)

Do Lema 4.5, obtemos:

|y|2(x—ldy

Cla,nIA) = | 5———=Cim+IAD* 1 <CiIAMY L VA £0 (4.142)
n Ry2+77+|A| 1\ 1
€ 2a ld
ly1=“ " dy a-2 2a-2
D, Al = | ————=—==Co(n+]|A < G272 VAl > 1, Ry
(a,n,IA]) fn&(y2+77+|/1|)2 2(n+1AD 2| A [A] > (4.143)

Usando (4.143) e (4.142) em (4.141), obtemos:

(COAAPY 2> < Cy ( fR (y? +n)|<p1(y)|2dy) +2C, A2 2 ( fR Ihl(y)lzdy); VIAl>1,

onde C3 =2C(a,n,0).

Entao
lv]* < ClA|*~2* ( fR (y? +n)|<p1(y)|2dy) + C( fR |y (x, y)|2dy); VIAl> 1, (4.144)

onde C = max{Cs/(C1)?,2C»/(C1)?}.

Integrando a expressao (4.144) com respeito a variavel x, de 0 a L, obtém-se:
Lo 220 [F 2 2 L 2
fo vi2dx < CIAP fo fR(y g1 (PEdy dx+cfo mel(x,yn dydx.  (4145)
Aplicando a desigualdade (4.135) na expressao (4.145), obtemos:
L
fo lvlPdx < CIAP ULz | Wz + CIW %55 YIAl > 1 (4.146)
De maneira totalmente analoga, podemos comecar com as equacoes (4.137) e (4.138) e obter:
L

fo \wi*dx < CIAP 2P| Ul Wiz + CIWIZ,; YIAl> 1 (4.147)

L
fo |1zI7dx < CIMP 22U | Wil 7 + CIW 112, VIAI> 1 (4.148)
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Agora, multiplicando a equacéo (4.84) por u e integrando de 0 a L com respeito a variavel x,
obtemos:

L L L L L
/lif vﬁdx—af Uxxudx—T ((,b—u)ﬁdx+ylf ﬁf p(y)(pl(y)dydx:f gudx.
0 0 0 0o Jr 0

por outro lado, de (4.83), segue que —Aiu = ﬁ+§, e portanto:

L
—af Uy Udx — rf f (p—wudx = flvl dx— ylf fp(y)gol(y)dydx
fflvdx+f giudx.

Por fim, integrando por partes, obtemos:

L L L L
af qulzdx—rf (p— u)ﬁdx:f Ivlzdx—ylfo ﬁpr(y)q)l(y)dydx
0 0 0

L__ L
+f fi vdx+f giudx. (4.149)
0 0

Agora. multiplicando (4.87) por $ e (4.90) por v, e, usando as equagoes (4.86) e (4.89) respec-

tivamente, de forma analoga, obtemos:

L . L . L L
lcfO ((/)x+1//)(pxdx+rf0 ((/)—u)qbdx:plfo lezdx—ygfo (/)qu(y)(pg(y)dydx

L_ L _
+p1f fgwdx+p1f gpdx. (4.150)
0 0

L L L L
bfo |wx|2dx+kf0 (¢x+w)¢dx=pzf0 IZIzdx—Yng wer(y)ws(y)dydx

L__ L
+p2f fgzdx+p2f g3ydx. (4.151)
0 0

Somando as equacoes (4.149), (4.150) e (4.151), obtemos:

L L L L
af qulzdx+bf walzdx+rf |¢—u|2dx+kf by +w|dx
0 0 0 0

L L L
sf Ivlzdx+p1f lezdx+p2f Izlzdx+)/1
0 0 0

L
f af pe1(y)dydx
0 R

+'}f2 +’Y3

L
fo wer(y)cpg(y)dydx

L_
fo (PfRCI(y)(pz(y)dydx

+p1 + 02 (4.152)

L __
.[o (fsz+ gsw)dx|.

L— —
/(; (f2w+g2</))dx

L __
+ f (iv+giwdx
0

Por outro lado, aplicando as desigualdades de Cauchy-Schwarz duas vezes, e, a desigualdade
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de Young Generalizada (Corolario A.4), obtém-se:

fﬁf pe1(ndydx| <= IIuII-f fp(y)qol(y)dy dx)
0 R 0 R
r pL [p(y)]z ) (/» 5 ) ) 1/2
< . av]- + dvy|d
lul fo (Ryzm o)L 0 +mionitay) as
2 1/2 L 1/2
= lul- [pz(y)] d ) U f(y2+n)|<p1(y)|2dydx)
R Yy-+1n 0 JR

IA

w) e [ [ 2
m(fR Vi lull”+ C(er) A R(y +n)lp1(y)[*dydx.

onde £; € um nUmero positivo a escolher.

Portanto, da desigualdade de Poincaré, obtemos:

L L
UO ﬂfﬂ@p(y)wl(y)dydx SL261C(a,n,0)llux|I2+C(£1)f0 fR(yzm)I(pl(y)lzdydx. (4.153)

Analogamente, obtém-se as seguintes estimativas:

L L
‘ fo & fR G2 dydx| < 2e,C(B,L, 0 bl + Cle) fo fR G2 +Olpa() Pdydx  (4.154)

L L
fo Wer(y)(ps(y)dydx S4L2£3C(9,€,0)Ilwxllz+C(83)f0 fR(yzﬂf)I(ps(y)lzdydx (4.155)

Além disso, note que:

y1L%€1C(@,n,0) | ux|I* + Y2 L?€2C(B, L, 0) bl + 4y3L2e3C (0, E,0) Iy 1 lI* < y1L%e1Cla, 1, 0) ||y ||*
+2y,L26,C(B,{,0)lpx + W2 + 8oL C(B, L, 0) 1w ||* + 4y3L2e3C(0,E,0) [y || (4.156)

Assim, usando as estimativas (4.153), (4.154), (4.155) e (4.156) em (4.152), obtemos:

2 2 2 2 2 2 2, 4 2
aluxll®+blyxll“+zllp—ul“+klldpx +yl° < lvi“+p1lwl” + p2llzl +§”ux”

L k L
+Cleny fo fR 02 +Mlgr ) Pdyd+ S Iga+ i+ Cealys fo fR G2 +0ls () Pdydx

b L L___ L .
+§||wa|2+C(€3)ysf0 fR(y2+€)|<p3(y)I2dydx+ fo fivdx +f0 giudx
L__ L L L
+p1 fo fwdx +p1f0 gddx +p2f0 fazdx +p2f0 gswdx|,
onde
€1 = a £ —min{ k b } e &3= b
"7 212y, Cla,n,0) P 412y,C(B,,0)’ 32L4y,C(B,{,0) T 1612y35C(0,¢,0)
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Agrupando os termos semelhantes, utilizando a desigualdade de Poincaré e a desigualdade
(4.38), obtemos:

a b k

§||ux||2dx+§||wx||2+r||¢>—u||2+§||¢x+wu2s 112+ prllwl® + p2l 22
L L

+C(£1)Y1f0 fR(yz+n)|<p1(y)lzdydx+C(€z)yzfo fR(y2+()I<pz(y)|2dydx

L
+Cles)ys fo fR O +Olos () Pdydx + LIl vll + Lig el

+ Lol () xlllwl + Lorll g2l +2Lp2 (f3) 12l +2Lp2 [ g3l y « - (4.157)

Agora, como y*+6 > 6 > 0, temos

f)/. L
Yj”(Pj”LZ(R;LZ(o,L))S?] A fR(J/Z"‘a”(Pj()’”Zdydxy

inserindo ||U||? e aplicando a estimativa (4.157), obtemos:
2 a 2 b 2 ok 2 2 2 2
NUN%, <2 Elluxll dx+§||1Vx|| +7llp—ull +§“be+1//“ +vl®+pillwll” + p2llzll

2 2 2
+Yl||(Pl||L2 R'LZ L +YZ||(P2”L2 R.LZ L +Y3||(P2”L2 R~L2 0,L
(R;L=(0,L)) (R;L=(0,L1)) (R;L=(0,L))

1 L
<3|vl*+3p1llwl* +3pzllzlI* + [2C(er) + E)Ylfo fR(y2 +m g1 I*dydx

1 L 1 L
+(2C(£z)+z)y2f0 fR(y2+C)|<pz(y)|2dydx+(2C(£3)+E)ysf0 fR(y2+é)I<p3(y)I2dydx

+ LI <Ml + LI g N uxll + Loy ()« + fslllwll + Loyl g2l I + w1l + 2L o1 1 (f3) 1wl
+2L7py1 Il g2 llwxll + 2Lp2 | (f3) el 21l + 2Lp2 1 (f3) x| 2. (4.158)

Finalmente, aplicando as desigualdades (4.135), (4.146), (4.147) e (4.148) na expressao (4.158),
obtemos:

1U112, < 3CIAP 2% Ul 7l Wz + 3CIW 112, + 3Co1 AP | ULz W Lz + 3Cp1 I WII%,
+3Co2I AP Ul 7| Wl e + 3C 2l WIS, + CLIU L2 | Wl 7 + Call WIS,
<3CAP MBI || 2o | W lLze + Coll ULz | W lLse + C3 I W11,

onde 4] >1, G = max(3C,3Cp1,3Cpa}, G = max{2C(e1) + 1,2C(ez) + +1,2C(es) + +1} e
L L 2I% 2L

a'k’ 7’7}'

Aplicando a desigualdade de Young Generalizada para £=1/3, obtém-se:

@:mﬂ{

9C,"

1 - 1 _ _
1U1%, < E”U”ZJ”TM'4 Aminta 5,61y )2, + §||U||?]f+cu/s)(cz)znwuéﬁcsnwn?;g

Logo
1U11%, < CIA|*Amini@hOh w2 viA| > 1,

onde € = max{27c~12,6(3(1/3)(6;)2,665}.
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Entao:
ULz < V CIAPZ2minta@B0l | A > 1.

Assim, da equacdo resolvente (4.132), segue que:

. -1
Ul 7 _ Al —<) " Wl - ﬁle—Zmin{a,ﬁ,B}.
Wl 7 Wl 7

Portanto:
1

. _1 ~
| A|2-2min{a,B,0} Nl =)l 70) < \/E (4.159)

Como o operador «f é gerador infinitesimal de um Cy-semigrupo de contragoes, do Teorema
de Hille-Yosida (Teorema 2.29), temos que </ é um operador fechado. Assim, da Proposicio 4.10
e do item (b) da Proposicdo 4.13 segue que o («#) N {Ai; A € R} = @. Entdo o eixo imaginario esta
contido no conjunto resolvente do operador </ (isto é, {1i; A € R} < p(<¥)). Portanto, a estimativa

4.159 nos permite aplicar o Teorema de Borichev-Tomilov (Teorema 2.39) e concluir que:

M
IU@D = l1e" Upll e < ————Uoll prys YUp € D(7),

{2 2minia, 0]
onde M > 0 é uma constante. ]
Teorema 4.17
Seja o/ o operador definido em (4.34) e suponha que n=00u { =0 ou ¢ =0. O Cy-semigrupo de

contracoes {e"”},~¢ é polinomialmente estavel sobre os pontos do conjunto D(<f) N </ (A). Mais

precisamente, se Uy € D (/) N <of (F€), entao existe C > 0 tal que:

NU @Oz = €™ Upll s <

Il Uollp(ery; YU € D(AL)NA(H) € 1> 0.

1
 max{1,2-2min{a, 8,01}

onde U : [0, t] — A é a solucao do problema (4.35).

Demonstracdo. Se n=0ou { =0 ou ¢ =0, das Proposi¢cdes 4.10 e 4.12, e do item (a) da Proposi¢ao
4.3, segue que () N{Ai € C; A € R} = {0}. Assim, pretendemos aplicar o Teorema de Batty-Chill-
Tomilov (Teorema 2.40). Com efeito. Tomando y = 2 — 2min{a, 8,60} > 0, da desigualdade (4.159),
segue que:

IAT - 2) " ey < CIAY ~ O(IAY) quando A — +oo. (4.160)

Por outro lado, do Lema 4.5, obtemos:

|y|2w—1dy w-1 w-1
Clwd, 1A= [ T = Cis+ A < GIA T vA £ 0 (4161
RY*+06+|A]
€ 2
ly?*tdy -2 -2
D@8, M) = | ——2 @+ 2 < G VI < 1. 162
(8,171 fn@(y2+5+|/1l)2 26 +IADY2 < GoIAI % V1Al < (4162)
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Utilizando as desigualdades (4.161) e (4.162) paraw = a, 8,0 e 6 =1, ,¢; procedendo de forma

analoga a demonstracido do Teorema 4.16 (Ver desigualdades (4.141)-(4.146)), obtemos:

IvI* < CIAP2* | Ul | Wl g2 + CIAI 2* IW 12,5 0< Al <1,
lwl? < CIAP 2P U2 Wiz + CIAI2PIW1%,; 0<IAI<1,
Izl < CIAP 22U Wil ze + CIM22 I W 112, 0<IAI<1.

Agora, basta continuar procedendo de maneira similar a demostracao do Teorema 4.16. Nesse

caso, obtemos:
1013, = C (A1t maxtehdl m2masteh) w2 5 0 < 2] < 1,.

Como a, 3,60 < 1, temos que 4 — 4max{a, 8,0} > 0. Portanto, fazendo |1| — 0, temos:

A

1013, = C (1At Amastehd) y g 2mex@hl) yw 2, < (e+ C) A2 @bO w2,
(e+C)IAZIWIZ,

IA

para € > 0 suficientemente pequeno.
Entao:

1Nl </ (e+C)IAI" IW | s, para |A] — 0.

Assim, da equacao resolvente (4.132), segue que:

||(/1iI—~Q¢)_1W”]£ Ul 7
<y/(e I/ll O(IAI79), para |A| — 0,
Wl 7 Wl 7 )

ondeo =1.

Portanto:
IAiT— <) 2 ~ O(IAI77), para |A| — 0., (4.163)

O operador «f € gerador infinitesimal de um Cy-semigrupo de contracoes. Entdo do Teorema
de Hille-Yosida (Teorema 2.29), temos que <« é um operador fechado. Comon=00u{=00u =0,
das Proposicoes 4.10 e 4.12, e do item (a) da Proposicao 4.13, segue que o(<f) N{Ai € C; A € R} = {0}.
Assim as estimativas (4.160) e (4.163) nos permite aplicar o Teorema de Batty-Chill-Tomilov (Teorema

2.40) e concluir que existe uma constante C > 0 tal que:

C
1U@) . = lle" Upll < 7 1UollDsr); YU € D(L) Nt (F) e t>0.

 max{l,2-2 min{a,,0}}

O
As taxas de decaimento polinomial estabelecidas nos Teoremas 4.16 e 4.17 elucidam a influéncia

das ordens de amortecimento fracionario a, 8,0 na dinamica de dissipacao de energia do sistema

de ponte. O expoente de decaimento é inversamente proporcional a min{a, §,0}, indicando que
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valores menores deste minimo resultam em taxas de decaimento mais lentas (amortecimento mais
fraco), enquanto valores maiores levam a uma dissipacdo de energia mais rapida (amortecimento

mais forte).

Em contraste, o amortecimento classico de ordem inteira (o« = 8 =6 = 1) tipicamente induz
decaimento exponencial, significativamente mais rapido que o polinomial. E crucial destacar que o
amortecimento viscoso convencional, como operador diferencial, exibe um comportamento estrita-
mente local, seu efeito depende apenas do estado instantineo do sistema, desconsiderando seu
historico vibracional. Em oposicao, o amortecimento fracionario, governado por um operador inte-
gral, possui ndo-localidade inerente e efeitos de memoria. Esta propriedade permite capturar mais
precisamente mecanismos globais de dissipacao de energia, tornando-o particularmente adequado
para modelar materiais viscoelasticos e sistemas estruturais complexos como pontes. Enquanto o
amortecimento de ordem inteira fornece uma resposta instantanea, o fracionario incorpora todo o
histérico dinamico do sistema, gerando padroes de dissipacdo mais fisicamente realistas, embora

com taxas de decaimento mais lentas.

As ordens fracionarias a, 3,8 estao intrinsecamente ligadas as propriedades de memoria e here-
ditariedade do material. Um valor menor do que min{a, 8,0} corresponde a efeitos de memdéria mais
acentuados (retencao prolongada de energia), enquanto valores maiores indicam comportamento de
amortecimento mais instantaneo. Em sintese, min{a, 3,0} serve como indicador-chave da eficiéncia
do amortecimento no sistema de ponte: valores menores resultam em decaimento energético mais
lento (amortecimento menos eficaz), enquanto valores maiores potencializam a dissipacdo. Estes
resultados alinham-se com a nocao bem estabelecida de que o amortecimento fracionario interpola
entre respostas puramente elasticas (sem dissipacdo) e totalmente viscosas (amortecimento forte),

fornecendo um arcabouco mais abrangente para modelar dindmicas estruturais complexas.
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Capitulo 5

Sobre um modelo abstrato e nao-linear de ponte
suspensa do tipo Kirchhoff com amortecimento

interno fracionario

Além do classico modelo de vigas de Timoshenko, um dos modelos mais relevantes na teoria
de vigas foi introduzido em 1876 por Kirchhoff (KIRCHOOF, 1876). Esse modelo descreve as vibracoes
transversais nao lineares de uma corda tensionada e é caracterizado pela seguinte equacao integro-

diferencial:

wy(x, t)—m(f IVw(x, t)Izdx)Aw(x, HN=f(x1);xeQ e t>0. (5.1)
Q

A Equacao (5.2) possui ampla aplicacdo em engenharia estrutural, particularmente na mo-
delagem de pontes suspensas. Nesse contexto, ela descreve as vibragées do cabo principal, cujo
vao é sustentado por cabos de ligacado. A funcao u = u(x, t) representa o deslocamento vertical do
cabo principal, enquanto w = w(x, t) corresponde a deflexdo da linha média da viga em relacdo a
sua configuracao de referéncia. Assume-se que os cabos de suspensao comportam-se como molas
elasticas lineares com rigidez 7 > 0. O termo ndo local m ([, |Vu|*dx) Au esta associado a variagio
da tensao na viga devido a sua extensibilidade, um fendmeno crucial na analise de estruturas sob

cargas dinamicas.

A boa colocacio do problema (5.2) com condicoes de contorno de Dirichlet tem sido extensiva-
mente estudada na literatura. Trabalhos seminais, como os de (AROSIO, 1993; AROSIO; GARAVALDI,
1991; POKHOZHAEV, 1985), estabeleceram resultados fundamentais sobre existéncia, unicidade e
regularidade de solucoes. Recentemente, pesquisas tém se concentrado nos efeitos de diferentes
mecanismos de amortecimento em sistemas de vigas de Kirchhoff. Por exemplo, (CHENG; DONG;
REGAN, 2022) investigou a estabilizacdo de vigas em movimento axial, empregando o método de

aproximacao de Faedo-Galerkin para analisar solugdes sob amortecimento nao linear com atraso
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temporal. Adicionalmente, utilizando técnicas de Lyapunov, demonstrou-se estabilidade exponencial
para o sistema em malha fechada. Em outra abordagem, (FEREIRA et al., 2022) obteve resultados de
estabilidade exponencial e polinomial para uma equacao de Kirchhoff com expoentes variaveis e

atraso, explorando a desigualdade de Komornik.

Modelos nao lineares baseados na teoria de Kirchhoff tém sido amplamente aplicados na
analise de pontes suspensas, onde o deck é modelado como uma viga extensivel. Nesse sentido,
(PEREIRA; RAPOSO; CATTAI, 2022) estudou a existéncia e unicidade de solucoes globais, bem como a
estabilidade exponencial, para um sistema acoplado de vigas de Kirchhoff com amortecimento fraco

e uma fonte logaritmica:

U+ A?u—wAug+M(I\Vul® +VoI?) (—Aw) + u;, = lu|P~2uln|ulk,

Ve + A2 —OA Uy + M(IVul? + |VI2) (=Av) + v, = [v]P~2vIn ||
ou ov

u=—=0e v=— =0, sobre 9Q x (0, +00)
ov ov

u(x,0) = up(x), ui(x,0) = up(x), v(x,0) — vy € vx,0) = v1(x).

-

Um aspecto central no estudo de sistemas nao lineares é a analise de atratores globais. Nessa
direcao, (AOUADI, 2020) investigou a existéncia de atratores para um sistema termoelastico ndo
linear com inércia rotacional e atraso temporal:

U — OAU + N u— M ([o IVulPdx) Au+yA0 +y1u; +yau(x, £ —7(0) + f (1) = h(x),
0;—AO —yAu; =0,
S u=Au=0=0, sobre 0Q x (0, +00),

u(x,0) = up(x), u(x,0)=u;(x), 0(x,0) =0p(x),

ui(x,t) = fo(x, 1), x€ Qx (-=7(0),0).

Nesse modelo u representa o deslocamento vertical da placa, enquanto 6 é a variacao de
temperatura do valor de referéncia de equilibrio. A funcdo nao linear f e carga estatica h satisfazem
hipoteses adequadas, e 7(¢) € um atraso variavel. Utilizando o método de Galerkin, (AOUADI, 2020)
demonstrou a existéncia de solucoes globais e a compacidade de atratores, independentemente da
inércia rotacional. Além disso, estabeleceu-se a dimensao fractal finita dos atratores sob condicoes

especificas para as constantes y; e v».

Destacamos que Ma Tu fu e Narciso em (MA; NARCISO, 2010) estudaram a existéncia de atrator

global para o Equacao de vigas de Kirchhoff com damping friccional nao-linear:

urr(x, 1) + A ux, ) - m(IVu(®1?) Aulx, O + fulx, 1) + gu(x, ) = h(x); xeQ e t>0. (5.2)

Em um contexto estocastico, (QIN; DU; LIN, 2017) explorou a existéncia de atratores aleatérios
para equacoes de ponte suspensa do tipo Kirchhoff com amortecimento forte e ruido branco. Os
autores provaram a existéncia e unicidade de solucdes, além de estabelecerem a existéncia de

atratores globais para o sistema dindmico associado.
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Inspirados pelos trabalhos de (PEREIRA; RAPOSO; CATTAI, 2022; AOUADI, 2020; QIN; DU; LIN,
2017; MA; NARCISO, 2010) e pelos resultados obtidos no Capitulo 4 desta tese, propomos investigar
a existéncia de solucbes e atratores globais para um sistema nao linear de ponte suspensa, no
qual o deck é modelado pela teoria de vigas de Kirchhoff com amortecimento fracionario. Mais

precisamente, consideramos o seguinte sistema:

U —Au+ulP —1(w - u)+c16f’nu:f, sobre Q x (0,+00), (5.3)

w”+A2w—m(f Ilezdx)Aw+|w|p2w+r(w—u)+0265’(w:g, sobre Q x (0,+00), (5.4)
Q

0
u=0-e w:a—w:O, sobre 0Q x (0, +o0), (5.5)
v

u(x,0) = up(x), u(x,0) = ui(x), w(x,0) = wo(x) e wy(x,0)=w;(x), sobre Q. (5.6)

onde Q c RN é um conjunto aberto limitado bem regular com fronteira 6Q, ¢ = 0 é a variavel de
tempo, x € Q a variavel espacial, v é o vetor normal unitario em 0€, exterior a Q, cj>0e 6‘;”6 éo

operador derivada fraciondria de Caputo exponencialmente modificada de ordem w e peso 6.

A Equacio (5.3) descreve as vibracoes do cabo principal do qual o vao da ponte é suspenso
pelos cabos de ligacao, a Equacao (5.4) representa a vibracdo do vao da ponte na direcao vertical, a
funcao u = u(x, t) mede o deslocamento vertical do cabo principal e a funcao w = w(x, t) representa
a deflexao para baixo da linha média da viga no plano vertical em relacdo a configuracao de referéncia.
Presume-se que os cabos de suspensdo sejam molas elasticas lineares com rigidez padrao 7 > 0.
O termo n3o-local m ([ IVul*dx) Au esta relacionado a variacdo de tensdo na viga devido a sua

extensibilidade.

Assumiremos as seguintes hipdteses técnicas:

N
p1>1,seNe{l,2} e 1<p15N 2,seNzS. (5.7)
2
p2>0,se Ne{l,2} e 0<p25N 2,seN23. (5.8)
m: [0, +00) — [0, +oo] é uma funcio crescente de classe C'. (5.9)
f.g¢€ L2(Q) nao dependem da variavel temporal. (5.10)

Aplicando a Proposicdo 4.4, podemos reformular o problema (5.3)-(5.6) no seguinte sistema
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ampliado equivalente:

U — Au+|ulP —r(w—u)+71pr(y)<p1(y)dy:f, (5.11)
@) () + > +Me1(y) — p(Y)ur =0, (5.12)
w”+A2w—m(f Ilezdx)Aw+|w|p2w+T(w—u)+y2f qe(dy =g, (5.13)
Q R
(@) () + (¥ +) 20— g(»)w; =0, (5.14)
ow
Uy, =0, wy,,=0e a_v‘aQ =0, (5.15)
u(x,0) = up(x), ui(x,0) =u;(x), wx,0) =wy(x), e w:x,0)=w;(x), (5.16)
p1(x,0,y) =0e ¢2(x,0,y) =0, (5.17)
onde xeQ, 1>0, yeR, p(y) = V2T, g = [y 5 1= ——L ey 2
) Yy » PAY)=1Y »y qly) =1y ’Yl_l“(a)l“(l—a) Yz_l‘(ﬁ)l‘(l—ﬁ)'

Este capitulo esta dividido em duas secoes. Na primeira, utilizamos a teoria de semigrupos de
operadores lineares limitados, juntamente com os resultados de existéncia e unicidade de solucao
para o problema abstrato de Cauchy nao linear apresentados no Capitulo 2, a fim de demonstrar a
existéncia e unicidade de solucao forte local para o problema (5.3)-(5.6). Em seguida, por meio de
estimativas de energia, mostramos que essa solucao é, na realidade, globalmente definida. Além
disso, a partir de estimativas envolvendo a norma das derivadas da solucao, obtemos resultados de

regularidade que reforcam a robustez da analise.

Na segunda secao, com base na teoria de semigrupos de operadores nao lineares continuos de-
senvolvida na primeira parte do Capitulo 3, demonstramos que o semigrupo associado ao problema é
gradiente e assintoticamente compacto, o que garante a existéncia de um atrator global caracterizado
pelas solucoes estaciondrias do sistema. Mostramos ainda que esse semigrupo é assintoticamente
quase estavel, propriedade que conduz a duas consequéncias relevantes: a dimensao fractal do

atrator é finita e as solucoes do problema apresentam melhor regularidade.

Os resultados apresentados neste capitulo foram aceitos para publicacao no perioédico Journal

of Evolution Equations, conforme o artigo (JESUS et al., 2025).

5.1 Boa-Colocacao

Nesta secdo, reescreveremos o problema (5.11)-(5.17) na forma de um problema abstrato
de Cauchy nao linear e mostraremos que o operador correspondente a parte linear é gerador
infinitesimal de um Cy-semigrupo de contracoes. Em seguida, provaremos que o operador que
descreve a parte nao linear é localmente Lipschitz, de modo que, aplicando os resultados de existéncia
e unicidade apresentados na segunda secdo do Capitulo 2, concluiremos que o problema (5.11)-(5.17),

e portanto o problema (5.3)-(5.6) admite solucao local.
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Na sequéncia, deduziremos a energia total do sistema e, a partir de estimativas envolvendo
seus termos, demonstraremos que a norma da solucdo permanece limitada em funcao do tempo ¢,
o que confirma que a solucao é globalmente definida. Finalmente, utilizando estimativas adicionais

da norma da derivada da solucdo, obteremos regularidade para a solucao forte global obtida.

5.1.1 Formulacao do Semigrupo da Parte Linear e Existéncia de Solucao Local

Queremos agora reescrever o problema (5.11)-(5.17) como um problema abstrato de Cauchy.

Para isso, introduzimos a funcao vetorial U = (u, w, v, ¥, @1,@2),emque u;=ve w; =1y.

Assim, temos:

Ut)-«U(t)=FU(t); t>0,
(5.18)
U(0) = Uy,
onde Uy = (ug, wo, U1, w1,0,0), o : D(of) <€ A — A é o operador linear definido por:
v
v
Au+r(w—u)—hf pe1(y)dy
AU = R , (5.19)
—Azw—r(w—u)—yngq(y)goz(y)dy
—(F+mMe1 (N +pYv
—(*+ 020 + g w,
F: / — A é a aplicacao definida por:
0
0
_ P1 +
FU) = 5 ™+ , (5.20)
m(fqIVwldx) Aw—|w|P?w+g
0
0
7= HY (Q) x H2(Q) x [L2()]* % [L2®; 12©))]° (5.21)
e
ue H*(Q)n H (),
w € H*(Q) n H3(QY),
ve Hy(Q)
e H>(Q)
D(d) = < (ur w, Vyu/)(pl)(,OZ) w 0 >) (522)

@1, 92 € L*(R; L*(Q2)),
lylpj € L>®;L2(Q)(j = 1,2),
—(2+me1+p(ve LR L*(Q),
—(P+ 2+ gy € L*(®R; L*(Q)).
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Observe que D(«f) é denso em #. Além disso, (A, (-,-) ) € um espaco de Hilbert, com
1U1%, = (U, U) ., onde

(U, ﬁ)j’f = (Vu,Vﬁ)Lz(Q)+(U,®L2(Q)+(Aw,AL7/)L2(Q)+<1//,fﬁ)L2(Q)+T(w—u,LT)—L7>L2(Q)

+714Q1, PV 2w 12()) T V2{P2, P2) 2R 12(0))» (5.23)

~ o~ o~~~

para U = (u, w, v, ¥, 1,¢2) e U = (@I, W, D, 7, P1, P2).

Observacao 5.1
Para simplificar a notacio no que segue, indicaremos o produto interno e a norma de L?(Q2) simples-

mente por {-,-) e | -|.

Proposicao 5.2
O operador linear «f : D(«f) € A — A definido em (5.19) é o gerador infinitesimal de um Cy-
semigrupo (de operadores lineares limitados) de contracdes sobre .

Demonstracdo. Segundo o item (i) do Teorema de Lummer-Phillips (Teorema (2.31)), devemos mos-

trar que o operador <f é dissipativo e maximal. Seja U = (u, w, v, ¥, ¢1,@2) € D(<f). Entao:

(LU, U) 7 = va-de+f
Q

Au-?dx+rf(w—u)3dx—ylff pMe1(y)vdxdy
Q Q RJQ

+f Aw-mdx—f Azw-de—Tf(w—u)de
Q Q Q
—’}/gff q(y)(pg(y)ﬁdxdy—i-rf(w—v)(w—u) dx
rRJQ Q
—“ylff(y2+n)l(p1(y)l2 dx dyﬂqff pWe1(vdxdy
rRJQ rRJQ

_YszfQ(y2+()|<P2(J/)|2dx dy+y2fﬂq(y)(p2(y)1//dx dy.

Como U € D(&f), segue que v € H(} Qeve HO2 (Q). Utilizando a Férmula de Green, temos:

fAu?dx:—f Vu-Vvdx e fAzw-de:wa-@dx.
Q Q Q Q

Simplificando os termos semelhantes, obtemos:

(AU, Uyzp = f[w-ﬁ—w-ﬁ]dxﬂf (- Ww—1) - (- v)(w-wldx
Q Q

fgmw-m—Aw.mldxwlfwfgp(ynwpl(y)—mpl(y)]dxdy

_YlfRL(y2+77)I<P1(J/)|2dx dy+y2fRqu(y)[w(p2(y)_w(pz(y)]dx dy

—ysz(y2+6)|<p2(y)|2dx dy.
RJQ
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Logo:

(AU, Uy 70 = Zif Im[VvV_u]dx+2in Im[(y —v)(w—u)ldx
Q Q

+2if Im[Au/-M] dx+2iy1ffp(y)1m[vm]dxdy
Q RJQ

—ylff(y2+n)|<p1(y)|2dx dy+2iyszq(y)1m [wtpz(y)]dx dy
RJQ RJQ

—Ysz(y2+()|<pz(y)|2dxdy.
rJa

Finalmente, tomando a parte real, temos:

Re{d U, Uy 7 = -1 fR fﬂ 2+l Pdxdy -y fR fQ P +0lp2(0Pdxdy <0.  (5.24)

Portanto, o operador «f é dissipativo.

Mostraremos agora que </ é um operador maximal. Para tal, iremos provar que, dado W € ./,

existe um vetor U € D(«/) tal que (I — «/)U = W. Isto equivale a resolucdo do seguinte sistema de

equacoes:

u-v=fi,
v—Au—T(w—u)+71pr(y)(,01(y)dy:g1,
P10)+ P + M1 - p(Y)v = b1 (y),
w—y=fo,
1//+A2w+r(w—u)+yg-Lq(y)¢z(y)dy=g2,

P21+ PP+ P20 — g = hao(y),

onde W = (f1, f2, 81,82, h1, h2) e U = (u, w, v, ¥, 1, 92).

De (5.25) e (5.27), segue que:
y:u—fl e w:w—fz.

Substituindo (5.31) nas equacoes (5.27) e (5.30) respectivamente, obtemos:

my  rOA L _POIu
y2+n+1 y2+n+1  y2+n+1

hao(y)  anfe N qyw
V2+(+1 y2+0+1 y2+0+1°

@1(y) =

@2(y) =
Aplicando o Lema 4.5 as expressoes (5.32) e (5.33), obtemos:

Y1 fR pMe1dy =y [Hi(x,a,n,1) +Cla,n,Du-f)],

YZ[I;QCI(y)(PZ(J/)dy:YZ [HZ(x;ﬁrcr 1)+C(ﬁ) C» 1)(w_f2)]r

(5.25)

(5.26)

(5.27)
(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)
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Aplicando as expressoes (5.31), (5.34) e (5.35) nas equacoes (5.26) e (5.29) respectivamente,

temos:

u-Au—-t(w-uw)+71Cla,nDu=fH+g+7:Cla,n,)fi-y1Hi(x,a,n,1), (5.36)
w+Aw+T(w—w)+y2C6,{,Vw=fo+ g +Y2C(B,{,1) fo —y2Ha(x,8,{,1). (5.37)

Multiplicando as equacdes (5.36) e (5.37) por & € H& Qewe Hg (Q) respectivamente, inte-
grando sobre x em Q e, em seguida, aplicando a Férmula de Green, obtém-se o seguinte sistema

equivalente:
le uﬁ'dx+f Vuv_ﬁdx—rf (w—u)ﬁ'dx:f Fiidx,
Q B Q o Q B Q B (5.38)
Cgf wﬁ/dx+f AwALT/dx+Tf (w—u)wdx:f Fivdx,
Q Q Q Q
onde os coeficientes sao dados por:
C1:1+Y1C(a, m, 1) e C2: 1+Y2C(ﬁ’ Cr 1))
e os termos do lado direito sao:

Fi=[1+7,Cla,n,DIfi+g1—-11Hilx,a,n,1) e Fo=[1+7CB,¢DIfa+g—-y2H2(6,(,1).

Assim, temos que F; € L*(Q) (j = 1,2), uma vez que, pelo Lema 4.5, H;(x,»,8,1) € L*(Q).

Agora, observe que o sistema (5.38) é equivalente ao problema variacional de encontrar um
vetor (u, w) € Hy (Q) x H5(Q) tal que

B((u, w), (I, W) = L (&, W); (&, W) € Hy(Q) x H (Q), (5.39)
onde 98 : [Hy (Q) x HZ(Q)] x [Hy (Q) x H3(Q)] — C é a forma sesquilinear definida por:

%((ur LU), (ay iI))) = le

utidx + Cgf wﬁdx+f Vuv_ﬁdx+f AwAwdx
Q Q Q Q

+rf (w—u)(w-u)dx,
Q
eZ: H(} (Q) x H&(Q) — C é a forma antilinear definida por:
L, W) = f Fiudx+ f Foiwdx.
Q Q
Primeiramente, note que % é continua. De fato, se (u, w), (&, W) € Hy (Q) x HZ(Q), entdo, das
desigualdade de Cauchy-Schwarz e de Poincaré (Teorema 1.17 e Teorema 1.20), temos:

|98 ((u, w), (w, )| < Cy u, )|+ Co w, wy| + KVu, Viy | + KAw, Aw) | + T {w — u, w — @t)|

< CIVulllVal + ClAwl[AD| + TIAwIVEl + TIVul|AD|

=C-|(u, w)”Hé(Q)ng(Q) Il (z, I:D)”H(}(Q)ng(Q);
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onde C; = C3(C1+1)+1,C, = C3(C2+ 1) +1, T=1CCy e C=max{Cy,C;,Cs, T}

Agora mostraremos que 2 é coerciva. Para (u, w) € H& (Q) x Hg(Q), da desigualdade de Young

(Proposicdo A.3), segue que:

2 _ 2
1@ W) )z = IVl + 1AW
< 2|Vul?+2|Aw|?
< Cillul®+ Collwl? +2|Vul? + 2| Awl* + 7| w — ull®
<= C-%B(u,w),(u,w))

onde C = max{C;, C»,T,2}.

Por fim, dado (&, @) € H, (Q) x H5(Q), temos:

L@, @) = (Fy, D +[(Fe, §)] < CIEINIVEL +Co- IENATI < C- 1w, W) 0 ey

onde C = -max{C|| Fy ||, Coll F2}.

Portanto, do Teorema de Lax-Milgram, existe uma Unica solucao (u, w) € Hé Q) x Hg (Q) para

o problema variacional (5.39).

Como g1, 8> € L?(Q), pela regularidade do sistema de equacdes: (5.26) e (5.29), segue que
u € H*(Q) e w e H*(Q). Além disso, como fi € H}(Q) e f, € H>(Q), definindo v e y como as
expressées dadas em (5.31), segue que v € Hy (Q) e y € H; (Q). Por outro lado, hy, hy € L*(R; L*(Q)).
Assim, definindo ¢ (y) e @2 (y) pelas respectivas expressdes dadas em (5.34) e (5.35), é evidente
que |ylgr € L*(R; L*(Q), lylg2 € L*(R; L*(Q), = (¥* +n) o1+ p()v € L*(R; L*(Q) € — (¥* + ) o +
q()w € LR L*(Q)).

Portanto U = (u, w, v, v, 91, 92) € D(s4), e é solugdo do sistema (5.25)-(5.30). Isto &, satisfaz
(I-«/)U = W. Portanto «f é maximal. Logo, do Teorema de Lummer-Phillips (Teorema 2.31) segue
que o operador <f é gerador infinitesimal de um Cy-semigrupo de contracdes {e’’},~, sobre o
espaco de Hilbert #. ]

Proposicio 5.3

O operador ndo linear F : # — A definida em (5.20) é localmente Lipschitz.

Demonstracdo. Inicialmente defina®:R—Re ¥ :R — R, por ®(s) = |s|’t e ¥(s) = |s|’2s. Como

p1>1e po >0 (ver hipéteses (5.7) e (5.8)), temos que @, ¥ € C(R), com
D'(s)=pilsl”T e W(s)=(p2+DIsI?; VseR. (5.40)

De fato, para p; > 1 e py > 0, temos que @’(s) e W/ (s) sdo dadas pelas expressdes em (5.40), para

todo s # 0. Resta apenas mostrar que ®' e ¥ existem e sdo continuas no ponto s = 0. Note que:

D'(s)=p1sPt e W(s)=(pa+1)sP2, s>0,
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D'(s)=—p1(=9)P"L e W(s)=—(p2+1)(—5)2, se s<0.

Assim:
() —® P1
®'(0) = lim om -2 = lim I
h—0 h h—0

=0, para p; >1,

¥ - lim W - () _

lim |h|P? =0, para p, > 0.
h—0
Como ® € C'(R), dados s;, s € R, do Teorema do Valor médio, existe s € R tal que:

|D(s1) = D(sp)] < D' (s0) 152 — 1,

onde sp =81 +0(s2 —s1),com0<60<1.

Entao

|1521P1 = 51171 ]

IA

-1
P11801°1 " 52 — s1l

p1ls1+0(s2— )P 5o — 51 (5.41)

Agora, sejam u, i € H& (Q). fazendo s; = i e s, = u, de (5.41), segue que:

~ ~ -1 ~ ~ ~ -1 ~
llulPr = 1aP | < prla+0w—wIP Hu-al < pr(al+ul+ @) ju-ul

IA

p1 217 +2|ul)” u— |

IA

e12P7 (1T + luh)P 7 u -

IA

pr2Prt2e L (@t P ju - .

Portanto:

|©(w) — D(@)| = [|ul — @ <22 Vo (1@~ + 1wl ) [u-al. (5.42)

De maneira analoga, como ¥ € C!(R), dados si, s» € R, do Teorema do Valor médio, existe

So € R tal que:
-1
1521”252 = 511P2 1] < p1lsol® " Is2 — s11 < (o2 + DIsy +0(s2 — s1)1??[s2 — s1l,

onde sp=s1+60(s, —51),com0<O<1.

Portanto, fazendo s; = W € H3(Q) e s, = w € H>(Q), obtém-se:

¥ (w) - V(@) = [|lwlP?w—|@1P?@| < (pp+D|w+060(w— )P |lw- |
< 22P2(pp+ 1) (1@ +|wlP?) lw-@|.  (5.43)
Para N=3,temosque 1< p; < el0<py < 2 (hipoteses (5.7) e (5.8)). Entao:
=9, q Pl—N_2 Pz—N_2 p : -6))- :
2<201 < 2N e 2=<2( +1)<2( 2 +1)— 2N
SPENT, AT UEAN T T N2
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do Corolario 1.26, tem-se as seguintes imersoes continuas:

Hy(Q)— L*P(Q) e Hi(Q)— Hy(Q) — L***V(Q) (5.44)

Observe que os itens (b) e (c) do Teorema 1.25 garantem as imersoes (5.44), para o caso N = 2

e N =1 respectivamente.

Como

pl—l 1 1 P2 1 1

—+
2p1 2p1 2

+ +
2(02+1) 2(p2+1) 2

)y

aplicando a Desigualdade de Holder (Proposicdo A.5), em (5.42) e (5.43), segue que:

'mepl—mpl)qb

g g
1 » 01
(f |u|2p1dx) +(f|u|2p1dx)

Q Q

dxsZz(pl_”pl(f Iulpl_llu—ﬁlqbdx+f |ﬁ|f’1—1|u—a|¢dx)s
Q Q

- o]

2(01-1
221D,

e
‘f (lwlP?w—w|”*w) z
Q

P2 _P2
. 2(pp+1) 2(pp+1)
( f |w|2(P2+”dx) + ( f |w|2(p2+1)dx)
Q Q

Uﬂlzlzdx)%,

para toda funcdo ¢ e zem LZ(Q).

deZZPz(p2+1)(fIiDIpZIw—LTflzdx+flepzlw—iblzdx)s
Q Q

1
2(pp+1)
2%2(py +1) (f|w—u~z|2(92+”dx) =
Q

Assim, tomando R > 0 tal que || uIIHé(Q), I ﬁIIHé(Q) <Rel wIIHOz(Q), [ LT/”HS(Q) < R, das imersoes

(5.44), para toda funcao, ¢ e z em L?(Q), obtemos:

dx

[(ulP =1, )| = ‘L(|u|ﬂl—|a|Pl)¢

2 -1 -1 ~ -1 ~
< 220Dy (Jul Pl NI =@l 2o o) I
2(p1—-1) p1-1 ~nP1—1 ~
< —
< 2 plcl(nunH&mﬁ||u||H5(Q) 2= @il g1 I
2p1-1 -1 ~
< 22070 R T =l g1 I, (5.45)

onde Cj é a constante da imersao H& Q) — L[2P1(Q), e

dx

[ (w2 w - @12 @, ¢)|

‘f (lwlP?w—|w|°*w) z
Q

2 P2
22P2(py + 1) (II wle(p2+1)(Q)

P2
L2(p2+1) (Q)

IA

+ 1w = @1 20051 12

IA

202 P2 ~ 02 -~
2 (Pz+1)Cz(||w||H§(Q)+||w||H§(Q))||w @l g 121

IA

250210y + ) C2RP | w = W 2 g I 2 (5.46)
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onde C, é a constante da imersdo Hz(Q) — L*P2*D(Q).
Por outro lado, da desigualdade de Cauchy-Schwarz, da hipétese (5.9) e do Teorema do Valor
Médio, segue que:
|m(IV@1*)(Aw, z) - m(IVw)?) (Aw, 2)| <
|m(IV@12) (A @ — w), 2| + | [m (IV@I®) - m (IVwI®) | (Aw, 2)| <

~ ! ~ 12 2
Orélseg%m(S)IIw— Wl gz oy 121l +021é’%|m OIIV@I® = IVw)?| lwl gz oy 121l <

~ / ~ ~
max m(s) 1w = wll 2o |21l + max [m' S| IV@I+ IVwi|[IV@] = IVwl[lw] g o) 121 <
~ / ~ ~
[nax MNW = wll gz (ol 21l +Orélsglm @IV +IVwl]IVw - Vwl| Wl g2yl 21l-
Assim, da imersdo Hz(Q) — H, (Q), existe uma constante Cs > 0 tal que:
|m(IV@I*) (Aw, 2) — m (IVwl*) (Aw, 2)| <

~ ! ~ ~
max m(o)I @ - wl gy 121+ max [m'($)1Cs | (101 20 + 101 geen ) 101 12000 | 180 = wl g 121

~ 2 ! ~
< _ - . .
< Orélszglc? m(s)|lw wlng(g)HZH +2C3R Orélsglm (8)|w wIIHg(Q) lzl (5.47)

Agora, obeserve que, de (5.45), (5.46) e (5.47), temos:

Nul?* = 1@ 2y < 2207 01 CLRP M~ 1l 1 (5.48)

|m (IV@1?) A~ 1@1P2 @ — m (IVw]®) Aw + 1wl w]| 120y <
[m(IV@1%) A = m(IVwl®) Aw|| 12y + 117 w =101 @] 12y <

2%P2*1 (05 + 1)C,RP? + max m(s) +2C3R* max |m/(9)] | 10 — wll 2 (5.49)
0<s<R 0=s=R 0

~ o~ o~~~ o~

Dados os pontos U = (u, w, v,y, @1, @2) € U = (@I, , U,y,@1,92) taisque Ul <Re 10 7 <
R, das desigualdades (5.48) e (5.49), obtemos:

IF@) - F@)11%, = Nul®* = 1@P 12 + | m (IV@1?) Al — @172 @ — m IV wll?) Aw + |w]” w|

= Iul® =18 g2y + | m(IV@1?) A ~1@1°2 @~ m (IVwl®) Aw +w]P? w]] 12y

205 2 20 2
217 2 ~ 2
= C* (1= ully o + 1T =Wl ). (5.50)

onde
Cy=22P171p C1RPYTY, G5 =2%P2H (0, + DGR + max m(s) + 2C3R* max [m'(s)] e
=s=< =s<

C= max{C4, C5}



5.1. Boa-Colocacdo 145

Portanto, de (5.50), segue que:

1

IEW) = F@lse = C(1T =l o + 1= wlip o )* = 1U = Tllei YU, T € BrlO),

onde Bg(0) é a bola aberta centrada na origem e raio R do espaco /. l
A Proposicoes 5.2 e 5.3 combinadas com o Teorema 2.22 implicam no seguinte resultado:

Teorema 5.4 (Existéncia de Solucao Local)
Se Uy = (ug, wy, U1, w1,0,0) € A2, entdo existe 0 < 5,4 < +00, tal que o Problema de Cauchy nao

linear (5.18) admite uma Unica solucado branda (ver Definicao 2.16)
U e C°((0, tnax); 7)),
dada por:

t
Ut = eMUo+f eI EWU(s) ds;VT€E [0, fay)-
0

Se Uy € D(«/), entdo a solucdo obtida é uma solucao forte (ver Definicao (2.17)).

5.1.2 Existéncia e Unicidade de Solucao Global

Observe que, da hipotese (5.9), segue que:
M (s)=m(s) e m(s)s=M(s); Vs=0, (5.51)
T
onde M(s) :f m(t) dr.
0

Proposicao 5.5
A energia associada ao problema (5.11)-(5.17) é dada por:
1

1 1 1
E(t):—f IVu(x, 1)|%dx + flu(x,t)|p1+1dx+—f |Aw(x,t)|2dx+—M(f |Vw(x,t)|2dx)
2Ja Q 2Ja 2 Q

p1+1
1 +2 T 2 1 2 1 )

+ flw(x,t)wz dx+—f [(w—u)(x, 1) dx+—f lu(x, 1) dx+—f lw,(x, H)|°dx

P2+2 Q 2 Q 2 Q 2 o
+ﬁff|<p1(x,r,y)|2dxdy+ﬁff|<pz(x,t,y)|zdxdy—f (0 ute B+ gow(x, 0] dx,

2 JrJo 2 Jrla Q

(5.52)

e satisfaz:

d
—E(t):—ylff(y2+17)I<p1(x,t,y)|2dxdy—yzff(y2+C)|<pz(x, t,y)lzdxdyso. (5.53)
dt rRJO RJQ

Demonstracdo. Multiplicando a equacao (5.11) por u;, integrando em relacio a x sobre Q e utilizando
as condicdo de bordo da funcao u (ver (5.15)), obtemos:
1d 2 1d f 9 f
—— | |lu?dx+=— | |Vul"dx+ | |ul”u dx—rf w—uwu,; dx
zdtthl 2dtg|| Q|| t Q( Jut

+Y1f utf pMe1(y) dy dJC=f fu;dx.
Q R Q
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Como

d
—f |u|pl+1dx:f (p1+1)1ul’ u; dx,
dt Ja Q

temos que:

2dtf| | dx+——f|w| clx+p1 = f| P+ g Tf(w W dx

+y1f0 ut/[Rp(y)(pl(y) dy dx:fgfut dx. (5.54)

Agora, multiplicando a equacao (5.13) por w;, integrando em relacio a x sobre Q e utilizando

as condicdo de bordo da funcdo w (ver (5.15)), obtemos:

Zdtf |wy] dx+——f IAw|?dx - m(f [Vw| dx)f Awwtdx+f lwP?ww; dx

+Tf(w—u)wt dx+y2f wtf ge2(y) dy dx:f gw; dx.
Q Q R Q

Note que:

d
f \w|P**2dx = f (p2+2) lwlP?ww, dx
dt 0

i[M
dat

f Ilezdx)
Q

d
:m(f Ilezdx)—f IVw|*dx 2m(f Ilezdx)wathdx
Q dt Jo Q Q

—Zm(f Ilezdx)waw[dx.
Q Q

Portanto:

2dtf|wt| dx+ — f|Aw| dx+——M(f |V w] dx) PTYT f|w|p2+2dx

+rf (w—uw)w,; dx+)f2f wtf q2(y) dy dx:f gw; dx. (5.55)
Q Q R Q

Somando (5.54) e (5.55), obtemos:

1d
——f |Vu|2dx+ f| |P1+1dx+ flAwl dx+——M(f IVw| dx)
2dt Ja ld

1 d
+ —fl |p2+2 dx+——f |w — u| dx+——f |1 dx+——f lw|>dx
p2+2dt

+Y1f utf p@1(y) dy dx+72f wtf qy)e2(y) dy dx=f [fu:+gw;|dx.
Q R Q R Q

Como f e g ndo dependem da variavel t (ver hipétese (5.10)), temos que

d d
& (Fu)=Fur e < (fu) = gu.



5.1. Boa-Colocacdo 147

Portanto
1d 1d
IVul dx+ f| |pl+1dx+——f|Aw| dx+=-—M f IVw| dx)
2dt o1+ ldt 2dt

+p2+2ﬁf| w|P2+? dx+—d—f |w — u| dx+——f lu| dx+——f lw>dx

d
+)/1f utf pMe1(y) dy dx+y2f w,f qe2(y) dy dx:—f [fu+gw]|dx. (5.56)
Q R Q R dt Jo

Por outro lado, ao multiplicar as equacoes (5.12) e (5.14) por y1¢; € Y22 respectivamente, e,

em seguida, integrar com respeito a va riavel y sobre R, obtemos:

d
ﬂ—f I<p1(y)|2dy+ylf (y2+n)l<p1(y)|2dy:71uzf Py dy (5.57)
2dtJr R R

> dtfkpz(y)l dy+)fzf(y +0)lp2(y)Pdy = Yzwtf qe2(y) dy (5.58)

Substituindo as expressoes (5.57), e (5.58) em (5.56), obtemos:

1d
——f IVulzdx+ flulpl+ldx+ fIAwI dx+——M(f IV w| dx)
2dt Jo

1 d
+ —fl |p2+2 dx+——f |w — u| dx+——f 7 dx+——f lw,|*dx
p2+2dt

3 dtffl(m(y)l dxdy+ f|(l’2(y)| dxdy——f [fu+gw]dx
+Y1fRfQ Vo)l Fdx dywszfQ YV +0)lg2(Pdx dy=0. (5.59)
Denotando a energia E(¢) por (5.52), temos que (5.59) estabelece (5.53). O

Teorema 5.6 (Existéncia e Unicidade de Solucido Global)

Se ug € Hy(Q), wo € H5(Q) e uy, wy € L*(Q), o problema de valor inicial e de contorno (5.3)-(5.6),

admite uma Unica solucao branda (1, w) com a seguinte regularidade:
u e C°([0,+00); Hy () n C* ([0, +00); L*(V))

(5.60)
w € C° ([0, +00); H5 (V) N C* ([0, +00); L*()).

Se up € H*(Q) N Hy (Q), wo € Hy (Q) N H3(Q), ur = wy =0, entdo o problema de valor inicial e

de contorno (5.3)-(5.6) admite uma Unica solucao forte (u, w) com a seguinte regularidade local:

[e.e]
Ue Lloc

w€L1°°
ocC

(0, +00; H2(Q) N HY(Q)) N Wb (0, +00; H (Q)) N W22 (0, +00; L*()) 560
5.61
(0, +00; H*(Q) N H2(Q2)) n W™ (0, +00; H2(Q)) N W2 (0, +00; L2(2))

loc loc

e a seguinte regularidade global:

u € L (0, +o0; Hy (Q)) n WH (0, +00; L*(Q2)) (5.62]
5.62
w € L™ (0, +00; H>(Q)) n W1 (0, +00; L*(Q2))
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Demonstragdo. Sejam uy € H} (Q), wo € H5(Q) e uy, wy € L*(Q). Entdo Uy = (ug, wo, U1, w1,0,0) €
A. Assim, do Teorema 5.4, existe 0 < tpax < +00 € uma funcdo U € C° ([0, tmax; H)]); U(t) =
(w(t), w(r), v(t),p (1), p1(1),p2(1) que é uma solucao branda para problema (5.20) em [0, fiax], €

portanto uma solucido branda local para o problema (5.11)-(5.17). Em coordenadas, temos:
u € C° ([0, tmax); Hy () N C* ([0, tmax); L*())

(5.63)
w € C°([0, fmax); H5 () N C* ([0, tmax); L* ().

Se caso ug € H*(Q)NH, (Q), wo € Hy(QNHZ(Q) e uy = wy =0, temos Uy = (ug, wo, u1, w1,0,0) €
D(<f), onde «f : D(«f) c A — A é o operador linear definido em (5.19). Assim, do Teorema 5.4,
temos que U : [0, tmax) — A; U(t) = (u(t), w(t), v(t),w(t),@1(1),p2(t)) é uma solucao forte local
para problema (5.20), e portanto uma solucao forte local para o problema (5.11)-(5.17) (ver Definicdo

2.13). Entao:

(i) U é diferenciavel em quase todo ponto ¢ € [0, tax);
(i) U €L (0, tmax; H);

(iii) UW0) = Uy = (ug, wo, U1, w1,0,0) e U, (t) —«LU(t) = F(t,U(t)), em quase todo ponto ¢ €

[0, + tmax)-

Em termos das componentes, temos que: u, u;, w e w; sao diferencidveis em quase todo

ponto f € [0, tax). Além disso:

ug € L' (0, tmax; Hp (Q)

wy € L' (0, tmaxs HZ(V) (5.64)
e € LY (0, tmax; L2()

Wi € LY (0, fmax L*(Q)).

Considere a energia E: [0, thax) — R associada a essa solucdo. Da Proposicao 5.5 temos que
E(t) é dado por (5.52), e sua derivada E' (1) satisfaz (5.53). Entdo E(t) < E(0) paratodo 0 < ¢ < tmax,
e portanto, dado U(¢) = (u(t), w(t), us (1), we(t),p1(8),p2(1)) € D(<f), temos:

1
5||U(t)||2]€sE(t)+j;2[fu(t)+gw(t)]dxsE(0)+fQ[fu(t)+gw(t)]dx. (5.65)

Por outro lado, da desigualdade de Cauchy-Schwarz e da desigualdade de Young Generalizada

(Corolario A.4) e a desigualdade de Poincaré obtemos:

fQ Ffu(t) dx < ey l|lull®* + CeDIfII* < e1CLIVull® + CleD |l f1I? (5.66)

fQ gw(t) dx < e wl*+ Clex) 1 gl? < e2Co AW + Clen) gl (5.67)
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onde Cy,Cy >0 e €1 € €2 sdo numeros positivos a escolher.

Substituindo (5.66) e (5.67) em (5.65), e utilizando as Desigualdade de Cauchy-Schwarz e Young,

obtemos:
1 2 2 2 2 2
2IIU(t)IIt,—z,,a e1C1IVull® = e2CllAw|“ < E0) + CeDI flI“+ Clex)ligl”,
e tomando €1 =1/(4C;) e €5 = 1/(4C5), obtemos:
1
SNU @15, = EO+ CenlfI* +Cle gl (5.68)
Note que M (|[Vwl|*) = 0 para todo w € H3(Q) (ver (5.51)). Como L*1(Q) — LP1*1(Q) e

2P+ (Q) — LP2*2(Q), pois 2p; > p1+1 e 2(p2+1) > po +2. Como ug € HY(Q), wy € Hi(Q) e
ui, wy, f, g € L>(Q), segue que:

C1 2 p1+1 C2 2
E(O)s(1+—2 )IIVuoll +p1+1||uo||Lp1+l(m+ L+ — | lAwoll* + M(IVwol)
p2+2 _ 2 2 2 l 2 1 2
+ +2|IW0|ILPZ+2(Q)+TIIwo uoll” + llua I” + llwn +2||f|| +2||g|| < oo0. (5.69)

Finalmente, de (5.68) e (5.69), existe constante Cs > 0 tal que:
%II U)l1% < E©0)+ Ce)lI fI* + Clex) I gl* < Cs; YO < £ < finax. (570)
De (5.70), segue que:
Jim U015, =2C3 <co. (571)
Assim, o limite (5.71) e o Teorema 2.20, garantem que t,,4x = +0o.

Em resumo, dadas as funcdes ug € Hy (Q), wo € H5(Q) e uy, wy € L*(Q), existe uma Unica
solucdo branda (u, w) satisfazendo (5.60). Agora, se uy € H*(Q) N Hy(Q), wo € Hy(Q) N H3(Q),
u; = wy =0, entdo (¢, w) é uma solucao forte, e portanto, as funcoes u, u;, w, w, sao diferenciaveis
em quase todo ponto =0, e
us € L' (0, +o0; Hy(Q))
< w; € L' (0, +o0; HF ()

(5.72)
uge € L (0, +o0; L*(Q))

wi € L' (0, +00; L?(QY).

Além disso, a estimativa (5.70) combinada com (5.72), garantem as seguintes regularidade:
ue L (0,+o0; Hy(Q))
w € L™ (0, +o0; Hj ()

up € L (0, +o0; L2(Q)) N L (0, +o0; H (V)
X (5.73)
wy € L% (0, +00; L2(Q)) N L (0, +o0; H2(2))

ure € L1 (0, +o00; L?(Q)

wy; € L1 (0, +00; L2(QY)).
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Para obter uma melhor regularidade, derive as equacdes do sistema (5.11)-(5.14) em relacdo a

variavel t. Assim, obtemos:

Urer — Aty + o1 |ulP  uy — T (w, - ut)"')’lfRP(y)((Pl)t(y)dy:O, (5.74)

wiee + AP we —2m' (IVwl*) (Vw, Vw ) Aw — m (IVwl®) Aw, + p2lwlP?  wow + |wlP?w,

+1(w; — ut)wszq(y)(wz)t(y)dy:O, (5.75)
@D () + G +0 (@) (V) — p(Y g =0, (5.76)
(@2)1: (1) + (P + O (@2) (1) — g wyy = 0. (5.77)

Multiplicando as equacdes (5.74) e (5.75) por u;; € wy;, respectivamente, em seguida somando-as,

integrando em relacdo a variavel x sobre (, e utilizando as condicées de contorno (5.15), obtemos:

+Y1f unf p(J/)((Pl)t(J/)dJ/"‘YZf wttf q)(@2):(y»)dy

Q R Q R

Y f P g dx— (02 + 1) f w0172 weweedx + 2 (IVwI2) Vi, V) (Aw, wee)
Q Q

+m(IVw|?) (Awy, wyy). (5.78)

Multiplicando as equacdes (5.76) e (5.77) por Y1 (1) ¢ € y2(@2) s, respectivamente, e substituindo-as

em (5.78), obtém-se:

Ld llu ||2+1 I w ||2+1 IVu ||2+1 d 1AW, |?+ < a lwe— ug? + 2 d (1) 112
Y T Y Tt P PLAR L PP ML P PLL L LIRS PLA SR TR
Yo d

ra " 2
+ 2 dl' ” (QDZ) I,‘”LZ(R;LZ(Q))

=+2m’ (IVw®) (Vw, Vw ) (Aw, we) + m (IVwl®) (Awy, wye) —plfgmlpl‘lutundx

(o2 +1) fQ w12 wywpedx -y fR G+l @0 DIy -7 fR POl IPdy  (579)

Como m: [0, +00) — [0, +00) é de classe C!, existe C4 > 0 tal que 2m’ (|Vw|) < C4. Assim, da

estimativa (5.70) e da desigualdade de Young, tem-se:

2m’ (IVw)) (Vws, Vw){Aw, wi) < ColAwy, w)Aw, we) < CallAwll-llwll - 1Aw| - w
= 4C3C4”Aw[” * ” w[t||
C
= ?5 (lweel® +1Awel?),  (5.80)

onde C5 =4C3C;.

Analogamente, obtém-se uma constante Cg > 0 tal que

C
m(IVw)?)(Aw, wye) < 7“ (lweel? + 1AW, 1?). (5.81)
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-1 1 1
Por outro lado, como p?i tooty=h da Desigualdade de Holder (Proposicio (A.5)), da
P1 o
estimativa (5.70), da imersdo H} (Q) — L?1(Q) e da desigualdade de Young, obtemos:
- - oot
_Plf |u|P! lutundx = Pl”u”;pll(m||ut||L2p1(Q)||u”|| < p1(2C3) 2 (COP IV Ul - ugl
Q
C
< 77 (hueel® + 1V aell?), (5.82)

onde C; é a constante da imersdo H}(Q) — L*1(Q) e C; = Pl(ZCg)%(Cl)PI.

Analogamente, obtém-se uma constante Cg > 0 tal que:

(p2+1) fQ lwlP?wwidx < (p2+ DIl wllig(pzﬂ)(m lwell p202+0 () Wil
Cs
= = (lweel® + 1AW )1?). (5.83)

Agora, das desigualdades (5.79), (5.80), (5.81), (5.82) e (5.83), obtemos:
d
prl Ur(D1%, < A+ C)llugell® + 1+ Cs + Co + Co)llwee* + C7 I V|l + (Cs + Co + Co) | Aw, |12
+ Tl we = ued® + Y1l @) el o 2y + Y2 @2 el 2120y < Coll U011, (5.84)

onde Cg = max{l + C;,1+ Cs5+ Cg+ Cg} e U(t) = (u(t), w(t)us (1), w(t),p1(1),@2(1)).

Agora, dado T > 0 arbitrario, integre a desigualdade (5.84)de 0 a £ < T. Assim, obtemos:
1U01% = Ture©1+ 1w 017 + 1Aue () 1> + 1 Aw (0)1* + Tl w(0) — u(0) ]
t
711D O @120 + Y21 @2 O 172 g2y + Co fo U ()1 %ds, (5.85)

paratodo0<t=<T.

Como u; = us(0) = u; =0 e ws(0) = w; =0, temos que:
IVu (0)1? = IV I =0<o00 e  [[Aw,0)[I* = [Aw;]|* =0 < co. (5.86)

Além disso, temos
lw(0) — u () 1* = llwy — u11* =0 < co. (5.87)

Fazendo t = 0 nas equacoes (5.12) e (5.14), e usando as condicdes iniciais em (5.17), obtemos:
(@0, =pYur=0 e (92):0,)=qg(Pw1=0; VyeR.

Portanto

Yl @D O q). 20 =0<00 € 12l @2) 072 g). 12 =0 <00 (5.88)

Por outro lado, fazendo ¢ = 0 na equacdo (5.11), obtemos:

s (0)]] < IIuollgpl(m + | Augll +Tllwo — uoll + I f1I := C1 < o0, (5.89)
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uma vez que f € L*(Q), up € H*(Q) N H; (Q), wo — up € L*(Q) e Hy (Q) — L*P1(Q).
Procedendo de maneira analoga, com a equacao (5.13), obtemos:

p2+1

2 —
12(p2+D(Q) + ”A w()” + T” Wo — Up ” + ”g” O C2 <00, (590)

1w 0)Il < m (IVwolI®) 1A woll + llwo]

pois g € L*(Q), wy € H*(Q) N HZ(Q), wo — up € L*(Q) e H(Q) — L*1(Q).

Assim, utilizando as estimativas (5.86)-(5.90) em (5.85), obtemos:
1U:(D11% < Cro + Cy fo § U (s)I%ds; VO<t<T, (5.91)
onde Cig = (C)? + (C)*.
Finalmente, aplicando o Lema de Gronwall (Proposicado (A.7)), na estimativa (5.91), segue que:
1T (1)1, < Cr0e®" < Cr9e®" <o0; YO< < T, (5.92)
e portanto:

u € L2 (0, +00; Hy(Q))

w; € L (0,+00; H2(Q)
I o (@) (5.93)
U € L2 (0, +00; L*())
wyp € L (0, +00; L?(Q)).
Por outro lado, como
po? |\ 172
U PWPLL,Y) dy' < ( zr dy) ([ (y2+n)|<p1(r,y)|2dy)
R R y-+n R
1/2
= +/C(a,n.0) (fR(y2+n)l<p1(t,y)|2dy) ,
e
fR W +ler Iy < 1P+ M1 (D) + p (D2 120y = 1D D12 1200
temos que:
2
Y1 ﬁl;zp(y)qo(t,y) dy| < ylc(a,n,O)fR(yz+n)||<p1(t,y)||2dy
= ch(a)nyo)“((pl)t(t)HiZ([R,LZ(Q)
< 2C(a,n,0U:(01%
< 2C(a,1,0)C10e?T < o0; (5.94)
paratodo0<t<T.
De maneira analoga, obtemos:
2
Y2 fq(y)q)z(t,y) dy| =2C(B,{,0)C10e®" <o0; VO<t<T. (5.95)
R
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Assim, das Equacdes (5.11) e (5.13), e das estimativas (5.65), (5.70), (5.92), (5.94) e (5.95), obte-

mos:
1AW < Nuee (O + Nu@I,, o + TIw = w (@Bl + pr(y)qol(r,y) dy| +1fI*<co,  (5.96)
paratodo0<t<T,e
182w (@) < wee )+ m (IVwI?) IAwl + 1w @150 0, + 71w =0 0]
+72 fR qypa(t,y) dy| +11gI* < co. (5.97)

paratodo0<t<T

Por fim, das regularidades obtidas em (5.73) e (5.93) e das estimativas (5.96) e (5.97), obtemos

que a solucao forte global (u, w) do problema (5.3)-(5.6) possui as seguintes regularidades:

uEL‘I’O
ocC

LUEL?O
ocC

Jueeli, (0, +o0; Hg (©)) N L% (0, +o0; L*()) N L' (0, +o0; Hy(Q))

(0, +00; H*(Q) N Hy () N L™ (0, +00; H, ()

(0, +00; H*(Q) N HF () N L™ (0, +00; HZ ()

(5.98)
w; € L (0,+00; HF(Q)) N L>(0,+00; L*(Q)) N L' (0,+00; Hj(2))

U € LL (0,+00; L2(Q)) N L (0, +00; L*(QY))

loc

wyr € L2 (0,+00; L*(Q)) N L' (0, +o0; L*(Q))

loc

De (5.98) segue as regularidades em (5.61) e em (5.62). O

5.2 Existéncia de Atrator Global

Nesta secio, investigamos a existéncia de um atrator global associado ao sistema (5.3)-(5.6), o
qual, como mostrado anteriormente, pode ser reformulado no contexto de um problema de Cauchy
nao linear. Para tanto, empregamos a teoria de semigrupos de operadores continuos, considerando

a evolucao no espaco de fase A definida pelo semigrupo {T(#)};>¢ associado ao problema.

Demonstramos que {T(£)} ;>0 possui a propriedade de ser compactamente assintético. Além
disso, mostramos que o sistema admite uma funcao de Lyapunov natural, construida a partir da
energia associada ao modelo, a qual decresce ao longo das trajetérias. Essa funcao desempenha papel
central para caracterizar o semigrupo como gradiente, permitindo assim uma descricdo mais fina da
dindmica assintética. Tal estrutura, além da existéncia de atrator global, garante, em particular, que

o atrator global tem dimensao fractal finita e coincide com a unido das instaveis de seus equilibrios.

Outro ponto relevante é a andlise da quase-estabilidade das trajetérias, a qual fornece estima-
tivas que, combinadas com o carater dissipativo do sistema, asseguram que as solucdes nao apenas
permanecem em conjuntos limitados, mas também convergem assintoticamente em sentido forte,

obtendo assim uma melhor regularidade para as solucoes.
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5.2.1 Formulacdo do Semigrupo Nao Linear

O sistema (5.11)-(5.17) é equivalente ao seguinte problema de Cauchy:

U=FU); t>0
, (5.99)

U =U,
onde & = («f + F): D(«f) c A — € é o operador n3o linear definido por:

v

v
Au+r(w—u)—ylpr(y)wl(y)dy—lulpl+f
—Azw—r(w—u)—yngq(y)(pz(y)dy+m(fglelzdx)Aw—|w|92+g

—(P+mer() + p(y)v
~(PP+02(y) + (Y w,

FWU) = ,  (5.100)

onde (A, {-,-)) é o espaco de fase definido em (5.21)-(5.23), «f : D(«f) € A — A é o operador linear
defnido em (5.19), F : # — A o operador nao linear definido em (5.20), D(«/) é o conjunto definido

em (522)7 U= (u) w, U)Wv(pl)(lJZ) e UO = (uO! Wo, Uy, WI,0,0).

O Teorema 5.4 e a estimativa (5.71) garante que para cada Uy € 4, o problema (5.19), e portanto,

o problema (5.99), admite uma Unica solucio branda U € C° ([0, +o0); #°) dada por:
t
Ut) = e Uy + f e B (U(s)) ds.
0
Em termos das componentes © e w da solucao U, temos as seguintes regularidades:

u € C°([0, +00); Hy () N C* ([0, +00); L*())

(5.101)
w € C° ([0, +00); H5(Q)) N C' (10, +00); L*(Q2))
Defina o semigrupo de operadores continuos {T'(#)};>¢ pondo:
T@): £ — A
t
Uy — U =e“Uy+ f eI E(U(s) ds. (5.102)
0

Entdo U € C° ([0, +00); #) tal que

t
Ut) = T()Up = e Uy + f 99 (U(5) ds,
0

¢ a Unica solucao brando do problema (5.99).

5.2.2 Existéncia de Atrator Global

Proposicao 5.7
Sen,{ >0, entdo 0 semigupo {T(1)};>¢ definido em (5.102) é compactamente assintético (em parti-

cular é assintoticamente suave).
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Demonstracdo. Seja B < # um subconjunto limitado e sejam Uy, Vy € B; Uy = (ug, wy, U1, w1,0,0)
e Vo = (vy, 20, V1,21,0,0). Considere as solucao brandas U : [0,+00) — A e V : [0, +00) — S;
U(1) = (u(D), w(t), us (1), we (1), p1(1), 2(1) e V() = (v(1), 2(1) v¢(2), z:(£), p3(£), 4(1)) do problema
de Cauchy (5.99) para os dados iniciais Uy e V; respectivamente.

Observe que, X=U-V =(®,¥,®, ¥, ¢1,@>2) é solucao branda do seguinte problema:
Qi —AD+|ulPt —v|P' =T (¥ - D) +Y1pr(y)<?H(y)dy =0, (5.103)
@D+ +mP1() — p(N . =0, (5.104)

lI/”+A2lP—m(f Ilezdx)Aw+m(f IVzlzdx)Az+|w|"2w—|z|"2z
Q Q

+ T(W—@)+)fszq(y) P2()dy =0, (5.105)
@)+ (Y +) P2 — g, =0, (5.106)

oY
D,,=0,¥,,=0e v lan = =0, (5.107)
@(x,0) = (up — vo) (x), e P;(x,0) = (13 — v1)(x), (5.108)
¥ (x,0) = (wp — 20)(x) € ¥+(x,0) = (wy — 21) (%), (5.109)
P1(x,0,y)=0e @2(x,0,y) =0, (5.110)

Multiplicando o sistema (5.103)-(5.106) pelas funcdes @, @1, ¥'; e ¢ respectivamente, proce-
dendo de forma similar a demonstracao da Proposicao 5.5, e utilizando as condicoes de fronteira em

(5.107), obtemos:

1d 1 1 1
——||® —— 'P —— V(D AlI/ -—— 'I/ D|?

d __
+%E|I¢2||L2(R;L2(Q))+<|u|p1_|v|p1)d)t>+<|w|p2w_|Z|pzzrg/[>_m(”vw” )(Aw)'{/t>
+m(IVzl?) Az, ) + 11 fR G +I@iWIPdy + 72 fR *+0lgz(*dy = 0. (5.111)
Note que:

d
= [m(IVwI?) IVPI?] = —2m (IVw|?) AP, ¥ ;) —2m' (IVwI?) (Aw, w) VP ||*

=2m(IVwl?)(Az, ¥y —2m (IVwl*) (Aw, ;) —2m’ (IVw®) (Aw, w) V|| (5.112)

Defnindo o funcional energia:

1 2, 1 2 1 2 1 2, T 2
é‘)(l‘)=£||@x(l‘)|| +§||‘Pt(lf)|| +—||V<P(l‘)|| +—||A‘P(l‘)|| +—||'1”(l‘)—<15(l‘)||

— 1
+ DGO 200y + NP g2 + 5 [ (V0O IVP@IZ], (5.113)
e substituindo (5.112) em (5.111), obtemos:

d
60 = —(ulP = 0|, @) — (w2 w — |21P?2, ¥ ) + [m (IIVwI?) — m (IVzI1*)] Az, ;)

£ (IVwl?) Aw, w) IV — 1 fR G2 +mIF Py —7a fR G +OIFmWIPdy.  (511)
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Das estimavas (5.45) e (5.46), e da Desigualdade de Young, obtemos:

[ulPr = vIPr, @] < C3l@l- 1D,
(C)
= = |92 +—||c1>t|| (5.115)
e
[wlP2w—121P22, %) < CilVI- ¥l
C )
= vy P+- ||lPt||2, (5.116)

onde C3 =2%P171p,C;RP1 ™ e Cy = 22P2*1 (p, +1)C, RP2, onde C; € a constante da imersdo Hj (Q) —

L?P1(Q), onde C;, € a constante da imersdo H3(Q) — L*P2+1(Q).

Como m é de Classe C! (ver (5.9)), segue que

m' (IVw]?) Aw, w) IV |* < (C5)* IV I, (5.117)
Além disso:
[m(IVwl?) - m(Vzl®) Az, %] < CelV¥]- ||%||<—||W|| +(C) 1%, 11
< (C7) | (C (5.118)

Agora, substuindo as expressoes (5.115), (5.116), (5.117) e (5.118) em (5.114), obtemos:

d (C3)? C (C Ces)?
%g(t)< 1PN + = IIthII +( 2’ 4k +—||‘Pt|| +——|IV¥ |+ (S) 1,112+
(C5)? IV |I? —ylfR(y +m il dy—ysz(y +C)||<7»§(y)|| dy. (5.119)

Por outro lado, como

d [ . ~
ﬁ—f |(p1(y)I2dy+ﬁf (y*+n) II<p1(y)||2dy=nfptfp(y)qm(y) dy
4 dt Jr 2 Jr 2 R

d __ __ —
B—fl(pz(y)lzdy+ﬁf(y2+() Il¢z(y)||2dy=ﬁ‘f’rf ayez(y) dy,
4 dt Jr 2 Jr 2 R
aplicando as estimativas:

fQ o, fR PP dydx < e1Ca,n, 0% + Cler) fQ fR P+l Pdydx

fQ v, fR 43 dydx < e2C(B, L, 0.1+ Clen) fQ fR O +01@3 ()P dydx,
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na desigualdade (5.119), obtemos:

1d
Eﬁg(m—(ylf(y +m el dy+nf(y +Ql@zIIPdy | + (||cbt||2+||%||2)

S%(II@II +IVY|?) (5.120)

Cg = max{l + C(e1),1+ C(e2)}, €1 =2/[y1C(a,n,0)], €2 =2+ (Cs)?1/[y2C(B,{,0)] €
Co = max{(C3)?, (C4)? + (C5)* + (C7)?}.

Integrando a expressao (5.120) de ¢ a ¢t + 1, obtemos:

1 1 Cg [1+1 ~ __
5£(r+1)—5£(r)+78f (YlfR(yz+17)||<P1(y)||2dy+7fsz(y2+()Il<pz(y)||2dy)dt
t

1 t+1 5 ) Cg t+1 9 )
+- (1D + 17l )dl‘S? (l1* +1IVP1°) dt
t

2J:
Portanto
C8 t+1 1 t+1 ) )
> (Ylf(y +n) g1 dy+7/zf(y + Ol dy)dH f (1= + 1 17) dt
t
Cg t+1 ) )
s—é"(t)——é"(H 1)+—f (I®lI” + IV¥1) dt. (5.121)
2 2 2 Js
Agora, definindo:
t+1 1/2
F(r):(g(t)—g(r+1)+cgf (||<1>||2+||VY/||2)dt.) , (5.122)
t

onde Cq := Cy9(B) depende apenas da limitacao uniforme dos dados iniciais no conjunto B.

De (5.121), obtemos:

r+1

t+1

f (ylf(y I dy+)fzf(y LOIFEW dy)dr+f (1012 + 1%, 1) dt

< —1F(1)]°, 5.123
cm[ (02 (5.123)

onde Cio =min{Cg/2,1/2}.

Assim, do Teorema do Valor Médio para integrais, existem t; € [t+t+1/4] e tr € [t +3/4, £+ 1]

tais que:

nfR(yz+n)||<ﬁ(ti,y)||2dy+yzfm(y2+o||<75(ti,y)||2dy+||<I>t(rl-)||2+ 17, ()12

4
<—[F(D)]% Vi=1,2. (5.124)
Cio

Por outro lado, multiplicando as equacdes (5.103) e (5.105) por ® = u— v e ¥ = w — z respecti-

vamente, integrando por partes e utilizando as condi¢cdes de fronteira (5.107), obtemos:
d
— (@0, @)~ 0+ VO +f (1P = vIP") @ dx —T(¥ — D, ®)
Q

+Y1L@pr(y)pr(y)dy dx=0 (5.125)
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e
i _ 2 2 2 2
T W) = I+ AV m(IVwl?) (Aw, ¥y + m(IVzl?) (Az, )
+f (lwl”?w - |z|P*z) ¥ dx+r('¥’—<1>,¥’>+)/2f q/f g P2(»)dy dx=0 (5.126)
Q Q R
Como
m(IVwI?) 1P 1* = -m(IVwl?) (AP, ¥) = -m (IVw)?) (Aw, ¥y + m (IVw|*) (Az, ),
somando as expressoes (5.125) e (5.126), obtemos:
2 2 2 2 2 d d
IVOI* + IAP? + 7I|¥ — @1I* + m (IVw|?) V|| = (0,0 = (W, V)
+1DA* + P2 + [m (IVw?) = m (IVzlI*)] (Az, V) + (vIPt = |ulPt, @) + wlP2w — | 2|2z, )

—7/1[ 05] pei1(y)dy dx_)’zf Y’f qe2(y)dy dx. (5.127)
Q R Q R
Como

fQ @ fR PP dydx < e3C(@,n, 0|12+ Cles) fQ fR P+ @t () Pdydx

fQ v fR GNP dydx < £4,CB,L0IPI? +Cley) fQ fR 02 +0lgz ) Pdydx,
das expressoes (5.115), (5.116), (5.118) e (5.127), segue que:

d d (C (C (C3)
28(1) = ——(4’ 0 )——(‘P W)+ 1D + 117+ —— IV [* + —— ¥ [* + —— @]

(C
—IICDtII +——[V¥|? +—||Y/r|| +C(e3) |91 + Cle V| +Y1€3f(y +Ilg1(*dy

+Y254fR(J/ +()||@(J/)|| dy+Yl||(,’H(t)||L2(R;L2(Q)) +Y2||(”B(t)”L2(R;L2(Q))'
Agora, como y*+n=n>0e y*>+{ = (>0, para todo y € R, entdo

_ 1 _
17z = fR 52 +ONFT O, g dy d.

— 1 _
1920 1201200 < 7 fR @2+ OGN o, dy dx.
Assim , da desigualdade de Poincaré, obtemos:

d d 3 3+ (Cg)? (C3)% +2C(€3)
26(1) < = (@,0)) = — (P, W) + —||<Dt||2+ TG||%||2+ %ucbnz
. (C7)? + (Cy)? +2C(eq)

2

vy | + f(y +mIP1IPdy + == 212 f(y +Ollgz(1*dy,

ondeeg=1/nee, =1/(.
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Portanto
1d 1d
E) < ———(D, D) — ——(V, W D% + | VY| ?
(1= 2dt< £ 2dt< D+ Cn (1917 +1VE7)

+C12(Il¢r||2+I‘Ptllz+Y1fR(y2+n)||<,’0v1(y)llzdy+7fsz(y2+C)||¢E(y)||2dy), (5.128)

onde

CH:m

)

{(C3)2+2C(£3) (C2+(Cy2+2C(ey) 1 1} {3 3+(C6)2}
, , — eCpp=maxq—, ———— /.
4 4 n'¢ 4 4

Agora, integrando na variavel s de t; a t,, obtemos:

=0

f é?(s)ds<——(d5 <I>t) —1(‘1’/,‘1’
5]

s=t 143 2 2
_, +C11f (l@1” + IVPI7) ds
1 131

S=n

+C1zf (Il@tll + ¥l +Y1f(y +M il dy+yzf(y + )l dy) ds (5.129)
5]

Da desigualdade de Poincaré, obtemos ||®(¢;)|| < %IIV(D(Q) lel¥)| < %IIA‘I’(Q) I, e portanto,

da Desigualdade de Caucy-Schwarz, obtemos:

D, D) (1) + Y Yot <— V(i O ()| + — AV (¢; Y (t
Z|< Y(17)] Z|< Y(t7)] \/EZII () - 1P ﬁ2|| () - 1P (),

j=1 j=1 j=1 0j

ecomo 1y, i € ¢, t+ 1], passando o supremo, obtemos:

2 2 1
D KD, () + ) KW, W) (1) < %(lﬁps(h)l + I@s(tz)l) sup |[VO(s)|

j:1 j:1 t<s<t+1
(a1 1)) sup (AW (9)
vCo r<s<t+1
4
< F(t) sup |VO(s)|+ ———=F(t) sup |AP(s)], (5.130)
C-Cio r<s<r+l o-Cio t<s<t+l

pois, utilizando da estimativa (5.124), segue que ||@,(t;) || <

2 2
F)e V)l =
v Cio ' v Cio

Por tanto, aplicando as estimativas (5.123) e (5.130), na desigualdade (5.129), obtemos:

F(1).

f 2 2 Cr2 2
&(s)ds< F(t) sup |IVP|+————F(t) sup |AY¥Y|+—[F(1)]
n vC-Cyp tssslt)+l Co:Cro tsssIt)H Cro

%3
+Cuf (121> + IV I?) ds
I

e portanto

to 123
f &(s) ds< Ci3F(t) sup \/é?(s)+—[F(r)1 +Cn1 f (l®lI* + IV %) ds, (5.131)
151

r<s<t+1 5]

onde C13 = max{2/\/C0 . C10,2/\/C'C10}.

Aplicando a desigualdade de Young generalizada em (5.131), obtemos:

t: 15
26’(3) ds<+C(es)[F(1)]? +¢e5 sup é"(s)+C11f2(||@||2+||V¥/||2)ds
n

5] t<s<t+1
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Pelo Teorema do Valor Médio para integrais, existe 1y € [, £2] tal que:

153
&(s),ds.

E(ty) =
0 Z_tl 5]

Como (&, — 1 = 3), deduzimos que

I
E(ty) <2 &(s),ds.
n
Combinando as duas desigualdades, obtemos

t:
&(to) < 2C(e5)[F(1)1* +2¢5 sup é"(s)+2C11f2(|@|2+|Vl11|2)ds. (5.132)

r<s<t+1l 151

Por outro lado, a partir de (5.122), temos que &(t) < &(t + 1) + [F(1)]2. Isso significa que a
variacio da energia entre os instantes ¢ e £ + 1 é controlada pela quantidade [F(#)]?, juntamente

com o termo integral.

Agora, como tj € [t, t + 1], segue que o maximo de &(s) no intervalo [¢, t + 1] ndo pode ultra-
passar o valor em t; somado a essa correcao. Mais precisamente, para todo s € [t, t + 1], podemos
estimar:

r+1
E(s) <& (1) + [F(1)]* + cgf (Io1* + |V |?) ds.
t

Tomando o supremo sobre todos s € [¢, £ + 1], obtemos, portanto:

t+1
sup &(s) < &(ty) + [F(D]* + Cy f (121* + IV¥1I*) ds. (5.133)
t

r<s<t+1

Agora, tomando &5 = 1/4 e substituindo a expressao (5.132) em (5.133), temos:

t+1
sup &(s) < ClulF()]*+ Cis f (I21? + IV ?) ds,
t

t<s<t+1

onde Ci4=4C(1/4)+2e Ci5=4Cy1 +2Cy.

Dado t* > 0, de (5.122), obtemos:

o+1
sup &(s)<Ci(E()-E(t+1))+Cis supf (I®I* +IVP*)ds; YO t<t*  (5.134)

t<s<t+1 O<o=<t.Jo

Assim, de (5.113), (5.134) e do Lema de Nakao (Lema A.13), segue que:

1 B o+1 .
Enxmuéfsg(t) < Ciee " +Ci5 sup (IoI* +IV¥I*) ds; Vo<t < t*, (5.135)
O<o<t*Jo
onde
1+C
Cig= 1 sup &(s) e 0 =InCs.
Cia  o0ss=<1

Finalmente, dado € > 0, escolha uma nimero real t* > 0 suficientemente grande, tal que
O .
VCige 2! <eg, e defina:

frr:BoxBy — R
o+1 1/2
(Uo, Vo) — Cp, sup ( (lu-vi*+IVw-Vz|*)ds| (5.136)

O<o<t* \Jo
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onde Uy = (ug, wo, U1, w1,0,0), Vo = (v, 20, 11, 21,0,0), Cp, = v/Cis5, By € a bola fechada centrada na
origem e raio v/2C3 com respeito a norma do espaco # e C3 > 0 é a constante obtida na estimativa
(5.70).

Observe que, de (5.135), segue que, dado € > 0, existe t* := t* (¢, By) tal que:

ITEUo— T ) Vollze = 1UE") = V() e = 1 X)) lse < €+ fi (Uo, Vo); YUy, Vo € Bo.  (5.137)

Assim, diante da Proposi¢ao 3.26, resta apenas mostrar que f;« € uma funcao contrativa sobre

By x By (Definicdo 3.25). Com efeito, seja (Uy) nen < Bo; Uy = ((4g) 1y (Wo) 5y (U1) 5, (W1) 5,0,0) uma

sequéncia de valores iniciais em By. Queremos mostrar que existe uma subsequéncia (Up,) de
(Un) nen tal que:

Jim lim f- (Un,,Un,) =0. (5.138)

—00 [—00

Como By é limitado e invariante sob {T'(1)};¢, as solucao (un, W, (U, (W, (@15, ((pg)n)

sao uniformemente limitadas em /. Em particular

(Un) nen < C° ([0, +00); Hy () N C* ([0, +00); L*(QY))
(Wn) nen < C° ([0, +00); H3 () N C ([0, +00); L*(2)) .

sao sequéncias limitadas nos respectivos espacos (ver (5.60)).

Por outro lado, a imers3o compacta de Hz(Q) em H} (Q) e de Hj (Q) em L*(Q) implica que as
seguintes imersoes:
C° ([0, £*); Hy () n C' ([0, £*); L*(Q)) — C° ([0, £*); L*(D))

(5.139)
C([0, £*); HZ(Q)) n C' ([0, £*); L*(1)) — C° ([0, t*); Hy ()

sdo compactas para cada t* > 0.

Assim, como a expressao de f;+ nao dependem das componentes (1), e (¢2),, as imersdes
compactas em (5.139) garante a existéncia de uma subsequéncia (unk, Whe (U s (W gy (@1) ((pg)nk)

de (un, wn, W n, (W) n, (01)n, (P2) ) satisfazendo o limite (5.138). O

Proposicido 5.8

O semigrupo {T'(t)};>¢ associado ao problema (5.99) é gradiente

Demonstracdo. Afirmamos que @ : # — R, definido por ®(U,) = E(t), onde E(t) é a energia associ-
ada ao problema (5.99) dada em (5.52) € uma funcdo de Lyapunov estrita para o semigrupo {T(£)} />0,
e portanto {T(1)};>0 € um semigrupo gradiente (ver Definicdo 3.27). De fato, da Proposicao 5.5 segue
que

d
d—E(t)z—Ylff(y2+n)|<p1(x,t,y)lzdxdy—yzff(y2+()|<pz(x, t,y)*dxdy. (5.140)
r RJQ RJQ

Como E(t) = ®(T(1)Uy), de (5.140), temos que aplicacdo t — @ (T (1) Uyp) é nao crescente.
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Agora, suponha que ©(T (1) Uy) = ®(U,) para todo ¢t > 0. Entdo E(t) é constante e de (5.140)
segue que ¢, = @» = 0. Assim, das Equacoes (5.12) e (5.14) segue que u, = 0 e w; = 0, respectivamente.

Isto é, u e w sao funcoes constantes com respeito a variavel t. Nesse caso, temos:
T(t)Up = Uy = (up, wy,0,0,0,0); V£ =0,
o que completa a prova. O

Teorema 5.9
Se n,{ >0, entdo o semigrupo {T(1)};>( associado ao problema (5.99) e definido em (5.102) possui
um atrator global com dimensao fractal finita em # e caracterizada pela variedade instavel .#“(.A)

do conjunto de solucoes estacionarias:

—Au+|ulPr-t(w-u)=f,
N =<(u,w,0,0,0,0) €A

ANw-m([fyIVwPdx)Aw+|wP?Pw+Tt(w—u) = g.

Demonstracao. As Proposicoes 5.7 € 5.8 garantem que o semigrupo {T(f)};>¢ € gradiente assinto-
ticamente suave. Assim, segundo o Teorema 3.28, para garantir a existéncia de atrator devemos

mostrar que:

(i) Afuncao de Lyapunov ®@:.7# — R é limitada por cima sobre qualquer subconjunto limitado de
H.

(ii) O conjunto ®g ={U € #; ® (U) < R} é limitado, qualquer que seja R > 0.
(iii) O conjunto dos pontos fixos (ou estacionarios) A& ={U e . #/ T(t)U = U; Vt > 0} é limitado.

Da Proposicao 5.8, temos que ®(U) = E(t), para todo dado inicial U € #. Seja B c /# um

conjunto limitado. Considere a solucdo branda do problema (5.99) dada por:
(u(t); W(t), ul’(t)r wt(t);(Pl(t);(PZ(t)) = T(t) Uy

onde U = (ug, wo, U1, w1,0,0) € B.

Seja C3 > 0 a constante dada no estimativa (5.70). Entao

IT(OUIl.z; = I1(w(t), w(®), ur(8), we (), p1(2), 2 () |2z = vV2C3; V20,

Portanto @ : # — R é limitada sobre o conjunto By, onde B, é a bola fechada centrada na

origem e com raio /2Cs; com respeito a norma do espaco ./, o que prova (i).

Para provar a afirmacao (ii), comparamos a expressao (5.52) da energia E(f) com a norma de
A dada em (5.23). Assim, dado R>0e U € ®p = {U € A#; ®(U) < R}, temos:

1
p1+1
o+ 1Ol

1 1 1
Hﬂ=5MHﬂﬁ¢+ +5MNunwﬂ+———quw””

p2+2 Le212(@)

—fQ [f@ux, 0+ gx)w(x, 0] dx,
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Assim, das desigualdades cauchy schwarz, Young e Poincaré, segue que
1 2 2 2 2 2
E(1) = EIIU(I)IIﬁ Kie1lVul® = CEeDl flIF — KeexlAwll” — Cle2) I gII7, (5.141)

onde Kj, K, > 0 sdo constantes obitdas com a desigualdade de Poicaré, e, 1,2 sao constantes

positivas a determinar.

Fazendo €1 =1/(4K7) e €2 = 1/(4K5) em (5.141), obtemos:
1
E(H)= L—LnU(t)ui-f—C(||f||2 +1gl?),

onde C = min{C(e;), C(e2)}.

Portanto
IUD)115, <4E@) +4C (I f1I* + 1gl1*) = 4@ (U (D)) +4C (1 fI* +1Igl*) < C(R+ I fII* + lIgl*) < oo,

onde C = max{4,4C}.

Finalmente, provaremos a afirmacao (iii). Seja U € .4, tal que

un=rHU=(u,w,0,0,0,0); Vt=0.

Em termos das coordenadas, temos:

—Au+|ul’' —-t(w-u) = f, (5.142)
Azw—m(f Ilezdx)Aw+|w|"2w+T(w—u):g, (5.143)
Q
ow
(W)}, =0, (W), =0e v loa =0, (5.144)

Multiplicando as equacoes (5.142) e (5.132) por u e w respectivamente, integrandoem x€ Q e

aplicando as condicdes de fronteira (5.144), obtemos:

UM%, = IVul®*+I1Awl® +tllw - ull®
1
- pitl p2+2 2 2
< leuunmﬂm) p2+2||w||y,2+2(m m(IVwl®) IVwl® + (f, u) + (g, w)
< Kigsl|Vull® + Clea) f1I> + Koeg | Awl|* + Cleg) I glI%.
Logo

1T < Co(ILF 1%+ Igl?),
onde Co = 2max{C(£3), C(£4)}, €3 = 1/(2K1) €&y = 1/(2K2).

Portanto, do Teorema 3.28 o semigrupo {T(#)};>o admite um atrator global dado por 2 =
MH(N), onde A" (N) é avariedade ndo estavel proveniente de A como o conjunto de todos os

U € A tal que exista uma trajetéria completa y = {U(s); s € R} satisfazendo:

ui0)=U e slim distz (U(s), V) =0.
——00
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Além disso, considere U = (u, w, u;, we, @1,@2) € V = (v, 2, Vg, 21, 3, P4) solucdes do problema
(5.99), com U(0) = Uy € A e V(0) = V, € #. Da estimativa (5.135) segue que:

IT(OUp-TOWI5, = U@ -V (Ol
2+2C14 _ o+l
< e 0Ty - Vol + Cis am'[ (1212 + IV |I?) ds.
Cia 0<o<t*Jo

Portanto o semigrupo {T'(#)};>o € quase-estavel (ver Definicao 3.29). Com efeito, como as solucdées U
e V dependem continuamente dos dados iniciais Uy e V; respectivamente, basta tomar Y = [L?(Q)]?,
X = H Q) x HA(Q), Z = [[* (R, 12(Q)]*, H= 7,

2+2C
14 e—et

o+l )
()= Cis, bit) = enx= [ (I + 1) ds

14 o

Portanto, do Teorema 3.30 segue que A = 4 *“(A") tem dimensao fractal finita. ]

Corolario 5.10 (Regularidade)
Se ug € Hy(Q), wy € H3(Q) e uy, w; € L*(Q) a solucdo branda (u, w) do Problema (5.11)-(5.17),

satisfaz:

ue C°(0,+o0; Hy(Q)) N C!(0,+00; L*(2))

w e C°(0,+o0; H5 ()N C(0,+00; L*(Y))

ug € L (0, +o0; Hy () n WH (0, +o0; L*(QY))

w; € L (0, +00; H3 (Q)) n W1 (0, +00; L*(Q2))

Demonstracdo. Do Teorema 5.9 segue que o semigrupo {T'(1)};>o admite atrator global 2 e é quase-

estavel sobre 2. Assim, basta combinar o Teorema 3.31 com o Teorema 5.6. ]

Neste capitulo conseguimos estabelecer a existéncia de um atrator global 2 para o semigrupo
nao linear {T (1)} ;>0 associado ao sistema (5.3)-(5.6), sob a formulacio equivalente (5.99), no caso em
que os pesos fracionarios n e { sao estritamente positivos. As Proposicoes 5.7 e 5.8 asseguraram que
o semigrupo é compactamente assintotico e gradiente, o que nos permitiu recorrer ao Teorema de
Lasiecka para concluir que 2 existe, é invariante, e é precisamente a unido das variedades instaveis do
conjunto de pontos estacionarios (isto é, 2 = .#“(.#)). A demonstracio do teorema 5.9 completou
essa linha de construcdo, com a verificacido de que a funcao de Lyapunov é adequada, os pontos fixos
sao limitados e a estrutura de quase estabilidade garante a finitude da dimensao fractal. Por fim, no
corolario, mostramos que as solucdes que pertencem ao atrator ou convergem a ele apresentam
regularidade adicional, estendendo a solucao branda a uma “solucao forte global” com estimativas

nas derivadas.

Contudo, mesmo tendo alcancado esses resultados centrais, permanecem algumas questoes
abertas e aspectos mais refinados do comportamento assintético que ndo abordamos completamente

no presente capitulo, como por exemplo a questao da existéncia de atrator global para o caso em
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que 11 =0 ou ¢ = 0. A seguir discuto os principais aspectos remanescentes e possiveis direcoes para

investigacoes futuras.

Um ponto delicado e frequentemente desejavel em analise de atratores é a obtencao de taxas
de atracao explicitas, isto &, estimativas quantitativas de como a distancia de uma érbita a 2l decai
com o tempo. No contexto classico de problemas lineares ou fortemente dissipativos, € comum
obter decaimento exponencial, o que permite a definicdo de um atrator exponencial: um conjunto
que atrai todas as orbitas em tempo assintético com taxa exponencial e tem dimensao fractal finita,

possivelmente maior que a do atrator global, mas que fornece controle mais forte da convergéncia.

No presente modelo, porém, ndo exploramos explicitamente se o semigrupo admite um
atrator exponencial. Os argumentos utilizados para provar a existéncia do atrator global e a quase
estabilidade baseiam-se em estimativas que garantem decaimento “mais lento” (por exemplo,
integrando em intervalos de unidade e usando a funcao F(t), conforme (5.135)). Assim, ndo temos
uma estimativa exponencial clara da distancia entre T' (1) Uy e 2l. Em geral, em sistemas hiperbolo-
parabolicos ou semilineares com memoaria ou no linearidades fortes, ndo se espera decaimento

exponencial.

Portanto, em trabalhos futuros, vale explorar se é possivel construir um atrator exponencial
para este sistema, encontrando decomposicoes “contrativa + compacta” que permitam estimativas
exponenciais, seguindo métodos classicos. Se isso falhar, tentar formular e provar a existéncia um

atrator com taxa polinomial de atracdo em algum sentindo.
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Capitulo 6

Sobre um modelo nao autonomo de equacao de
onda com condicao de fronteira acustica e sobe
o efeito de amortecimento interno nao linear e
amortecimento do tipo derivada fracionaria na

fronteira.

Além dos modelos classicos de vibracoes estruturais, um dos temas que despertou grande
interesse na teoria de equacdes de evolucao foi a introducdo das chamadas condicoes de contorno
acusticas. Esse conceito foi inicialmente proposto por Beale e Rosencrans (BEALE; ROSENCRANS,
1974), no estudo da equacio da onda sujeita a condicdes de contorno derivadas de modelos de

propagacao acustica em meios com fronteiras reativas localmente.

O ponto de partida consiste em considerar um dominio preenchido por um fluido em repouso,
sujeito a pequenas perturbacoes irrotacionais. A fronteira do dominio, em vez de ser tratada como
rigida ou perfeitamente absorvente, € modelada como uma colecdo de osciladores harmonicos
independentes, que reagem ao excesso de pressdao como molas amortecidas. Essa formulacao
conduz a um sistema acoplado entre a equacao da onda no interior do dominio e uma equacao

diferencial ordinaria que descreve o deslocamento normal da superficie.

Na modelagem de Beale e Rosencrans (BEALE; ROSENCRANS, 1974), a funcdo u = u(x,t)
representa o deslocamento do fluido no interior do dominio, satisfazendo a equacido da onda
uy; —Au = 0. Na fronteira, introduziu-se uma funcao 6 (¢, ) para descrever a oscilacao vibratéria

independente. Essa oscilacao satisfaz a equacao:
m5”+ d6t+ ko = —pUy,

onde m é a massa por unidade de area da fronteira, d a resistividade do material, k a constante da
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mola e p a densidade nao perturbada do gas.

Além disso, a continuidade da velocidade normal entre o gas e a fronteira impode a condicao:

0
5.6, 1) = —a—”(é—va(f, 0,0,
v

ou ) .
onde 3 denota a derivada normal exterior de u.
v

A anélise apresentada em (BEALE; ROSENCRANS, 1974) mostrou que o operador associado
ao sistema é maximal dissipativo, garantindo que o problema de Cauchy é bem posto segundo o
Teorema de Lumer-Phillips. Posteriormente, Beale (BEALE, 1976) aprofundou a investigacao espectral
do gerador do semigrupo associado a essas condicoes de contorno. Diferentemente dos problemas
classicos de contorno da equacao da onda, cujo resolvente é compacto e o espectro consiste apenas
em autovalores discretos, verificou-se que, neste caso, o espectro contém sempre parte essencial.
Esse fendbmeno esta diretamente ligado a dependéncia explicita da condicdo de contorno em relacao
ao parametro espectral. Em particular, para coeficientes constantes, demonstrou-se a existéncia
de sequéncias de autovalores que se acumulam no espectro essencial, revelando uma estrutura

espectral significativamente mais complexa.

A partir desses trabalhos pioneiros, Frota e Goldstein (FROTA; GOLDSTEIN, 2000) estenderam
a analise para equacodes de onda nao lineares com condicdes de contorno acusticas. Eles provaram
a existéncia e unicidade de solucoes globais para uma ampla classe de problemas, consolidando a
relevancia do modelo e ampliando sua aplicacao para equacoes nao lineares de Kirchhoff e Carrier.
Por meio de uma formulacao em termos de semigrupos, mostraram que o sistema é regido por um
semigrupo de contracdes em um espaco de Hilbert de quatro componentes, incorporando tanto as

variaveis internas quanto o deslocamento da fronteira.

Mais precisamente, Frota e Goldstein (FROTA; GOLDSTEIN, 2000) consideraram um dominio
Q cR", aberto, limitado e com fronteira regular, divididaem I' :=TyuT';, e estudaram o seguinte

sistema:

ure— M (fqlul*dx) Au+ Clug|"u, =0; sobre Qx (0,T),
fO1+86¢+hé=—-puy; sobrel'; x(0,7),

L u=0; sobrel'gx(0,T),

0;= 6—”; sobre I'y x (1, +00),
ov

u(x,7) = u(x), us(x,7) = ul(x); sobreQ,

obtendo existéncia e unicidade de solucao forte.

No que se refere ao comportamento assintoético, Frigeri (FRIEGERI, 2010) investigou equacdes
de onda fracamente amortecidas com condicoes de contorno acusticas, estabelecendo a existéncia
de conjuntos absorventes e de um atrator global no espaco de fases, com regularidade adicional e,

notavelmente, a existéncia de atratores exponenciais. O problema estudado por Frigeri (FRIEGERI,
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2010) foi
U —Au+u+ f(u)+cu; =0; sobre Q x (0,+00),
0;+0+dd,=—-uy; sobre €T x (0,+00),
10, = O_u; sobre T x (0, +00),
ov
u(x,0) = up(x), ui(x,0) =uy(x); x€q,
6(£,0)=60(8), 64(£,0)=061(8); €€T,
com N =3.

Ma e Souza (MA; SOUZA, 2017) analisaram a versdao nao-auténoma do problema, na qual forcas

externas dependem explicitamente do tempo:
U —Au+u+ f(u)+cuy=h; sobre Q x (0, +00),
0;+06+dd;=—u;; sobre €T x (0,+00),
ou
10, = a—; sobre I x (0, +00), (6.1)
v

u(x,0) = up(x), ui(x,0) =u;(x); xeQ,

6(¢,0) =060(8), 6:(¢,0)=061(5); ¢eT.

demonstrando a existéncia de um processo de evolucdo bem posto e de um atrator pullback minimal
no contexto de bacias de atracao generalizadas. Essa abordagem permite tratar nao linearidades
criticas e analisar a semicontinuidade superior de atratores quando a perturbacao nao-auténoma

tende a zero, constituindo uma extensao natural das andlises de Frigeri (FRIEGERI, 2010).

Por outro lado, Toméas Caraballo e colaboradores (CARABALL et al., 2010) estudaram uma
equacao de onda nao linear e ndo-autbnoma, com dependéncia temporal via o coeficiente do

amortecimento friccional:
U —Au+ f(w) + B(u; =0,

onde fB: R — (0 +o00) é uma funcdo adequada. Mais recentemente, Miranda, Raposo e Freitas
(MIRANDA; RAPOSO; FREITAS, 2025) investigaram a existéncia de atrator global e exponencial para

um modelo nao linear autondémo de ponte suspensa, incluindo amortecimentos do tipo nao linear.

Em sintese, as condicdes de contorno acusticas introduzidas em (BEALE; ROSENCRANS, 1974;
BEALE, 1976) e posteriormente desenvolvidas em (FROTA; GOLDSTEIN, 2000; FRIEGERI, 2010; MA;
SOUZA, 2017) constituem um modelo matematico rico e desafiador, com aplicagcdes tanto em acustica
tedrica quanto na andlise qualitativa de equacdes de evolucao nao lineares. Inspirado pelo modelo
nao-auténomo (6.1) estudado em (MA; SOUZA, 2017), pela dependéncia temporal introduzida em
(CARABALL et al., 2010) e pelo amortecimento friccional nao linear de (MIRANDA; RAPOSO; FREITAS,
2025), o presente capitulo investiga a existéncia de atrator pullback para uma equacdo de onda com

fronteira acustica, sujeita a um amortecimento friccional interno nao linear e um amortecimento
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fracionario na fronteira, ambos com coeficientes dependentes do tempo:
Ure(x, 1) — Au(x, 1) + u(x, 1) + f(u(x, 1) + c(0) g(us(x, 1)) = h(x, 1); (x,1) €Qx(1,+00),
61‘[(6) t) + 6(5» t) + d(t)a(:rna(é‘, t) = _(ut)|r (éy t)y ((f! t) € r X (Ty +OO),
0
51(&,1) = a—:(e, 0; €D el x (1, +00),

u(x, ) = ud(x), u,(x,7) = ul(x); xeq,

5(E,1)=06%), 6,(,1)=81(&); €eT,

(6.2)
(6.3)

(6.4)

(6.5)
(6.6)

onde Q c RY é um conjunto aberto limitado bem regular com fronteira I' := dQ, t = 7 é a variavel de

tempo (com 7 € R fixo), x € Q e é € T representam as variaveis espaciais do interior e da fronteira

de Q respectivamente, v é o vetor normal unitario em T, exterior a Q, e 87" é o operador derivada

fraciondria de Caputo exponencialmente modificada de ordem 0 < @ < 1 e peso n = 0.

Assumiremos as seguintes hipdteses técnicas:

(i) ¢,d: [1,+00) — R sdo funcdes de classe C!, tais que, existem constantes ¢y, c;,do, d; > 0

satisfazendo:

c)=cy, —c1<sc()<0,dt)=dy e —dy<d'()<0; Vt=T1.

(i) feClR), e existe uma constante C > 0 tal que:

If ()| < CA+ulP™h; VueR,

N
onde p=3,se Ne{l,2} e ISpSN 5 se N = 3.

’

(iii) Existem constantes my>0e 0 < § <1 tais que:
F(u) = —guz—mf e f(wu—-F(u) = —guz—mf; Yuel,
onde F(u) = [} f(s) ds.
(iv) ge CY(R) satisfazendo g(0) =0, e existe constante m > 0 tal que

m<g'(); VveR

(v) hel?

e (R; L?(Q)) e existe o > 0 (a ser fixado) de modo que

0
f 7 1(3) 172 ) ds < 00,
—00

e consequentemente:

t
f e PN h(s)II7, o, ds <oo; VIER,
—00

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)
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Funcdo c(t) comc(t) =cpe —c; =<' (1) <0
4 .
Condicao para a: c(t)

C1
O<as——
C()C

Oz\c(r) =¢cy(1+C)=3.0

Il t\l
-2 -1 1 2 3 4
a(t—1) C()=1.0
c(t)=cop+ (cgCle **™
_() 0+ (coC) o C=20
c(t)—cyp=coC
M-c=c a =025

Aplicando a Proposicéo 4.4, podemos reformular o problema (6.2)-(6.6) no seguinte sistema ampliado

equivalente:
Ure(x, 1) = Aulx, £) + u(x, 1) + f(ulx, 1) +c()g(u(x, 1)) = h(x,t); xeQ e t>T1, (6.12)
61’1’({) t)+5(€7 t)+,)/(t)pr(y)(p(éy f;J/) dy:_(ut)|r(§y t)) €€r; e t>T7 (613)
&L+ +MeE Y —p(6,(E,1)=0; (€T, t>7 e yeR, (6.14)
64, t):g—:(f, n; (el e t>1, (6.15)
ulx,17) = ug(x) e u;(x,7)= u% (x); xeQeyeR, (6.16)
8,1 =62, 6:&1) =6, ep&,1,)=0; (€T eyeR, (6.17)
TS B da(r)
onde p(y) =yl e y(n)= —F(a)F(l mpet

Observe que da hipotese (6.7), segue que y : [T, +00) — R e uma funcio de classe C! tal que:

Y =yo e —y1<yY () <0; Vr=T1, (6.18)
onde
B dj (i=0,1)
YiTT@ra-ao -

Este capitulo esta dividido em duas secdes. Na primeira, utilizamos a teoria de semigrupos de
operadores lineares limitados, juntamente com a teoria dos sistemas CD de Kato, com o intuito de

demonstrar a existéncia e unicidade de solucao forte local para o problema (6.2)-(6.6). Em seguida,
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por meio de estimativas de energia, mostramos que essa solucao é, na realidade, globalmente
definida. Além disso, a partir de estimativas envolvendo a norma das derivadas da solucdo, obtemos

resultados de regularidade que reforcam a robustez da analise.

Na segunda secao, com base na teoria de Processo de Evolucdo desenvolvida na segunda
secao do Capitulo 3, mostramos a existéncia de um atrator pullback em um universo de atracao
generalizado 2. Para tal, demonstramos que o Processo associado ao problema admite uma familia
de conjuntos 2-pullback absorventes e é & assintoticamente compacto. Isso foi feito com hipdteses
relaxadas para a nao linearidade f, quando a dimensao do dominio N < 3, e condi¢ées mais restritas

para N > 3.

6.1 Boa-Colocacao

Nesta secdo, reescreveremos o problema (6.12)-(6.17) na forma de um problema abstrato
de Cauchy nao linear e ndo autbnomo. Mostraremos que a colecdo (dependente do tempo) de
operadores que descrevem a parte linear possui dominio constante D, e que cada um deles é gerador
infinitesimal de um Cy-semigrupo de contracoes. Além disso, a condicao de contracdo dessa familia
de semigrupos é uniforme no tempo, ou seja, as constantes que controlam o crescimento da norma

sao independentes de t.

Em seguida, verificaremos que a aplicacao ¢ — </(t), que associa o instante ¢ ao operador
linear correspondente, é Lipschitziana de [7, +o00) em £ (A, D). Isso nos permitira concluir que a
tripla ({<7 (1)} >, 7, D) constitui um sistema CD de Kato, o qual garante a existéncia de um processo
de evolucao {P(t, s)},;>s associado a parte linear ndo homogéneo do problema. Assim, obtemos a

existéncia de uma Unica solucao branda para esse problema, no sentido da teoria de Kato.

Posteriormente, provaremos que o operador que descreve a parte nao linear é Lipschitziano
na variavel temporal r = 7, uniformemente em subconjuntos limitados de .2, e localmente Lipschitz
na variavel U € #. Além disso, como a forca externa satisfaz h € L?OC(IR; L?(Q)), poderemos aplicar
os resultados de existéncia e unicidade apresentados na Secao 2. Dessa forma, concluiremos que o

problema (6.12)-(6.17), e portanto também o problema (6.2)-(6.6), admite solucao local.

Na sequéncia, introduziremos a energia total do sistema e, a partir de estimativas apropriadas,
demonstraremos que a norma da solucdo permanece limitada em funcdo do tempo ¢. Esse resultado
implica que a solucdo pode ser estendida para todo ¢ = 7, garantindo a existéncia de solucao
global. Finalmente, utilizando estimativas adicionais sobre a norma da derivada temporal da solucao,
obteremos resultados de regularidade, concluindo que a solucao global encontrada é, de fato, uma

solucao forte.
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6.1.1 Formulacido do Processo Evolutivo Linear

Queremos agora reescrever o problema (6.12)-(6.17) como um problema abstrato de Cauchy.

. . . - . ou
Para isso, introduzimos a funcao vetorial U = (1,6, v,z,¢),emque uy=ved; = vl =z.
v
Assim, temos:
U)-L UMD +ZF U, H)=%(1); t>T1, (6.19)
U@ = U, '
onde U; = (12,69, ul,61,0); paracada r > 71,
A (t) : D(A (1)) € A — A é o operador linear definido por:
v
z
AU = Au-u ; (6.20)
_5—y(1) fR PeWdy - v,
~(P+ne+pyz
F . [1,+00) x . — A e 4 [1,+00) — S sao aplicacoes definidas por:
0 0
0 0
F(t,U)=| fw+c)g) e Yn=| h (6.21)
0 0
0 0

Observe que para o problema de Cauchy (6.19) ser equivalente ao nosso problema ampliado
(6.12)-(6.17), basta escolher um espaco de fase # conveniente e um dominio D(</ (1)) tempo-

independente. Para tal, considere o seguinte espaco de fase: (A, (-, #), onde

A= HY Q) x L>(I) x L*(Q) x L*(T") x L>(R; L*>(T"))

(U, ﬁ)(]f = <u, L7>H1(Q) + <6, g>L2(F) + <U, ﬁ>L2(Q) + <Z’Z>L2(r) + <(p, ¢>L2(IR;L2(F))'

Observe que para </ (1)U € #, deve-se ter note que devemos ter u e H*(Q), ve H'(Q), 5 €
I2(') e ze L*(T). Do Teorema de traco (Teorema 1.63) em H2(Q) e em H'(Q), tem-se u. € H32(I),

ou
3 € HY2(T) e v, = (uy)), € H'?(I') respectivamente. Contudo, como z = §; = %’ segue que
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z e HY2(I"). Assim, considere o dominio constante D(<#(t)) = D, para todo t = 7, onde

ue H*(Q),
5el*(),
D:=X (u,6,v,z,¢) ve H'(Q), > (6.22)
ze HY2(I); z= 2_3’

@ € L2(R; L2(M)); 1ylo, —(y* + M + p(y)z € L2(R; L2(T)).

Observe que D é denso em /. Agora, defina:
(U, 0y =<u, W m ) + <0, 5>L2(F) + (U, V)20 €2, 2) 20y + Y@, P) 12w 12(1)

para U = (1,6,v,2,¢) e U= (ﬁ,g, U,Z,() em J.

Note que, para cada t = 7, (S, {-,-);) € um espaco de Hilbert (munido da norma ||U||§ =

(U, U),) topologicamente equivalente ao espaco (A, {-,*) ).

Observacao 6.1

Observe que |- |l e || - IIs sAo normas equivalentes em #, quaisquer que sejam t,s = T.

6.1.2 Existéncia de Solucao Local

Proposicao 6.2
Para cada r > 7, o operador linear </ (t) : D ¢ A4 — A€ definido em (6.20) é gerador infinitesimal de
um Cy-semigrupo (de operadores lineares limitados) de contracoes {S;(s)}s>; sobre /. Além disso,

existem constantes M =1 e w = 0 independentes de ¢, tais que:

1S:() Nl exy < Me*;Vt,s=7. (6.23)

Demonstracdo. Inicialmente, mostraremos que para cada ¢ = 7, o operador linear </ (t) é dissipativo

e maximal. Seja U = (1,9, v, z,¢) € D. Entao para cada ¢ = 7, temos:

(LU, Uy, = va-V_udx+f
Q

uadx+fz5dr+f Auvdx—f umx+dx—f5-zdr
Q T Q Q T

Y fR fr PIPGIZAT dy - fr v, ZdT -y (D fR fr G2 +mlpEdrdy

+y(t)f9p(y)Wzdrdy.

Como U € D, segue que ve H'(Q), ze H?( e z = g—;‘. Assim, utilizando a Férmula de Green,
temos:

_ 0 _
fAuidx:—f Vu-Vvdx+f?|r—udF:—f Vu-Vvdx+f§|rsz.
Q Q r ov Q r
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Simplificando os termos semelhantes, obtemos:

(AU, Uy, = f[m»%-w-ﬁ] dx+f |v-a-v-1] dx+f[zv|r—ﬁ|r]dr
Q Q r

fr[z-S—ﬁ]dr+y(t)fRfrp(y)[zW—zW]drdy

(1) fR fr G2 +mlp(EdT dy.

Logo:

(AU, Uy; = 2if Im[VvV_u]dx+2if Im[umdx+2if Im[(zi|r]d1“+2iflm[z5] dr
Q Q Q T

+2i}f(l‘)/ﬂ;frp(y)1m[z<ﬂ(y)] dde—)/(t)fRfr(y2+n)l(p(y)lzdrdy.

Finalmente, tomando a parte real, temos:

Re{(«4U, U);

IA

onde yg = (ver hipoteses em (6.18)).

0
I'a)I'(l —a)
Portanto, o operador </ () é dissipativo para todo ¢ =7.

—Y(t)fRfr(y%n)kp(y)Fdrdy

—YofRfr(yz+17)|(p(y)|2dde50,

(6.24)

Mostraremos agora que para cada t = 7, o/ (t) € um operador maximal. Para tal, iremos provar

que, dado W € A, existe um vetor U € D(«/(0)) tal que (I — </ (1))U = W. Isto equivale a resolucao

do seguinte sistema de equacoes:

u-v=fi,
6—z=f,

v-Aut+u=g,
z+6+y(t)pr(y)(p(y) dy+v, =g,
@) +(V* +mpy) = p(y)z = h(y),
onde W =(f1, f2,81,82,h) e U =(u,6,v,z,¢).

De (6.25) e (6.26), segue que:

v=u-fi e z=6-f.

Substituindo a segunda equacdo em (6.30) na equacao (6.29), obtemos:

h(y) (y) (6
o =D fyfz 4y PO0
y-+n+1 y+n+1 ypys+n+1

Aplicando o Lema 4.5 a expressao (6.31), obtemos:

Y(t)pr(y)q)(y) dy=vy(@t)[H(a,n,1)+Cla,n, D@6 - f2)],

(6.25)
(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)
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onde H(a,7n,1) = f |H(E, a,n,1)dT.
T
Aplicando a primeira equacao de (6.30) na Equacao (6.27), temos:
2u—Au=fi+g, (6.33)

e substituindo a segunda equacao de (6.30) e a expressao obtida em (6.32) na Equacao (6.28),

obtemos:

[2+y(O)Cla,n,D]6+uw, = [1+y(O)Cla,n, D] fo+ g+ () —y(®) H(a,n,1). (6.34)

Multiplicando a equacao (6.33) por € HY(Q), integrando sobre x em Q, e, em seguida,

aplicando a Formula de Green e a segunda equacio em (6.29), obtém-se:

2[ uﬁ'dx+f Vuﬁ'dx—faﬁdrzf Fl(t)ﬁdx—ffzﬁdr, (6.35)
Q Q r Q r
onde F ()= fl + 81.-
Por outro lado, multiplicando a equacéo (6.34) porge L?(I), integrando sobre { em I, obtemos:
c(t) f 55dT + f 1,6 dr = f Fy(né dr, (6.36)
r r r

onde C(t) =2+y()C(a,n,1) e K () = [1+y(0)C(a,n, DI fo+ g+ (f1), —y(®) H(a,n,1).
Agora, observe que o sistema (6.35)-(6.36) é equivalente ao problema variacional de encontrar
um vetor (u,8) € H'(Q) x L?(I) tal que

B((u,6), (#L,0)) = L(@L,6); V(iL,6) € HI(Q) x L*(I), (6.37)

onde B: [H'(Q) x L*(1)] x [H'(Q) x L*(T')] — C é a forma sesquilinear definida por:

B((u,6), (a,S)):zf uﬁdx+C(t)f6§dr+f VuV_ﬁdx+2ifIm[u|r5] dr
r Q T

Q

e £ :H'(Q) x [*(T) — C é a forma antilinear definida por:

L, ) = f Fl(t)ﬁdx+f Fo ()5 dT —f foli, dr.
Q r r
Como feito nos capitulos anteriores, nosso objetivo é aplicar o Teorema de Lax-Milgran. Para

testar a continuidade da forma sesquilinear 28, analisamos termo a termo. Sejam (u,9), (ﬁ, 5) €
H'(Q) x L*(T'). Note que:

'Zf uiidx
Q

‘C(t) f 86dr
T

<2| u”LZ(Q) | ﬁ”Lz(Q) <2 u”Hl(Q) | ﬁ||Hl(Q);

< COISN 2y 181l 121y
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fwﬁdx
Q

= ”Vu”LZ(Q)Hva”LZ(Q) = ||u||H1(Q) ||L7||H1(Q)-

Além disso, observe que da continuidade da aplicacdo traco (ver Teorema 1.63), existe constante

Co >0 tal que [luy |l 2y < Collull g (- Assim, da Desigualdade de Cauchy-Schwarz segue que:

Zifrlm[u|r~] dr szfrm,réﬂdr52||u|r||L2(r)||5||Lz(r)s2co||u||H1(Q)||5||Lzm.

Somando as estimativas obtidas acima, temos:

A

1B (1,0), (@,6)] = 3llull ol gy + CONS 2 181l 2y +2Collull 1y 161 12y

IA

CH)l(u, N = 12(r)»

onde C(7) = max{3, C(£),2C,} ( fixo).

Agora mostraremos que 98 é coerciva. Seja (u,0) € H(} (Q) x L*(T"). Observe que:

Re(ZifIm[u|r6] dx) =0.
T

Entao

Re B((,8), (,0) = 20wl + COISIZ, oy + 1Vl = C (Il 0+ 1612

Cll(u,8)

2
HY(Q)x 2T’
onde C =min{1,C} e C=2+y,C(a,n,1).

Por fim, dado (&, W) € Hy () x H§(Q), temos:

Fl(t)fgzﬁdx = ”Fl(t)”LZ(Q)”ﬁ”LZ(Q))

fr By (08 dx| < 120l 20 181 20

Ul:fzmr dx| < ||f2||L2(r) | ﬁlr”LZ(l") = C0||f2||L2(r) ”ﬁ”Hl(Q);

onde Cy > 0 é a constante da continuidade da aplicacdo traco em H' (Q).

Somando as estimativas obtidas acima, temos:
1L (#,0)] < (IFy (8) | 120y + Coll foll 20y) TN g1y + IE2 () 20y 16 1 2y < KON, 8) | 11 ey w20y

onde K(1) = max { | F; (t) 22 + Coll f2ll L2 () ||F2(t)||L2(r)}-

Portanto, do Teorema de Lax-Milgram, existe uma Unica solucdo (u,8) € H'(Q) x L?(T) para o

problema variacional (6.37).
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Como fi € H'(Q) e f> € L*(T'), definindo v e z como dados em (6.30), tem-se que v € H!(Q)
e z € L*(I'). Além disso, como h € L?(R; L*(I)), definindo ¢(y) pela expressio dada em (6.31), é
evidente que |ylg € L2(R; L*(T) e — (y* + 1) @ + p(y)z € L2[R; L*(Q)).

Agora, fazendo 5=0e i), = 0 no problema variacional (6.37) e utilizando a férmula de Green,
obtemos:
2[ u'_Lde—f Au-'_Lde:f Fi(Hidx; Yiie H(Q),
Q Q Q
e portanto:
—Au+2u=F;(1). (6.38)

Como fi € H'(Q) e g1 € L?(Q), aplicando a Teoria de regularidade eliptica na Equacio (6.38), obtemos
que u € H?(Q). Assim, do Teorema de traco em H?(Q), segue que u. € H3?(I) e g—z e HY2(I).

Por outro lado, fazendo 77 =0 em QuUT no problema variacional (6.38), obtemos (6.36); para
toda funcio 6 € L2(T). Portanto
Co ()8 + uy. = Fa(2). (6.39)

Note que f,, g2 € L*(I) e . € H3'?(T'). Como fi € H'(Q), do Teorema do traco, segue que (f})|; €
L?(T). Assim da Equacdo (6.39), segue que & € L2(D).

Finalmente, utilizando a férmula de Green no problema variacional (6.37), fazendo 77 =0 em Q

ed=0em T', obtemos:

0
auu|rdr f&qrdr— ff2u|rd1“ Viie H'(Q).
Entao
ou
——Z_5= . 6.
3y - (6.40)

Combinando a segunda equacao em (6.30) e equacao (6.40), obtemos: z = 6—“ . Assim, ze HY2(T).

Portanto U = (u,8,v,z,¢) € D, e é solugdo do sistema (6.25)-(6.29). Isto é, satisfaz (I —
(1)U = W. Logo, </ (t) € maximal, qualquer que seja t = 7.

Do do Teorema de Lummer-Phillips (Teorema 2.31) segue que, para cada ¢ > 7, o operador
& (t) é gerador infinitesimal de um Cy-semigrupo de contracoes {S;(s)};>0 sobre o espaco de Hilbert

J. Assim, para cada t = 7, existe uma constante w(t) =0 tal que

IS¢l < ew(t)s;VS >T.

Para finalizar a demonstracao, precisamos mostrar que existe uma constante w = 0 indepen-
dente de ¢ satisfazendo (6.23). Como |- ||; e || - || s Sdo equivalentes, qualquer que sejam t,s > T (ver
Observacao 6.1), as Observacoes 2.42 e 3.34 garantem que para obter (6.23), é suficiente mostrar
gue, existe uma constante ¢ > 0 tal que

1UIl¢

<l v s>1e VU e - {0} (6.41)
I1Uls
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Dado ¢ > 0 qualquer, observe que e~ = 1 para todo t, s = 7. Além disso, como Y'(t) <0 para
todo t = 1 (ver hipotese (6.18)). Assim, para todo ¢t = s = 7, do Teorema do valor médio, existem
r € (¢, s) tais que:

clt—s|

Y@ =y(s)+Y' (r)(t—s) <y(s) < e Sly(s).

Assim, dado U = (u, 0, v, z, ) € A, obtemos:

2 2 - - 2 2 2 2

+ (Y0 =y N 1017 .12y < O
e portanto, obtemos (6.41). O]
Proposicao 6.3
d
E.Qm) € L (1, +00; £(H,D)), (6.42)

onde &/ (t) : D c A — A é o operador linear definido por (6.20).

Demonstracdo. Note que:

0
0
d
— A (U = 0 ;
T (1)
—y’(t)pr(y)q)(y) dy
0
Entdo, dado U = (u,0,v,z,p) e De t = T, tem-se
d 2 2 2
H—w‘(t)U = 'y’(t)f pedy =y (0> f pMe(y)dy (6.43)
dat R I2(T) R L2(T)
Como —y; <y'(f) <0< yy; paratodo t = 7 (ver hipdtese (6.18)), temos que
Y (Ol <y Viz1. (6.44)
Por outro lado,
2
— 2
'URp(y)go(y) 4 12(n) =VC@n |0 +m" 0 ey - (6.45)

Definindo [|UIl%, := IUII%, + | A(t)U|%,, aplicando as estimativas (6.44) e (6.45) em (6.43),
obtemos:

2

IA

(,}/1)2 V C(ayn) || (y2 + n)llz(p”iZ(R;LZ(F))

2
ClUIlp,

2
=y

d
H—d(t)U fp(y)go(y) dy
dt R

L2(T)

IA
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onde C = max{(y1)?, \/C(a,n)}.

d
Portanto Ed(t) € L (A, D) para todo ¢ =1, e como a constante C ndo depende de ¢, temos
(6.42). O

Proposicao 6.4
A aplicacdo Z : [1, +00) x A — A€ definida em (6.21) é Lipschitziana em ¢ = 7, uniformemente em

subconjuntos limitados de .#, e localmente Lipschitz sobre a variavel U € #.

Demonstracdo. Da hipotese (6.8) e do Teorema do Valor Médio, temos que:

|f(w) = F@] < |f (uo)llu— il < C(A+ |uplP Hlu—1ll; Yu, i€ R, (6.46)

N ~
onde p =3, se Ne{l,2}, lspsN 2,seN23 e up=Aou+1—-2Ap)u,com0<Ay<]l1.

Por outro lado, como g € C!(R) (ver hipétese (6.10), existem constantes L, R > 0 tais que
lg(v)—g(W)I=<Llv-7vl; Vlv|<Rel|V|<R. (6.47)

Além disso, utilizando as hipoteses (6.7) e (6.10), obtemos:

lc(t) —c(s)|-1g ()] lc(t) —c(s)|-1g(v) — g(0)]

ciLlt—s|-lv=0|<cLR|t-s|; Vt=s=T e V|v|<R, (6.48)

IA

Sejam U = (4,6, v,z,¢,$), U = (iI,5, U, Z,, ) pontos na bola B /=(0) < A, onde R=R?*>med(Q),e
up = Aou+(1—-2Ag) it € H'(Q), com 0 < Ag < 1. Das imersdes de Sobolev, temos que H' (Q) — L>®(Q),
se N=1; H(Q) — [3(Q) — L*(Q), se N =2; e H(Q) — [**(Q) — LP*1(Q), para N = 3 (Ver
Teorema 1.25 e Corolario 1.26). Entdo, para N = 1, temos que || ugll o) < Colluoll g1y < Co \/E,

com Cy > 0. Assim, de (6.46), segue que:

1700 = F@E g = C? [ 1+l = dx

2 ~
< C*(1+ lluglfoo(qy) 1= Tll 7
< C?[1+2(Col*R+(Co)* (R*] lu— Wl (6.49)
uma vez que | u— ﬁ”iz(a) <|lu- ﬁllip@)-

Para N = 2, temos ||ullsq) < Collull g1y < CoV'R € llulljaiey < Cillullznqy < C1 VR, para
todo u € H'(Q). Entdo, de (6.46), segue que:

1700 = F@Es gy = C [ (1 ol dx

:czf |u—a|2dx+2c2f |u0|2|u—a|2dx+c2f luol*lu— a)* dx
Q Q Q

2 ~12 2 2 ~n2 2 4 ~12
< Clu—1ull +2C ol lu—ull +C ol s ) Il —ull

12(Q) L4(Q) L4(Q) L4(Q)
< Cllu— Tl g +2C%(C) luoll 3 g | = Tl ) + CHC1Co) o ) 1t = Tl
<C[1+2(C)*R+(C1Co)* (B*] Nu =TIl (6.50)
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Para N = 3, temos [[ull ;200 < Coll ull yp1(y < CoV'R € llull o1y < Crllull ) < C1 V'R, para
todo u e H'(Q). Como
1 2 20-1) 2
P =1 e (p=1)

= +—:]_,
p+1l p+1 2p 2p

aplicando de (6.46) e da Desigualdade de Holder (Proposicao A.5), segue que:
1700~ @) = C [ 1+ 1ol ™~ dx
Q

:sz Iu—ﬁlzdx+2C2f Iuolp_llu—ﬁlzdx+C2f luol?®~V)u—u)? dx
Q Q Q

~ -1 ~ 2(p—1 ~
< CPllu= 3y )+ 2C% MU0l o 1= B2 s ) + CPlluoll 0 o) = 13
20, 5112 2 p+1 p-1 _ 2 2 2p 20-D . ~2
< C*lu~ @l 3p g, +2CHCOP luolyy o, 1= Tl o) + C2(Co*Plluolf o) =l g
<C*[1+2C)P RV + (C*P (R u =Tl - (6.51)
Por outro lado, de (6.47), segue que:
lgW) - g7z, = fQ lgw) - g dx < I fQ lv-0PPdx=Lllv-1l5,, (652

Portanto, das estimativas (6.49)-(6.52), obtemos:

1 (2, U) - F (1, U)|1%

If (@) +c(DgW) = f(@ - (gD

< 20 fw) ~ F@I7 g +2cl@IIgW) ~ gD 72 g,
< Llu-al, g +Iv-71%)
<

LIU - Ull%; VU,ﬁeB\/E(O)chthzr,
onde L = max{K,2[L-c(1)]*} e
L=2C*[1+2(Co)*R+ (Cp)*(R)?], seN=1;
L=2C*[1+2(C)*R+(C1Cp)*(R)*], se N=2;
L=2C*[1+2(C)PT R PV2 1 (CY*P(R)P'], seN=3.

Finalmente, dado t=s>te Ue€ B\/}_?(O) c A, de (6.48), segue que:

I1F (1, U) = F (5, D)5, = le(0) = () PIg W) T2y = le(®) ()] fQ lg)I* dx

(C)?L?R|t - s>

IA

Teorema 6.5 (Existéncia de Solucdo Local)
Sejat €R. Se U, = (12,62, ul,61,0) € 7, entdo existe T < f,4x < +00, tal que o Problema de Cauchy

nao auténomo (6.19) admite uma Unica solucio branda:

U € C°([0, timax); 7€), (6.53)
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dada por:
t
U = P(t,T)UT+f P(t,8)[9(s)—F(s,U(s)] ds; VI €T, tmax), (6.54)

onde {P(t, )} ;=5 € 0 processo de evolucao gerado pelo sistema CD de Kato ({7 (£)} >, 7, D).

Se U;e De ge H, (1,+00;L?(Q2)), entdo a solucdo obtida é uma solugao forte.

Demonstracdo. Observe que, aterna ({<#(1)};>;,-#, D) forma um sistema CD de Kato (ver Observa-
¢30 3.34). De fato, Ja vimos que D esta imerso e é denso em # e que D(A(t)) = D, paratodo t >,
e portanto a condicao (i) para ser sistema CD de Kato é satisfeita por ({<#(#)};>;, 4, D). Os itens (ii)

e (iii) seguem das Proposicdo 6.2 e Proposicdo 6.3 respectivamente.

Por outro lado, da Proposicao 6.4 segue que a aplicacao & : [1,+00) x A — A definida em
(6.21) é Lipschitziana em t > 7, uniformemente em subconjuntos limitados de #, e localmente
Lipschitz sobre a variavel U € .#. Ent3o, como h € L?oc (R; L2(Q) L}OC (R; L?(Q)) (ver hipotese
(6.11)), do Corolario 2.27 e da Observacao 3.34 segue que existe T < fnax < +oo € uma solucdo branda

U: (1, tmax) — € do problema (6.18), satisfazendo (6.53) e (6.54).

Além disso,se U; e De he Hlloc(r, +00; L2(Q)) © Wllo’i(r, +00; L?(Q)), do Corolario 2.27 e da

Observacao 3.34 segue que a solucao obtida é uma solucao forte. ]

6.1.3 Existéncia e Unicidade de Solucao Global

Proposicao 6.6

A energia associada ao problema (6.12)-(6.17) é dada por:

1 1 (1)
E(0) = Z1u®lfp g+ ||5(t)”L2(r) SOz g + ||6t||L2m re AT

+ f F(u(x, 1) dx, (6.55)
Q

e satisfaz:

d
—E(t)—<h(t),ut(t)>Lz(g) =—C(t)<g(ut(t)),ut(t)>Lz(Q)—y(t)f(y2+n)||<p(t,y)lli2(r) dy

(1)
Y ”(p(t)”Lz(R LZ(F)) — mc()”u[(t) ”LZ(Q) YO[(J’ +77)||(,0(t J/) ”LZ(F) dy 0 (656)
onde F(u) —fuf(s)ds e __ do
) = T @ra-a

Demonstracdo. Multiplicando a equacao (6.12) por u;, integrando em relacio a x sobre Q, utilizando

a férmula de Green, obtemos:

d , 1d , f ou(r) 1 df )
- 2| dr+ -—
2dt‘[glut(t)l dx+2dtfgl u®“dx— | ul®),—— 3y +2dt QIu(t)l dx

+fo(u(t))ut(t)dx+c(t)fgg(ut(t))ut(t)dx:th(t)ut(t)dx.
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d —F(u(®) = fu(®)u,(t) e §,(1) = 240 (equacéo

VDI, o) =

Como |lu(z)||? = lu®|?

HY(Q)
(6.15)), obtemos:

2(Q)

d 1d , d . 5
3 g O+ 5 O+ [ Pt ax— [ w8, ar

+C(t)ng(uz(t))ut(t)dx:fﬂh(t)ut(t)dx. (6.57)

Agora, multiplicando a equacao (6.13) por §;, integrando em relacdo a x sobre I', obtemos:

d 1d
3 2180+ 5 18 470 [ [ pigte psindyar == [ uwy s ar. (6.9

Substituindo a equacdo (6.58) na equacao (6.57), obtemos:

1d 1 1 d 1 d d
+C(t)ng(ut(t))ut(t)dx+y(t)frpr(y)(p(t,y)5t(t)ddezth(t)ut(t)dx. (6.59)

Por outro lado, ao multiplicar a Equacao (6.14) por y(t)¢(t), e, em seguida, integrar com

respeito a variavel y sobre R, obtemos:

t
Y() fl(p(t Y dy+Y(t)f v +n)let, yIFdy =y®)d, (t)fp(yﬂp(t ydy,
e como
d
—y(t)l(p(t)l —Y(t) |<P(t)| +Y(t)|(p(t)|
obtemos:
d y(t "(t
d—wflw(t,y)lzdy—y—()f Iw(t,y)lzdyw(t)f(y2+n)|<p(t,y)lzdy
t 2 Jr 2 Jr R

=Y(t)5t(t)pr(y)(p(t,y) dy. (6.60)

Substituindo a expressao (6.60) em (6.59), obtemos:

s 1d 1d s dy()

Ed_”u(t)”Hl(Q) ” (t)”LZ(r) zd ”ut(t)“LZ(Q) zd ” t(t)”LZ(r) %_”(P(t)”Lz(RLz(r))
o F(u(t))dx+0(t)f g(ut(t))ut(t)dx+7(t)f ¥ +n)lle(, y)IILzm dy

= th(t)ut(t) dx Y() LZ(RLZ(F)) (661)

Observe que, das hipoteses (6.7) e (6.18), temos —c(t) < —cop, —y(t) <yo € ¥'(¢) <0, para todo

t > 7. Além disso, da hipotese (6.10) e do Teorema Valor Médio, segue que:

g (D) u (D) = [gur (D) — g(0)] ur(6) = mlus (D)2
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Assim, de (6.61), obtemos:

1d (1)
5 71Ol o)+ 5 ll5(t>llmr) 5 71Ol + 5 ||6t(t)||L2m dty IO g2

d F(u(t))dx (h(D), u (1) 120

!

v (1)

—c(D)(g (D), ur (D) 2y — (1) +fR(y2 +0) o6 W7y Y + ==l 72 2y,

IA

—maollu (D)1, = Yo fR 2 +0) o, V%, dy

Teorema 6.7 (Existéncia e Unicidade de Solucdo Global)
Se ul e HY(Q), 6% € L2(T), ul € L?(Q) e 61 € L2(T"), 0 problema de valor inicial e de contorno (6.2)-
(6.6), admite uma Unica solucao branda (u,) com a seguinte regularidade:

ue C([r,+00); H'(Q)) n C! ([1, +00); L*(QV)

(6.62)
6 € C°([1,+00); L*(1)) N C* ([7, +00); L*(1)).

Se ud € H*(Q), 8 € L*(I), u; € H'(Q), 8} = 5X =0e he H, (1,+00; L*(Q)), entdo o pro-

blema de valor inicial e de contorno (6.2)-(6.6) admlte uma Unica solucao forte (1,) com a seguinte

regularidade global:

ue L®(1,+o0; H'(Q)) n WL (1, +00; [3(Q)) (6.63)
.63
6 € L (1, +00; L*(1)) n W (1, +00; L*(I)) .

se ul € H*(Q), 6% € H'2(I), u; € H'(Q), 61 = 52 =0, he H}, (1,+00; [*(Q) e g:R—R é
Lipschitziana, entao, além das regularidades globals em (6.63), obtemos as seguinte regularidade
local:

ue L2 (1,+00; HA(Q)) N WL (7, +00; H (Q)) N W2 (7, +00; L2 ()

(6.64)
0€el®

loc

(0, +00; H2()) n W% (1, +00; H2()) n W2 (7, +00; L2(I)

loc loc

Demonstracdo. Sejam ul € H'(Q), 6% € L2(I), ul € 1>(Q) e 6 € L*(I). Entdo U, = (1,69, ul,561,0) €
F. Assim, do Teorema 6.5, existe 0 < fmax < +0o € uma funcio U € C° ([0, tax; #°)]) dada por
Ut) = (u(r),5(1), v(1),z(1), (1)), que é uma solucao branda para problema (6.19) em [t, tmayx) satis-
fazendo (6.53), e portanto uma solucao branda local para o problema (6.12)-(6.17). Em termos das

coordenadas, temos:

ue C°([0, tmax); H'(Q)) N C (10, fmax); L*(Q)
6 € C°([0, tmax); L*(D)) N C* ([0, tmax); L)) .

Se u¥ e H?(Q), %€ 1), ul e H'(Q) e 61 = U _ ) temos U, = (9,69 ul,61,0) € D, onde
oA (t) : D c A — A é o operador linear definido em (6.19). Supondo h € Hlloc(r, +00; L2(Q)), do
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Teorema 6.5, temos que U : [7, tmax) — A€; U(t) = (u(1),6(8), v(t), z(t),(t)) € uma solucao forte

local para problema (6.19), e portanto uma solucdo forte local para o problema (6.12)-(6.17) (ver

definicoes 2.13 e 2.17). Entao:

(i) U é diferenciavel em quase todo ponto ¢ € [T, fyax);

(i) Uye L' (1, tmag; H);

(i) U@ =U; = W%6%ul,61,0) e U (t) — L (DU (D) + F (£, U(1) = 4(1), em quase todo ponto

LE [T, +tnax)-

Em termos das componentes, temos que: u, u;, 6 € 6, sdo diferencidveis em quase todo ponto

€ [T, tmax). Além disso:

ur € L' (7, tmag; H'(Q))
6 € L (7, tmax; L*(D))

1

Urr € L (T, Imax; L* (Q))

8¢ € L' (7, tmax L2(D))

Considere a energia E: [0, tmax) — R associada a essa solucdo. Da Proposicao 6.6 temos que
E(t) é dado por (6.55), e satisfaz (6.56). Portanto, dado U(t) = (u(t),6(t), u;(1),6,(1), (1)) € D,

temos:
LBy = COIMDIE g + el sy - meolue®aey 7o | 62+t e d
dt = LZ(Q) t LZ(Q) 0 t LZ(Q) ,)/0 R J/ T’ (,0 ry LZ(I‘) y
= CONRWDI72q, + €= meo) w720, - % fR G+l T2, dy
< CEOIRDI, g, (6.65)
onde 0 < & < mcy.
Agora, integrando a expressao (6.65) de T a t, obtemos:
t
E(1) < E(1) +Cle) f 1RS1720, ds,
T
e portanto, de (6.55), obtemos:
1 1 ¢
SN, + fQ Fluts, ) dx < 51Uy 1%, + fQ F(ud(x) dx + C(e) f 1A s (6.66)
para todo T < £ < fiay, onde U = (19,69, ul,61,0).
Da hipotese (6.8) segue que:
u u
@l <1f@) +f Fls)ds<Ifo +cf (1+ 57" Y)ds < Col1 +|ul®) (Co > 0),
T T
e portanto
u u
F(u) Sf I f(w) < Cof A+|s)ds<C;(1+ |u|p+1) (C1 >0). (6.67)
T T
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Assim, de (6.67), da hipétese (6.9) e da imersdo H!(Q) — LP*1(Q), temos que:

_mf.med(g)szF(u(x))dxsa(med(QH||u||§;§m); Vue H'(Q). (6.68)

Finalmente, de (6.66) e (6.68), temos que:
1- 1
TﬁnumnzﬁsEHU(nu?yf—guuuip@
_ _E 2 1 2 0 g 2
< QF(u(x, D) dx = Zlullpp ) + 51U + QF(uT(x))dx+C(ts) 1A ()72 s
T

1 ~ t
smf-rmeal(QH§||U,||2]£+c1(med(Q)+||u$||’3+1 )+C(e)fT 1R ds,

HY(Q)
e portanto:
t
IV = CWU+Ce) [ IO, ) d5i¥T = £ < b, (6.69)
onde
CW) ==+ 15Vl =g (med@) + 1l ) e Cler=="—.
Por outro lado, da hipotese (6.11) segue que:
t
f_oo e’% | h(s) IIEZ(Q) ds<oo; VEER.
Entao
~ ! 2 ~ ‘ 2
C(e)fT IRy ds = C(E)fT G VIOT R
t
< & sup {0} f NS g s
SE(T,1) —00
t
< C(E)C(‘L’)f e”osllh(s)llig(m ds<oo; Vt=T1, (6.70)
-0
onde C(1) = sup {e 7%’} =e 70",
S€(T,1)
Finalmente, de (6.69) e (6.70), obtemos:
t
IU®11% < C U +Cle) f IR 72q) ds < C Wy, 1); VT < 1< finax, (6.71)
T
e portanto
. 2
tEEEaXHU(t)”JIFSC(UT’T)<°°- (6.72)

Assim, o limite (6.72), o corolario 2.27 e a Observacao 3.34, garantem que f,,4; = +0o.

Em resumo, dadas as funcées u? € H1(Q), 62 € L2(T") e ul, 61 € 1?(Q), existe uma Unica solugio
u

0
branda (u,6) satisfazendo (6.62). Agora, Se u2 € H*(Q), 6% € L2(I), ul € HY(Q), 6} = aa—vf =0e
heH,
oc
diferenciaveis em quase todo ponto t =1, €

(1, +00; L*(Q)), entdo (u,8) é uma solucdo forte. Portanto, as funcdes u, u;, 6, §; sdo

us € L (7, +00; H' ()

5.€ L' (1,+00; L*(I))
] (6.73)
ur € L' (1, +o0; L*(Q))

8 € L (1, +00; L2(T)).
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Além disso, a estimativa (6.71) combinada com (6.73), garantem as seguintes regularidade:

ue L®(1,+o0; H'(Q)
8 € L (1, +00; L*(Q))

ur€ L (1,+00; L*(Q)) n L' (1, +00; H' ()
3 (6.74)

8¢ € L™ (1,+00; L*(M)) N L! (7, +00; L*(1))

(
uge € L (1, +00; L*(Q))
8¢ € LY (1,+00; L2(T)),
o que prova (6.63).

Para obter uma melhor regularidade, derive as equacdes do sistema (6.12)-(6.14) em relacdo a

variavel t. Uma vez feito, obtemos:

U (1) — Ay () + ue(0) + () (1) + c(0) g (e () g (£) + €' () g (U (1) = hy, (6.75)
5m(t)+5t(t)+)/(t)pr(y)<pt(t,y) dy+7’(t)pr(y)<p(t,y) dy=—u;(1), (6.76)
O, Y)+ (Y +M (8, y) — p(1)8 (1) = 0. (6:77)

Multiplicando as equacoes (6.75) e (6.76) por u (1) e §;4(tt), respectivamente, integrando em relacdo

a variavel x sobre Q e & sobre T', respectivamente, e utilizando a condicao de bordo (6.15), obtemos:

d 1d ,
5 Ol + 5 — el g, - fr (1)1 (D8 14(8) AT + (1) fg 8wy (1) dx

+c’(t)Lg(ut(t))u[t(t)dx:fQht(t)un(t)dx—fgf’(u(t))ut(t)u”(t)dx (6.78)

1d 2
By 5 Wl + YD | [ pwednysawaray

+y'(t)fRfrp(y)(p(t,y)5tt(t)dl“dy:—fQ(u”)|r(t)5n(t)dF. (6.79)

Substituindo (6.79) em (6.78), obtemos:

”utt(t)”LZ(Q) ||6t[(t)”L2(r)

1 1 d 6
+y(t)fu%frp(y)<pz(t,y)5n(t)dde+Y(t)fRfrp(y)<p(t,y)5n(t)dl“dy
=fﬂht(t)un(t)dx—fo’(u(t))ut(t)un(t) dx—c(t)ng’(ut(t))Iun(t)lzdx

—C’(t)fgg(uz(t))un(t) dx. (6.80)

Por outro lado, multiplicando a Equacao (6.77) por y(£)¢(t), e integrando em (£, y) sob R x T,

obtemos:

(1)
72 dtlltpz(t)lle(RLz(r))+Y(t)fR(y2+n)||<pt(t)||i2(r)dy=Y(t)fRfQP(y)%(t)én(t)dde- (6.81)
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Agora, como 4
—y(t)kp(t)l —Y(t) I<p(t)| +Y' (D),

substituindo a Equacao (6.81) em (6.80), obtemos:

1d 1d 1d (1)
Ed_”u[t(t)"LZ(Q) E”(Stt(t)“?}(r) Zd ”ut(t)”Hl(Q) ”5t”L2(r) th ||(pt||L2(RL2(1"))
= fght(t)un(t)dx—fﬂf’(u(t))uz(t)un(t)dx—c(t)fg(ut(t))lun(t)l dx
Y( f)
LZ(R LZ(F)) Y(t) (y +77)||(Pt(t)”L2(r) dy
7w [ [ pwrptpsawaray (6.82)

Como c(f) = ¢y, ' () <0< cy, =1 <Y (1) <0<y <y(1), g'(us(t)) =mparatodo r =7 e
gur (1)) use(t) = (g(us (1)) — g(0)) us (1) = muy(t) usr(t) (ver hipdteses (6.7), (6.10) e (6.18)), para todo

t =1, temos: Y'(t) , Y( .
> 10Dy < 5 1000220y (6.83)
—Y(t)fR(yz+n)||<pt(t,y)||i2(r) dys—YofR(yz+n)||<pt(t,y)lliz(r) dy=<0, (6.84)
~et0) [ gl 0 < =meollus i g, =0, (6.85)

—C’(t)Lg(ut(t))utz(t) dx < —mclf

e dx = =2 (LD g + 1 (D12 g ). (6.86)

Além disso, observe que, como

P 2 172
U p(y)w(t,y)dy‘ < ( ) (f(y (e, )] dy)
R R Y2+1
1/2
= \/C(a,n,O)UR(y2+n)l(p(t,y)I2dy) :
temos que ,
Up(y)q)(t,y)dy SC(a,n,O)f(y2+n)||<p(t,y)lliz(r) dy. (6.87)
R Lz(l") R

Da Equacdo (6.14), segue que

1d
5 10O g2 + f(y ot g, dy - ffp(ynp(t M8(1)dTdy =0,

e portanto, de (6.87) segue que:

1d

2dt

1/2
< V@010l 2 ( fR 02+l ey dy)

< C(a,n,0)
2

L2(T)

1
16,(2) ”i%r) + sz(y2 +n)||<p(t,y)lliz(r) dy.

Entao

C(a,n,0)
2

1d
fR W +mlp PNy dy < 1020y = 5 TN OO oy (6.88)
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Assim, como —y'(t) <y1; Vit =1, das estimativas (6.87) e (6.88), obtemos:

—Y’(t)ffp(y)w(t,y)(?n(t)dl"dySﬁll&;(ﬂllym pr(y)q)(y,t)dy ,
L)
_ )? 2
Yl ||5tt(t)||L2(r) Hf pMe(t,y)dy
12()
(y1)? (a ,0)
_ )2 (a,n,0) C(a,n,0) d
< Yzl ||6”(t>||§zm+%u6tmu§2m T”—n Ol
C d

onde C, = max{(y;)?/2,[C(a, n,0)12/4} e C3=C(a,n,0)/4.

— 1
Por outro lado, como pz—p + 5 + — =1, da Desigualdade de Holder (Proposicao (A.5)), da
hipotese (6.8), da imersdo H'(Q) — L2°(Q) e da estimativa (6.71), obtemos:

—Lf’(u(t))u;(t)u”(t) dx < CfQ (1+ |u(t)|p_1) lue (O - lug (1) dx
:Cf Iut(t)un(t)ldx+Cf lu)IP ur(Due(0)| dx

< Cllue (Ol g2 - Nee (Ol 2y + Cllu(r) ||L2p(Q) | ut(t) 220 * Ntbee (D) Ml 2y
< Cllu(Oll g oy e (Ol 2 ) + C(Cl)p[C(Ur,T)] || ur (Ol ol (Ol 12

= C(1+ @PICWe, DN'T ) e (Dl e (D) 2

< C4(UT! T)

o (e + Nure DNz g ) Ve 2T, (6.90)

onde C; é a constante da imersio H'(Q) — [2°1(Q) e C4(Us,T) = c(l + (G)P[C(U,,r)]p%l).

Finalmente, como h € H]_ (0,+00; L*(©)), existe constante C >0 tal que
”hl‘(t)”LZ(Q) =< C", Vi= T,
e portanto

1 ) 1 C 1 )
Lht(t)utt(t) dx < zllht(t)”LZ(Q) + E””tt(ﬂ”[}(g) = E + 5||utt(t) ||Lz(Q); Vi=T1. (6.91)

Agora, aplicando as estimativas (6.83)-(6.86) e (6.89)-(6.91) em (6.82), obtemos:

d C C4(UT,T)+MC1 Co 9
1+C4(U,T)+WIC1 (1)
+ 5 ||u”(t)||§z(m + 7||6”(r)||§2m e S POz ey + 1PNy
C 1

onde Cs = max{l + Cy + mcy,Co,1/C3} € U(t) = (us(1),0(1), uss(£),0+:(1), p(1)).
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Seja T > t qualquer. Como ¢(t, y) =0, para todo y € R, integrando a desigualdade (6.92) de T
at<T,obtemos:

2

1||U(t)||2 < 1||U(t)||2 +C3llo(n))1?
2 t T = 2 t S 3 (p Lz(R;LZ(F))
1 C(T-1) t(1
< U@+ ——5—+GCs f (Enut(s)n;ﬁcg||<p(s)||§2(R;Lz(r)) ds, (6.93)
T

paratodot<t<T.

Suponha que g:R — R é uma funcao Lipschitziana. Assim, como g(0) = 0 (ver hipé6tese (6.10)),

existe constante M > 0 tal que
lg(w)| < Mlv;VveR. (6.94)
Fazendo ¢ = 7 na equacao (6.12), obtemos:
o

0 0 0 1 — .
e (D 2q) < 1AuU 2 + Uzl 2 + | u‘[”LZP(Q) +Mc@)llugll2q) + 1 @)l 12q) := C1, (6.95)

uma vez que u(t) = ud € H?(Q), u (1) = ul € H/(Q) — L*(Q), h(1) € [*(Q), H'(Q) — [?P(Q), e da
hipotese (6.8) e da desigualdade (6.94), segue que:

1/2
0 0,2 _ 0,0 1y/2 2 1,2
||f(uT)||L2(Q)SC(fQ|uT| de) =Cllb, ) e fQ|g(u,)| dx < M fQ|u,| dx.
Procedendo de maneira analoga, com a equacao (6.13), obtemos:

16l 2y < 1620 2y + N WDl 2y = Co, (6.96)

pois §(1) = 6% € L*(I), (1, y) = 0 para todo y € R, e como u,(t) = ul € H'(Q), do teorema de Traco
segue que (u; (1)), = (ub). € HY?(I) — L2(I).

Além disso, como u(1) = ul € H'(Q) e §,(t) = 61 =0, temos que:

Il @ ) = luslGn g =Cs e 16:@ gy = 18717, =0. (6.97)

Por outro lado, t = T na Equacio (6.14), obtemos:

©0(1,1) = —(* +me, ) + p(16,(1) = p(y)d: = 0; VyeR.

Portanto

Assim, utilizando as estimativas (6.95)-(6.98) em (6.93), obtemos:

IA

1 2 1 2 2

IA

~ !
CUr, 1) +GCs f (Enwts)n;ﬁcg||<p(s)||§z(R;L2(m) ds, (6.99)

T
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onde
~ 1~ —~—2 2
CWnm =3 (C(T—T) 4+ G+ G+ c3)
Finalmente, aplicando o Lema de Gronwall (Proposicdo (A.7)), na estimativa (6.99), segue que:

U015 < 10015 + C3l @D 2512y < 2C U, 1)EST < 00, (6.100)

paratodot<t=<T.
Portanto:

ure L2 (0,+00; H(Q))

loc

5,€L® (0,+00; L2()
I o ) (6.101)

U € L2 (0,+00; L*(Q))

loc

8 €L (0,+00; L*(D)).

loc

Por outro lado, da Equacao (6.12), das estimativas (6.71) e (6.93), da hipotese (6.8), e da desi-
gualdade (6.94), obtemos:

IAw()2@) < N (Ol 2 + ”u(t)”ﬁzf)(ﬂ) +Mc(T) lue (Dl 2 + 1RO 12(q) = 52 < oo,

paratodor<t<T.

Portanto

o0
ueLloc

(t,+00; H*(Q), (6.102)

ou 5
e como §; = —, do Teorema de traco em H=(Q), segue que [|6 ]l g2y < Cllull g2 (C >0 cons-
v
tante). Portanto:

t
Suponha (1) = 6% € HY2(T"). Como §(t) = 6 +f 54(s)ds, temos que (1) € HY2(IN) e
T

t
”5(””[{1/2(1*) < ”(SQHHI/Z(F) +f ”63(5) ”H1/2(r) ds< CS(T_ T) < 00, Vi<t<T. (6104)
T

Por fim, das regularidades obtidas em (6.74), (6.101) e (6.102), e das estimativas (6.103) e (6.104),
obtemos que a solucio forte global (i, ) do problema (6.2)-(6.6) possui as seguintes regularidades:
ue LY (1,+o00; H*(Q)) N L*® (1, +00; H' ()
0eL®

loc

ur € L2 (1, +00; H'(Q)) N L*® (7, +00; L*(Q)) N L' (7, +00; H' ()

(t,+00; HY2(1)) N L% (7, +00; L?(I))

§: € LS (t,+00; HY2(I)) N L™ (1,+00; L*()) N L (1, +00; L*(I)

uy € LP (1,+00; L2(Q)) N L! (1, +00; L*(Q))

loc

81t € LO (7,+00; L* (D)) N L! (7, +00; L*(I),

o que prova (6.64). O]
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6.2 Existéncia de Atrator Pullback

Nesta secdo, investigamos o comportamento assintético do sistema (6.2)-(6.6) no contexto
nao autébnomo, com o objetivo central de estabelecer a existéncia de um atrator pullback. Para

alcancar esse resultado, seguimos uma estratégia em varias etapas interligadas.

Primeiramente, reescrevemos o sistema ampliado (6.12)-(6.17) como um problema de Cauchy
nao auténomo (3.9), no qual o sistema é descrito por uma equacao diferencial em espacos de Hilbert
com operador dependente do tempo. Em seguida, introduzimos a formulacdo precisa do processo
de evolucao associado, representado por {Z2(t,1)};>;. Esse processo é construido a partir do sistema
CD de Kato associado a familia de operadores lineares {<¢ ()} ;~; € incorpora, de maneira explicita, os
termos nao lineares e as forcas externas dependentes do tempo. Tal construcao garante a existéncia
e unicidade de solucoes brandas globais no espaco de energia natural, fornecendo a base para o

estudo das propriedades assintoticas.

Com esse arcabouco, passamos a analise de energia. Derivamos estimativas que permitem
controlar a norma das solugdes em fun¢do do tempo e da forga externa, o que conduz a identificacao
de familias de conjuntos absorventes para o processo {Z2(t,T)};>;. Por fim, introduzimos o universo
2 de subconjuntos de #, adequado ao estudo de atracao pullback, e estabelecemos condicoes sob
as quais o processo é Z-pullback assintoticamente compacto. Esse resultado, aliado a existéncia de
conjuntos absorventes, nos permite demonstrar, ao final, a existéncia de um atrator pullback para o

sistema, o qual descreve a dindmica assintética dependente do tempo.

6.2.1 Formulacao do Processo de Evolucao

O sistema (6.12)-(6.17) é equivalente ao seguinte problema de Cauchy:

U =F U@, 10); t>1
, (6.105)

Ur)=U;
onde F := (L (t) — F (1, U(1)) +4(1)) : [T, +00) x H — F é a aplicacao definido por:

v

<

ZW,H=| Au—u-f(u)-c®)gw)+h() |, (6.106)

e fR Py - v,
- +me() +p)z,

onde, paracada t =71, & (t) : D ¢ A — A é o operador linear, definido em (6.20), com dominio
D dado em (6.22)); & : # — £ e 4 : [1,+00) — S sdo as aplicacoes definidas em (6.21); U =
(u16) v, z;(P); S UT = (ugy5g) u-}-yé-}-)o)-
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O Teorema 6.5 e a estimativa (6.71) garantem, para cada U; € /4, que o problema (6.19), e

portanto, o problema (6.105), admite uma Unica solucio branda U € C° ([, +o0); #°) dada por:
t
Uu(t)=P(t,1)U; +f P(t,9)[4(s)—F(s,U(s)]ds,

T

onde {P(t, s)};>s € 0 processo de evolucao gerado pelo sistema CD de Kato ({7 (8)};>¢, 7, D).

Defina o processo de evolucao (do sistema completo) de {Z?(1)};>¢ pondo:

P@(t,1). H — S
t
U, — U =P(1)U; +f P(t,s)[%4(s)—F(s,U(s)]ds. (6.107)

T

Entdo U € C° ([, +00); #) tal que

t
u@)=2t,1)U; =P(t,1)Ur +f P(t,5)[9(s) - F(s,U(s)]ds,

T

€ a Unica solucdo brando do problema (6.105).

6.2.2 Existéncia de Atrator Pullback

Apresentaremos alguns lemas técnicos que serdo utilizados para o obter uma familia de
conjuntos pullback absorvente em um conveniente universo de atracdo 2 (ver Definicdo 3.53), sob a

acao do processo {2 (t,7)} 7.

Lema 6.8
Seja E(t) a energia do sistema associada ao problema (6.12)-(6.17) dada por (6.55). Entao existem

constantes By, Cr e Cr tais que:
BolU)I%,~ Cr < E@® = Cp1+1U1%,"); ¥e =T, (6.108)

onde U(f) = (u,0,u;, 04, ¢,¢) € F.

Demonstracdo. Observe que da estimativa (6.68), temos que:

_mf.med(Q)sf F(u(x)) alxs’Cvl(med(Q)+||u||p+1 )
Q

2
2 ”u”Hl(Q) Hl(Q)

u
onde F(u) :f f(s)ds.
T
Entao

_1 2 1 2 B
E(t)—2||U(t)||]£+LF(u(t))dx > 2||U(t)||Jg 2

= BolUDI% - Cy,

\Y

Il g1y — my - med(Q)

onde By = 'BeCf:mf-med(Q).
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P*!. De fato, se [U(f)ll <1, temos |U(1)]%, <1 <

Agora, note que, [U(D)%, <1+ U017,
1+ UM%, e caso Ul = 1, tem-se [UDI2, s 1UWDI5

p+1=2. Assim, obtemos:

<1+ UMD, uma vez que

1 1 — —~ +1
E(I):E||U(t)||2%+LF(u(t)) dx = EIIU(UHZJﬁClmed(Q)+C1”””iﬂ(m
1
< S+ IUIG +Cimed @+ SO
1 - 1~
= (5+C1med(Q))+(5+C1 ||U(t)||f)7;1
< Cr(1+1umI%)),
onde Cp = max{(1 + 2C; med(Q) /2, (1 +2C;)/2}. =

Lema 6.9
Seja E(t) a energia do sistema associada ao problema (6.12)-(6.17) dada por (6.55). Entdo existem

constantes positivas o1 e mg > 0, tais que:

E(f) <3E@me " +2my f "N (915 dS+6Cs; VE=T. (6.109)

L2(Q)

Demonstracdo. Do Teorema de Traco existe uma constante Cy > 0 tal que [|u(8) . | 2y < Collu(D) | g1 (-

Entao

ﬁu(t)|r5(t) dr = u(O) il 2y 16 (Dl 2y < Coll (N g @ 16 (D1l 21y

Dado ¢ > 0, defina a Energia Pertubada:

E.(t):= E(t) + e®(1), (6.110)
com
O (1) =(u(t), us (1)) 12y +(6(8),6 (1)) 21y + (Ut) 1, 6(2)) 21
Y( 1) ||(p(t) ”Lz(R :12(I) ﬁlf ”61,‘(5) ”LZ(F) ds, (6.111)
_ 2
onde f; := 20.-p)+4(C) . Portanto:

1-p

Y()

1 1 1 1
< —||u(t)||§2 + —||ut(t)||§2 @t Euamnizm +518:(0 ||izm + Euum ||i,1(m

(C Y( )
LZ(F) ”(P(t) ”LZ ([R LZ(F))

< C1||U(t) 1% (6.112)

onde C; = max{[1+ (Cy)?1/2,y(t)/2}.
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Da estimativa (6.112) e do Lema 6.8, obtemos:

C
08| < ﬁ—;(E(mcf),

e escolhendo ¢g = ﬁ, temos que:
2Cy

elP(1)] < g0l D(D)| < 60% (E()+Cf) == (E(t) +Cy); VO< e <&.
0

N =

Consequentemente
1 1 1 1
——E(t)—=Cr=<e|®(t)|<=-E(t)+=Cy,
SEN =5 Cr=el@l =< JE@0+2Cy

e portanto:
1 1 3 1
EE(t)—ECfsEg(t)sEE(t)+ECf; V0<e<egg. (6.113)

Por outro lado, das Equacoes (6.12), (6.13), (6.14) e (6.15), obtemos:

'(n) = ut(lf)”iz(m +u(t), ur (1)) 12y + ||5t(1f)||i2(r) + <6(t);5tt(t)>L2(r) + (ut(t)|r,5(lf)>L2(r)

/

+ (U, 6:(0) 2y +YO(P(D), 91 (D) ey + 5 NP2 g2y — BLIS D72

= Iy (D122, + (D), Au(r) = u(t) = F (D) - ey (D) + h(D)) 2y + 18, (D122,

+<6(t),—6(t)—Y(t)pr(ykp(t,y) dy_ut(t)|r> , U1, 6 (D) 12
L2(I)

+ <u(t)|r)5[(t)>L2(1") +Y(t) <(P(t); —(y2 +T])(P(t) + P(Y)6t(t)>L2(R;L2(Q))
Y( r)

LZ(R I2(I) ﬁl|l6t(t)||L2(r)

- "ur(f)“mm— ) oy [ Ftoudx—co | gluoyut dx
+f h(r)u(t)dx+(1—ﬁ1)||6t(t)||iz(r)—||6(t)||iz(r)—y(t)ffp(y)w(r,y)é(r)drdy
Q RJT

+2f u(1)):6.(1) dF—y(t)fR(yz+n)||<ﬂ(t)||iz(r) dy+y(t)fRfrp(y)<p(t,y)5;(t) dl' dy
Y( 1)

L2 ®&L>(D)’

€ como

Y (1) y()

2
_”(p”LZ([RLZ(r)) (t)||(P(t;J/)||L2(R,L2(r))

Y(t)
” “LZ([R LZ(F))’

iz(R;LZ(F)) —Y(t)jl;i(yz+7])||(P(t,J/)||iz(r) dy

temos que:
@' (1) < Nur 0, ~ 1 oy = [ Fu)unydx=cto) [ glun(yutn s
+th(r)u(r)dx+(1—ﬁ1)||6t(t)||izm—||6(t)||§2m—y(r)ffp(y)q)(t,y)é(r)drdy

+2fru(t)|r5t(t) dr+y(t)fRfrp(y)<p(t,y)6t(t) drdy— I )||<,o(1t)||L2(IRE 12(0))" (6.114)
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Agora, observe que, das hipoteses (6.9) e (6.10) obtemos:

fQ[F(u(t))—f(u(t))u(t)] dxsfg(gm(m%mf) dx:§||u||§2(m+cf (6.115)

e

,6 2 z(mco)z

1-
—c(t)fgg(uz(t))u(t) de—mCOfQuz(t)u(t) dx = ——u®l g+ y; lue(3, - (6.116)

Além disso

.3

1-
[ o axs = E il g, + T 1m0k, (6117

/5

4(Co)”
ﬁuatmn;m. (6.118)

1-
zfr u()6(0)dl <2Collu |l gp 16 (DNl 21y < Tﬁ”u(t) ||§11(Q) +

[Cla, n,

- [ [ pwectpowaray < f 0 + I sy Ay + 510D, (6:119)

[Cla, 11,0)]2

[ [ pwewysaray= Lo ot i gy dy + 31801y, (120

Entao, inserindo E(t) em (6.114) e utilizando as estimativas (6.115)-(6.120), obtemos:

1 3 3
®'(0)= B - 1@l g -5 “l6() 72y *+ 5 ez + (5 - /51) 16 (1%,
+L[F(u(t))—f(u(t))u(t)] dx—c(t)fgg(ut(t))u(t) dx+f9h(t)u(t) dx

+2fru(t)|r6t(t)dl“—y(t)ffp(y)(p(t,y)6(t)dde+y(t)fRfrp(y)(p(t,y)6t(t)dde

1 3 3
~E(0) = 1udlfp g~ 3 “l6() 72y *+ 5 el + (5 - /31) 16 (D172 + gn w3 g

- 2(mcyp)? -
P |+ == ;’3 (D172 + 8/3 ||u(t)||ip(m+Tﬁuh(r)niz(m

1
+Cr+

Co)* C(a,n,0)]?
+ Pl g, + 1(";3 18 (D122 g, + M

[Cla,n,
# I8 + —”f(y DIy Ay + 10,0 gy

Portanto

1-8 1-8 R 3 2(m00)2

+(B1= B1) 184D 13 ) + [Cla,m, 0] fR (y2+n)||<p(r,y)||§z(r) ﬁnh(r)uLz(Q) Cr

) 42 ) + (Can)® fR W2+l PITa, +

3 2(mc0)2 2
2 1-p -p
+Cy, (6.121)

= —E(1) +( IR(D1172q,
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onde Cqy := C(a,n,0) (vide Lemma 4.5).

Por outro, de (6.56), e da desigualdade de Young, temos:

d
B0 < —mconutnig(m—yo f W +mlp PIT dy+<h(t),ut(t)>Lz(Q)
< IIuIIILz(Q) Yof(y + M, I, dy+o— IIh(t)lle(m. (6.122)
Agora, escolha
mcy (3 2(mcy)? _
€= mm{eo, 20(5+ (1—,6)) Y0 (Cayn) 2,1}. (6.123)

1
Note que e <¢gg = ﬁ_(;) <Po= T'B Assim, das estimativas (6.121) e (6.122), obtemos:
1

d d
d—Eg(t) —E(t) +e®' (1)

3 2(mco)? 2
+g(§+ = p )||ut(t)||i2(m+e(ca,n) fR(y2+n)II<P(t,y)lliz(r)dy

= h0)?

mcy

mc
=< (—T O)Hut(t)”LZ(Q)( Y0+Y0)f(y +nlle(, y)”LZ(F) dy—eE@)

( 1
+|1+
2mcy

= —€E(t) + mollh() |13

2@ TECr (6.124)

1
2mcy
Como ¢ < €, aplicando a desigualdade (6.113) na estimativa (6.124), obtemos:

onde mp=1+

d
ZE@) < ——Eg(r)+ cf+mo||h(t)||

+eC
dat e

L2 (Q)

2

e pela versao diferencial do Lema de Gronwall (Proposicao A.6), segue que:

4e b o
Ee(t) = Ee(me 30D 1my f e 3" NI, ds ?Cff R AGOPR
T
< EE(T)e_Ul(t_T)+m()f e 01(1=9) I h(s) ”iz(mds‘l‘ch, (6.125)
T
2¢e

onde oy = ——.
3
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Finalmente, da desigualdade (6.113) e da estimativa (6.125), segue que:

E(t) = 2E.(1)+Cy
< 2E:(me "V 42my fT te—”l“—”||h(s)||§2(mds+5cf
< (BEM+Cp)e "D 42my fT Lot I8}z ) ds+5Cy
=

t
o1 (1-7) ~o1(1-9) 2
3E(t)e 11T +2m0fr g o1t=s IR}z ds+6Cy

O

A seguir, definiremos um universo de atracdo conveniente para o estudo da dindmica pullback

do processo evolutivo associado ao nosso problema.

Definicido 6.10

Seja 01 > 0 a constante positiva obtida no Lema 6.9 e seja

Ro={r:R—[0,+c0); lim ¢ [r(x)]** =0}. (6.126)

Definimos a seguinte familia de subconjuntos limitados de # por:
D= {D(t); D(H) € By5(0), r€Ry e D(1) #0 paratodo te R}, (6.127)
onde Erm (0) é a bola fechada (com respeito a norma de .#°) centrada na origem e raio r().

A colecao de todas as familias da forma (6.127) define um universo 2 de subconjuntos de /¢

(ver Definicao 3.52).

Proposicao 6.11
Se 0g < 01, entdo o processo de evolucio {Z(t,7)};>; definido em (6.107) tem uma familia de
conjuntos 2-pullback absorvente (ver Definicdo 3.53), denotada por 1/35 Mais precisamente, a

familia BB é dada por bolas fechadas Eo(t) (0), onde

t
ro(t) = \/gmof e=00(t=9) || h(s) ||i2(Q) ds+6Cp+1; VIeR. (6.128)
—00

Além disso, se 0 < % entdo By € 9, ou seja, a familia By pertence ao universo &

Demonstracdo. Seja D uma familia arbitraria no universo 9. Ent3o para qualquer par 7 < ¢ e
qualquer U; € D(1) cEr(,) (0), dos Lemas 6.8 € 6.9, e da Definicao 6.10 segue que:

122(t,7) Uy 1%, < E(D)

t
—01(t—71) —01(t—5) 2
<3E(1)e “! +2m0fT e 1 IIh(s)Ile(Q)ds+6Cf

t
<3Ck(1+1U1, e 4 2m0f e T h(s) 1%, o, ds +6Cy
T

t
s3cF(1+[r(r)]f’“)e—“l“—”+2mof e I RS, o, ds+6Cr. (6.129)
T
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Se 0g <01, temos que:
! t 2 ! t 2
f eI ()T ds < f e T I ()17 ds.
T T

Tomando ro(t) por (6.128), de (6.129), segue que:

A

t
126, 1)U 1%, < 3CF(1+[r(r)]f’+1)e—“1”—”+2m0f e T R(9) 155, dS +6C

2
2
- L= (Q)

t
< SCF(1+[r(r)]p+1)e_‘7°”_”+2m0f e'”l(t_S)IIh(s)lliz(mds+6Cf
< 3CF(1+r@1P™) e D 4 [ro(0)]* -1, (6.130)

e como r(t) € Ry (onde Ry € o conjunto definido em (6.126)), temos que
lim 3Cp(1+[r(m]°*)e 7P =y,
T——00
e portanto existe T = T'(t,D) < t tal que

3CE(1+[r@1P ) e P < 1; VT < T. (6.131)

De (6.130) e (6.131), segue que:
P(t,7)D(t) < By(t); VT < T,

onde By (1) := By, (0).

Isso mostra que a colecio B, formada pelas bolas fechadas Ero(n (0) € uma familia 2-pullback

absorvente. Afirmamos que By € 9. De fato. De (6.128), segue que:

T

[ro(@)12e? ™ = 2mge~(0=3)" f 7 R($)]122 ) ds+ (6Cr +1)e 7.

T g1
Como f e’% | h(s) IIiZ(Q) ds decresce quando T — —oo, € % -0 >0, temos que [1y(1)]%e2 7 — 0
-0

quando T — oo, € portanto, ry € Ry (ver conjunto definido em (6.126)). Logo By € 2. O

Agora apresentaremos um lemma técnico que sera utilizado para mostrar que o processo

{P(t,7)} =7 € D-pullback assintoticamente compacto (ver Definicdo 3.57).

Lema 6.12
Seja {22(t,T)};>r 0 processo de evolucao definido em (6.107). Dados UTI, UT2 € A, existe 0, > 07, tal

que
t
122(t,7)U} — (1, 1) UZ|1%, < 31U} = UZ||%e 72D + Cp r f |t (8) = 1P (91711 ) S
t
+4 f fQ [f@?(9) = f@ ()] (W (0 - WP (r) dxds, (6.132)

onde U/ (1) := @(t, UL = (u/ (1),67(1), vI (1), 27 (1), I (1) (j = 1,2), Cyr = 4sup,ep  k(T,5) €
k(t, 1) :6(1+ ||U1(r)||f;;1+||U2(t)||§,,;1).
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Demonstracéo. Sejam U}, U} € 76; U} = (ul,61, v}, 2L,0) e UZ = (ul, 62,02, 22,0). Considere as so-
lugdes brandas U : [0, +o0) — A e U?: [0, +00) — H; UL (1) = (u' (1), 8 (1), (uh) (1), 61 (1), 01 (1))
e U?(t) = (u?(),58%(1), W) (1), (6%)(1),p* (1)) do problema de Cauchy (6.19) para os dados iniciais

U} e U? respectivamente.

Observe que, W = U! - U? = (w, x, wy, X, @) é solucdo branda do seguinte problema:

Wi (x, ) —Aw(x, t) + w(x, 1) + f(ul(x, n) —f(uz(x, 0)+c(t)g(we(x, 1) =0, (6.133)
Xee&, D)+ x (&, 1) +Y(t)pr(y)<ﬁ(€, Ly)dy=—(wy)-(,1), (6.134)

P& 6+ (P +MPE, 1,y) = p(x:(E, 1) =0, (6.135)

Xe(&, 0= %—Lj(é, 1), (6.136)

w(x,T) = u(x) — u2(x) e wi(x,7) = vl(x) - vi(x), (6.137)

XET) =018 —6%(), x:(E,1) =21 ()~ 25 (&) e P(&,7,) =0,. (6.138)

ondet>1,x€Q,{eTeyelR.

Multiplicando o sistema (6.133)-(6.135) pelas fungdes wy, x: e ¢ respectivamente, procedendo

de forma similar a demonstracao da Proposicdo 6.6, e utilizando as condicdo de fronteira (6.136),

obtemos:
1d 1 1 d 1 Y( 1)

= fQ[f(u (0) - fu! (t))]wt(t)dx—c(txg(wt(t)),wt(t»Lz(Q)—y(t)+fR(y +0) 1@, T2y dy
/

+y(t)
2

”(I/)\(Z)”iZ(R;LZ(r))' (6139)

Defina o funcional energia do problema (6.133)-(6.138):

( 1)

Assim de (6.139) e (6.140), obtemos:

d _
Eg(t) < -moll wt(t)lliz(m—y(t)+fR(y2+n) ||<p(t,y)||iz(r) dy

+fQ [f@? () - fu' ()] we(0) dx (6.141)
Dado £ > 0, defina a Energia Pertubada:
Es (1) :=E() +EY(D), (6.142)
com

V(1) =(w(1), we (1)) p2(q) + X (O, X e () 2y + W (D), X () 121y

(1)
Y ”‘P(t) ”LZ([R :[2(I)) ﬁZf ”Xt(s) ”Lz(r) dS (6143)
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onde B, := 2+ (Cp)?.
Note que
(1)
V(D) < Qw(t)wt(t)dx+frx(t)6t(r)dr+fw(t)|rx(t)dr+Y—n(p(r)np(mzm)
- 1 5 1 2 1
= _” w(t) ”LZ(Q) + E” Wt(t) ”LZ(Q) + E”X(t)”LZ(I‘) + EI'X[(I)HLZ(F) ” w(t)”Hl(Q)
, G 0)2 140
” (t)lle(F) ”(P(t)”Lz(R LZ(F))
C
< Enwmuﬁ =C18(1),
onde C; = max{1 + (Cp)?,y(1)}.
Logo
—CiEMN =Y <Ci&(); VE=T1. (6.144)
Assim, se €< £y := zc , entdo de (6.144), segue que:
1 3
() =8 +EVY () <EM) + V() <=E()+EgCLE() =&(1) + Eg(t) = Eg(t)
e
1 1
E()=&E()+eV()=&(H)—eC1E() =E(1) —€gCLE() = E (1) — Eé‘“’(t) = 56"(0.
Em resumo, para todo ¢ = 7, tem-se
1 3
Eé’(t) <&t < Eg(t)’ sempreque 0<Eé&<§é. (6.145)

Por outro lado, das Equacoes (6.133)-(6.136), obtemos:

V(1) = lwi (D172 ) + (W@, wee (D) 2y + 1X D2 gy + XD, XD 20y + (Wi (D1, X (O 21y
WO, 1) 2y +YOP@D), P (D) 22y + re )||<P(l‘)||Lz(RLz(r)) Ballx e (D12
= we (D172, + (W@, Aw(@®) — w@®) + f (W (D)~ f(u' (1) ~ c(Dgw (D)) 20y + XD 72,
+<xUL—xU)—YU{LpUO¢UJOJV—WAUH>H03+<WAHWJKDMAD
+@MﬂmxADhAn+YUM@U%—03+m¢UHﬁﬂwaUhﬂRHm»
Y( )

LZ(R 12(T) ﬁz”)(r(t) ”L2(l")
S wt(t)an(Q)—||w(t)||H1(Q)+fQ[f(u (1) fw )] wio)d=e(o) | glwi(o)wio)dx
+(1—ﬂz)||xt(t)||§2(r)—||x(t)||§2m—y(t)fRfrp(y)@(t,y)x(t)drdy

+2 [ w0 dr -y [ P +mIgog dy+yo | [ pogenmdrdy

'(1)
AL ”(p(t)”LZ(R 12(D))"
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Logo:

V(1) < lwi (D120, ~ WO g, +fQ [fa®) - fu' )] w dx—c(r)fgg(wtm)w(t) dx

+ (1= B e (D2 = X D72, —y(r)fRfP PP, y)x () dr dy

Y

v2 [ wonmar+yo [ [ posepuodrdy-LR0G0 g .0, (6140

Inserindo &(¢) em (6.146), obtemos:

, 1 1
V(D= =80 = SNwO g g = IOl + ||wt||L2(Q) —ﬁz)nxtmniz(r)
+fQ[f(uz(t))—f(zﬂ(t))]w(z:)alx—c(r)ng(wt(t))w(t)dx+2fr w(t) x(t) dT

—Y(t)fmfrp(y)ﬁ(t,y)x(t)dde+Y(t)fu§frp(y)¢(t,y)xt(t)dde

1 1 3
~80) = SNwOlp )= IOy + S 1Well gy +| 5 —ﬁz) [FHOLE

1
+ fQ [f @ @)= ful ] w@ dx+ 2wl g, + (meo) lwi (D7 g

1 C(a,n,0)]?

# DI g+ PNy + f 02+ DI gy dy
1 [C(a,n,0)]*

+ IOy + Lf(y DIy Ay + 5 1O,

e portanto:

1 1 1, 3 ) )
+(ﬁ2_ﬂ2) ”Xt(t)”LZ(r)_'_ [C(a,n,())] [;@(y +77)||¢(I;J/)||i2m
+fQ [f@? () - fu' ()] w(n) dx
3 ~
= -8+ (5 + (mCo)z) lwill3 o, + [Cla,n, 0] fR W +mIPE PITa

+fQ[f(u2(t))—f(u1(t))] w(t)dx. (6.147)

Agora, escolha

-1

~ . ~ 3 2 -2
€= mln{eo, mey (5 + (mco) ) Yo [Cla,n,0)] ,1}. (6.148)
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Assim, de (6.141) e (6.147), obtemos:
d

%gg(t) = %é"(t) +&Y'(1)

< =meol w01 =70 [ (P +mIG Dy dy+ [ [0 = (' @) wito) dx
—Eg(t)+5(g+(mco)2) lwi (D132, +E[Cla,n, 0] fR W +mIPE P72y dy
+Ef9 [f2@) - fu ()] wo dx

< (=mco +mco) [we(D) 720, (~Yo +7Y0) fR G2+ W dy —EE W)
+fQ[f(u2(t))—f(u1(r))] wt(t)dx+fg[f(uz(t))—f(ul(r))] w(t)dx

=—5£(t)+f9[f(uz(r))—f(ul(t))] w(t) dx+fﬂ[f(u2(t))—f(ul(t))] w, (1) dx,

e como ¢ < &, aplicando a desigualdade (6.144), obtemos:

d 2F
T 60 = B NOT f [f@? () - fu' ()] w(n) dx
t 3 Q

+ fQ [f@? @) = fu! ()] we(d) dx. (6.149)
Agora, observe que, do Teorema do Valor Médio, existe 8 € (0,1) tal que
f@?) = fh = flw)@® -ul) = - f'ww,
onde u* =60u' + (1-6)u?. Logo

ILf(w?) - fHlwl =1 f ()] |wl?.

Como 0 <@ <1, temos que |u*| < |u'| + |u?|, e portanto, da hipétese (6.8), obtemos:

ILfW®) = fF@M)wl = If' W)l -lwl* < C(1+ (1wl + )P ) Jwl. (6.150)

Se N € {1,2}, temos que p = 3, e nesse caso, H(Q) — L*(Q) = LP™1(Q). Além disso,
(u'|+1u?)® < 20u' 1P+ 21u” P,
e portanto, de (6.150) e da Desigualdade de Holder, segue que:
fQ[f(uz(t))—f(ul(t))] w(t)dxscfQ(1+(|u1(t)|+|u2(t)|)2)|w(t)|2dx
sCfﬂ(l+2|u1(t)|2+2|u2(t)|2)|w(t)|2dxsZCfQ(l+Iul(t)|2+qu(t)lz)lw(t)lzdx
<2C(Vmed(@ + 1 (D12 ) + IO o ) 1w D12
<2C(Vmed(@) + Collu' (12 g, + Col2 IO 2 o) 1w (D124 g

< C(1+ 1" 1) ) + IO ) 1D 12 g

<C(1+ U @5 + 1V @1 ) 1w g, (6.151)
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onde C = 2Cmax{vmed(Q), (Cy)?} e C, ¢ a constante da imersdo H'(Q) — L*(Q).

b

HY(Q) — L2 (Q) — LPT1(Q) (ver Corolario 1.26). Além disso, observe que,0<p—-1<2,se N=3; e
O=sp-1=1,se N=4.

N N
Para N = 3, temosque 1 < p < N_2 eportanto2<p+1<2p < 5" Entdo, tem-se

Suponhaque 0 <p—1<1 (N = 3). Nesse caso, tem-se:
(u'l+1a®DP~ < [uh P+ [u?P Y,

uma vez que a funcio s — s?~! é céncava (possui derivada segunda negativa) quando 0 < p—1<1

(oscasos p—1=0e p—1=1sao triviais).

Portanto, de (6.150) segue que:

A

fQ[f(uZ(r))—f(ul(t))]w(t)dx < cfg(1+(|u1(r)|+|u2(t)|)9‘1)|w(t)|2dx

IA

c’f A+t OP T + 1?01 Y w1 dx,
Q

onde C' =C.

Agora,se1<p—1<2 (N =3), temos:
(1) + 1) <2072 (1Pt e,

uma vez que a funcio s — s°~! é convexa (possui derivada segunda positiva).

Como 2°~2 > 1, de (6.150) segue que:

IA

fQ[f(uZ(t))—f(ul(t))]w(t)dx cfQ(1+(|u1(t)|+|u2(r)|)P‘1)|w(t)|2dx

I\

Cf A+2°" N O+ 22212 01 Y lw ) P dx
Q

IA

c’f A+t 0P + 1?01 Y w1 dx,
Q

onde C' =2P72(C.
Portanto, para N = 3, obtemos:

fQ[f(uz(t))—f(ul(t))] w(t) dxsc’fQ(l+|u1|f"1+|u2|p‘1)|w(t)|2dx

-1
p+1(Q)

-1

/ p_:—} 1 o
<C [med(Q)]p + ”u (t)”L p+1(Q)

2, 1P
@)

2
” LU(Z') ”Lp+1 [(9)]

p

=C ([med(ﬂn T Co)? ' )

i+ CP I @1 )Ilw(t)||2

H'(Q) L+
~ 1 -1 2 -1 2
< C(1+ 1" @11, + IO JIw @12, g

<C(1+|U @5 +1U2@1%,  lw 2, g, (6.152)

~ -1 —_
onde C = 2Cmax{ [med(Q)] 7+, (CO)P-I} e C, é a constante da imersdo H'(Q) — LPT1(Q).
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Observe que para N € {1,2}, temos p = 3, e portanto p — 1 =2 e L°*1(Q) = L*(Q) . Portanto,

aplicando as estimativas (6.151) e (6.152), na desigualdade (6.149), obtemos:

d 2F
RO _?ggg(t) + k@, DI w7 o) + fﬂ [f@? (@) - fu! ()] we(n) dx, (6.153)

onde k(1,1) = 6(1 +||Ut () ||£—,;1 + U (1) ||§7;l)-

Aplicando a versao diferencial do Lema de Gronwall (Proposicdo A.6) em (6.153), obtemos:

& I 5
&=(1) sé"fg(r)e_%(t_”+ sup k(t,s) e'z?(”‘_”llw(s)llipﬁ(mds
se[r,t] T
L o
+f e—%”—ﬂf [f@?(@) - f* ()] we(s)dxds (6.154)
T Q

Comparando (6.123) com (6.148), observamos que ¢ < €. Assim, escolhendo o, := %5, temos

que o := 23—5 < 23—5 = 0,. Além disso, de (6.145) e (6.154), obtemos:

t
E(1) <28:(1) <28:()e " 42 sup k(z,5) | e 2 INw(9)F ) ) dS
se[r,1] T

t
+2f e—"z(f—s)f [f@? () - fu' ()| wi(s)dxds
T Q

t

<3&(1)e %21 12 sup k(1,s) e“’zu_s)llw(s)llipﬂ(mds
selr,t] T
t
+2f e—”z(f—”f [f@? () - fu' ()| we(s)dxds (6.155)
T Q

Finalmente, como e "% < 1 para todo s€ [1,t] e
& =2 IW®I2, = S0t U202, = 1Pt DU - D (1) U2
(t)_EH (t)”(]f_zll (1) — (f)||J,¢—§|| (6, )U; =21, 1)U 1%,

de (6.155), obtemos (6.132), onde C;; =4 sup k(1, ) O

se[t,t]

Proposicao 6.13 (i) Se N € {1,2,3}, entdo o processo de evolucio {Z?(t, 1)}, definido em (6.107)

é 9-pullback assintoticamente compacto.
(i) Se N =4 e existe uma constante C > 0 tal que:
If ()< CA+ulP?); VueR, (6.156)

entdo o processo de evolucdo {Z2(t, 1)} >, definido em (6.107) é @-pullback assintoticamente

compacto.
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Demonstracao. Seja EE = {B(1)};er uma familia 2-pullback absorvente, que é garantido pela Pro-

posi¢io 6.11. Dados U}, U? € By (1), do Lema (6.12), segue que:

t
12 (1, 0)U; - (1, 1) U711, < 31Uy - Uz 56”72 "7 + Cy f |t () = ()% 0 ) s
T

t
wa [ [ [Felon - o] (w@hin - ) dvds

t
<3Q2Iro(m? e 2 + Cry f It (8) = 2 ()13 pur o S
T

t
+4 f fQ [f@? () = f@ ()] (@WhH (0 - W (r) dxds  (6.157)

onde Ui (1) := @(t,0)UL = (w/ (8),67(8), v (£), 20 (8), I (1)) (j = 1,2), Cprx = 25Up,epr  k(T,5) €
kw0 =C(1+[U' 0], +1U2015,")

Observe que
e 1 p-1 2 p-1 .
K@, 0=C(1+|U' @5 +1U%@15," ) < oo vi=T,
uma vez que, de (6.130), obtemos
: _ - _ el
1015, =12, 0Ul1%," < [3Cr(1+1r@IP ) +InP] 7 (j=1,2).
Além disso, de (6.128), tem-se:
T
Iro(T)|2e 7270 = (2m0e(”2_00)7f ea"sllh(s)“%Z(Q) ds+(6Cyr+ l)eUZT) e 2l =T,
—0o0

Como g2 —ag >0 e gs >0, temos que e 707 2T _, ) quando T — —oco. Logo
2= 09 2

T
lim (Zmoe("z“”” f e | h($) 172 ds+ (6C + 1)e“2f) e 72! = .
T—00 oo

Assim, dado qualquer € > 0, existe 7, € R (que depende de ¢, de ¢t e de Bo) tal que:

12|rg(t4) 27027 Te) < g2, (6.158)

Defina f; : By(t¢) x Bo(t¢) — R por:

¢ 1/2
fe(Us, UR) =/ Cua, ( f lul(8) = ()71 ds)

t
f fQ [P () = f@ ()] (Wh (0 - W) (1) dxds

1/2

+2 (6.159)

Dados U} , U}, € By(¢), das estimativas (6.157) e (6.158), segue que:
t
12 (1,7 U;, — P (1,7 Uz |5, < 12lr0(re)Pe 7277 + Cp f 1 (8) = P ()% o S
t
+4 f fQ [f@?(s) = Ft ()] (W (8) — (WP (1) dxds
Te

t
2 1 2 2
=g+ CI,Tg[ ” u (S) —u (S) ||Lp+l(Q) ds
Te

t
+4 f fQ [f@?(s) — F ()] (W) (6) = (WP (1) dxds,
Te
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e portanto, de (6.159), obtemos:

t 1/2
12 (t, 1)UL — P (1, 1)U | p<e+./C (f lul(s) = P ()2 11, dS
e)Usg, e/ NA LT - LA+ (Q)

1/2
+2

t
f fﬂ [f@®(s) — F! )] (W) () = (W) (1) dxds
Te

=e+f (UL, U?); YU} U} € By(t).

Assim, diante da Proposicao 3.59, resta apenas mostrar que f; € uma funcao contrativa sobre

By(T¢) x Bo(t¢) (ver Definicdo 3.25). De fato, seja (U2 uma sequéncia de valores iniciais em

TE)HEN
By(t,), com

U (1) :=2(t,1) UL = (u"(1),6" (1), v"(1),2" (1), 0" (1)) (nEN).
Observe que, de (6.130), obtemos:
IU™ ()12 = 122 (5, 1)UL 1%, < 3Ck (1 + 17 (x)P7Y) + 1o (0)]? < 00; VT, <s<T.

Logo,

(1) ,en € uma sequéncia limitado em LZ(TE, t; H(Q)),
o 2 2 (6.160)
(v™) en € uma sequéncia limitada em L (7, t; L°(Q)),

Observe que H' (Q) e L?(Q) s3o espacos reflexivos (Espacos de Hilbert) e vele a seguinte cadeia
de imersoes:
1 comp 541 2
H (Q) — LT (Q)— L“(Q) (Ver Teorema 1.28). (6.161)

Como v,, = (u™), para todo n € N, as estimativas em (6.160), as imersdes em (6.161) permitem a
aplicacdo do Teorema de Aubin-Lions (Teorema 1.35), e o Teorema de Aubin-Lions garante a existéncia

de uma subsequéncia (/%) ken de (™) peny € Uma funcio u € L2(t,, t; LPT1(Q)) tais que:

u™ — y (fortemente) em L%(t¢, f; LPTH(QY). (6.162)

De (6.162), segue que (u'*) e € uma sequéncia de Cauchy em L? (1, t; LPT1(Q)), e portanto:

lim Jim fT t 1™ (8) = W™ ()17 pur ) 5 = 0. (6.163)

O limite em (6.163), mostra que (U"*) yen, com U™ = (1", 6", v™, z", ™) é uma subsequéncia
de (U™)en tal que, a primeira parcela de f. (U™, U™) converge a zero (Ver expressao em (6.159)).
Assim, para mostrar que f; é de fato contrativa, precisamos mostrar que a segunda parcela de
fe(U™,U™) também converge a zero. Contudo, essa segunda parcela envolve termos com cresci-
mento critico e portanto apresenta um certo grau de dificuldade, que acarretou em uma restricdo no
crescimento da nao linearidade f do problema quando a dimensao N > 3. Diante disso, dividimos a

demonstracao em dois casos.
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Primeiramente, observe que:
t
f fQ[f(u”’(S)) — fW™ ()] [(W™) () — (™) e(s)] dxds
t
zf fQ[f(u”l(S))(u"’“)t(S) + f(™ ()W) ()] dxds
t t
—f f F@™ () (") () dxds—f f F@™ ()" (s)dxds
T JQ 7 JQ
t
:f fQ[f(u”’(S))(u”’“)t(S)+f(u”’<(3))(u”’)t(5)] dxds
Te
—f [F(u" (1)) + F(u™ ()] dx+f [F(u" (1)) + F(u™(1))] dx. (6.164)
Q Q
Se N € {1,2,3}, da hipotese (6.8), temos que |F(u)| < C(l + |u|4) para todo u € R, e portanto,
a funcdo F satisfaz as condicdes de Carathéodory, sendo Ny : L°(Q) — Lg(Q) o seu operador de

Nemytskii (Ver Teorema A.14). Como, nesse caso (N < 3) o Teorema de Rellich-Kondrachov, garante

que H'(Q) i L°(Q). Assim, aplicando o Teorema de Aubin-Lions, tem-se:

u™ — y (fortemente) em L?(t,, t; L°(Q)) (N <3) (6.165)

Como Nr: L5(Q) — Li(Q) e Li(Q) — L(Q) do limite em (6.165), obtemos:

IE@ )l — IF@)lpg e IF@@E)pg — IF@E:)ing (6.166)

Se N > 3, suponha que exista constate C > 0 satisfazendo (6.156). Nesse caso, temos que
|F(u)| < C(1 + |ulP), e portanto, F satisfaz as condi¢des de Carathéodory, sendo N : LP*1(Q) —
LPT+1 (Q) o seu operador de Nemytskii. Do Teorema de Teorema de Rellich-Kondrachov, segue que:
H'(Q) "2 1p+1(Q). Assim, podemos utilizar as limitacdes em (6.156) para aplicar o Teorema de

Aubin-Lions e garantir que
u™ — y (fortemente) em L?(t,, t; LPTH(Q)) (N > 3); (6.167)

p+l o+l
ecomo Ng: LP*H Q) —L*r (QelL? (Q — L'(Q), obtemos (6.166).

por outro lado, como H!(Q) P2 (), qualquer que seja N € N (do Teorema de Aubin-Lions),
segue que:
u™ — u (fortemente) em L(tq, t; L*(Q)), (6.168)

e como L?(t, t; L?(Q)) é reflexivo, da segunda estimativa em (6.160), segue que:

(u™), — u, (fracamente) em L%(t, t; L*(Q)). (6.169)

Além disso, para N € {1,2,3}, temos |f(u)| < C(1 + |ul®) e quando N > 3, tem-se [ f(u) <
C +|ulP~1). Assim, o operador de Nemytskii de f & dado por:

Ny IAQ) - LHQ (N<3) e Np:IP'U@) —L'% (@) (N> 3).
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Note que
2(p2-1)
(NPsoy s L2(Q) = L*(Q) (N<3) e (Nf)| ey L7 (Q—L*Q) (N>3). (6.170)
L 7 (Q
Defina:

ch(S)=fgf(u”’“(5))(u”’c)t(8)dx e Gk(S)=fo(u(S))(u"k)z(S)dx,
e observe que:

1/2 1/2
IGl(S)IS(fQIf(u"’(S))Izdx) +(f9|(u”k)t(s)|2dx) : (6.171)

Para N < 3, temos que (1™*) ey € limitada em L2(1,, £; L°(Q)) (ver (6.165)) e L8(Q) — L>(Q),
2(p2

-1)
e para N > 3, temos (1) ey € limitada em L? (7, t; LP1(Q)) (ver (6.167)) e L™ ¢ (Q) — LPT1(Q).
Como o operador de Nemytskii leva conjuntos limitados em conjuntos limitados, utilizando os
respectivos operadores de Nemytskii (ver (6.170)) e o fato de (/%) e Ser limitado em L2(z, t; L(Q))

(ver (6.169)), obtemos uma constante M > 0 tal que

IGf(s)l <M em quasetodo ponto se€ [T, 1].

Afirmamos que Gf(s) — GKk(s) quase sempre em [t f] quando [ — +oo. De fato:

IGF(s) - GF(s)] = fQ |f () = Fu(s)] - [(u™)(s)| dx — 0,
quase sempre em [T, t], quando [ — co.

Portanto, do Teorema da Convergéncia Dominada, temos:

t t
f GF(s)ds— f G*(s)ds quando [ — co. (6.172)
T Te

£

Assim, de (6.169) e (6.172), tem-se:

t
lim [lim[ ff(u""(s))(u"l)t(s)dxds
Te JQ

k—oo [ [—o0

t
f f fu(s))ui(s)dxds
T JQ

t
lim [lim ff(u”l(s))(u”k)t(s)dxds )
T JQ

|—oo | k—oo

e portanto:

k—o0l—00

t t
im hmf fg[f(u”k(s))(u”l)t(s)+f(u’”(s))(u"k)t(s)] =2 f fQ Fus)u(s)dxds
:2f F(u(l‘))dx—Zf F(u(zp)) dx. (6.173)
Q Q

Finalmente, aplicando (6.166) e (6.173) em (6.164), obtemos:

k—ool—oc0

t
lim limf L[f(u”’(S))—f(u”’“(S))] (@) () = (") (9)] dxds
Te

t
= lim limf f [f @™ () (™) (s) + f(u™ () (™) (s)] dxds
Te JQ

k—o0l—o0

k—o0l—o0 —o00 [—00

— lim limf [F(u"* (1)) + F(u™(1)] dx+klim llim [F(u" (1)) + F(u™(1))] dx
Q Q

_s f Flu() dx -2 f Fu(ry) dx—2 f Flu(s) dx +2 f F(u(ry) dx =0, (6.174)
Q Q Q Q
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Portanto de (6.163) e (6.174), segue que f, é contrativa, e isto completa a prova. O

Finalmente, no que segue, provaremos que o processo {Z(t, T)};>; admite um atrator pullback

(ver Definicao 3.54).

Teorema 6.14
Se 0 < 01, entdo O processo de evolucido {Z(t,1)};>; definido em (6.107) admite um (Uinico) 2-

atrator pullback, quando N < 3 ou quando N > 3 e existe uma constante C > 0 satisfazendo (6.156).

Além disso, se o < % entdo esse atrator pertence ao universo 2.

Demonstracdo. Se oy < 01, a Proposicao 6.11 garante que o Processo de Evolucao {#(t,1)};>; ad-
mite uma familia By = {Bo(1)} ;g de connjuntos 2-pullback absorventes. Além disso, da Proposicao
6.13, segue que (em qualquer um dos casos (i) ou (ii)), o processo {22 (t,1)} ;> € 2-pullback assin-
toticamente compacto. Portanto, o Teorema 3.58 garante a existéncia de uma 2-atrator pullback
{2 (1)} ter dado por:
Ag(t) = |J oD, ; VteR.
De2

Além disso, se g < % a Proposicio 6.11, garante que By € 2, e portanto, do Teorema 3.58

segue que Ay (1) = w(By, 1) € Bo(1) € {Ag (1)} er € D. [

Neste capitulo estabelecemos a existéncia e unicidade de solucoes globais para o problema de
valor inicial e de contorno (6.2)-(6.6), tanto na formulacdo branda quanto na forte, sob hipéteses
adequadas sobre os dados iniciais e os coeficientes do modelo. O Teorema 6.7 mostrou que, a
partir de dados em espacos de energia natural, obtemos uma Unica solucao branda global com
regularidade (6.62). Com hipoteses adicionais de regularidade dos dados e da forca externa h,
provamos a existéncia de solucoes fortes globais com regularidade (6.63), e ainda, sob hipoteses de
compatibilidade e de Lipschitzianidade para g, alcancamos regularidade local mais elevada (6.64).

Dessa forma, foi completada a analise da boa colocacao do modelo.

No que diz respeito ao comportamento assintético, formulamos o problema como um processo
de evolucao {Z2(t, 1)} ;>. Introduzimos o universo 2 adequado para o contexto ndo-autébnomo. Com
esse arcabouco, mostramos inicialmente a existéncia de familias pullback absorventes (Proposicao
6.11), controladas por funcoes de energia dependentes do forcamento externo h. Em seguida,
por meio de estimativas de energia refinadas, provamos que o processo associado é 2 —pullback
assintoticamente compacto (Proposicdo 6.13), sob hipoteses de crescimento natural sobre a ndo

linearidade f.

Esses resultados culminaram no Teorema 6.14, que garante a existéncia de um %-atrator
pullback para o processo {Z(t,7)};>;. Esse atrator fornece a descricdo assintética completa do
sistema quando N < 3, ou ainda quando N > 3, sob condicdes adicionais de crescimento sobre f.

Além disso, verificamos que, se (og < %), o atrator pertence ao universo 9.
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Apesar desses avangos, permanecem questdes em aberto que merecem ser exploradas em
trabalhos futuros. Um caminho natural consiste em estender a analise para o caso em que N > 3,
relaxando as condicdes impostas sobre f, para hipoteses tao gerais quanto as do caso N < 3. Esse
desafio envolve superar dificuldades técnicas na obtencao de imersdes compactas sob o expoente

critico de Sobolev.

Outro rumo promissor é a investigacao da existéncia de um atrator uniforme, o qual forneceria
uma descricao assintética independente do universo escolhido e permitiria discutir estabilidade
estrutural em relacao a perturbacoes externas. Esse tipo de objeto dindmico tem sido estudado em
trabalhos recentes, como em Matofu (BORTOT; SOUZA, 2025), que analisa a existéncia de atrator
uniforme para o modelo (6.1). A adocio desse enfoque pode abrir caminho para resultados de

robustez e continuidade em relacao a perturbag¢ées no sistema.

Em suma, a elaboracao desta tese resultou em um trabalho robusto e de grande valor acadé-
mico, que reline desde os fundamentos classicos da teoria das distribuicoes e dos espacos de Soboley,
passando pela teoria de semigrupos de operadores lineares limitados e pela analise da geracao e
estabilidade de semigrupos lineares, até alcancar o estudo recente e mais complexo da dindmica
nao linear e ndo auténoma. Nesse contexto, exploramos as modernas teorias de semigrupos de
operadores nao lineares continuos e de processos de evolucao para problemas nao autébnomos,

estabelecendo um elo entre resultados abstratos e aplicacoes concretas.

O trabalho n3o apenas sistematiza e integra essas diferentes abordagens, como também
apresenta aplicacoes diretas de cada uma delas: semigrupos de operadores lineares, semigrupos
de operadores nao lineares e processos de evolucao. Essas aplicacdes tém importancia central na
pesquisa contemporanea em equacoes de evolucao, pois permitem compreender a longo prazo a

dindmica de sistemas dissipativos e a sua tendéncia para estados assintoticos estaveis.

Entre os conceitos centrais destacados, a estabilidade de semigrupos aparece como ponto
de partida essencial para a analise qualitativa das solucoes. A nocao de atrator global fornece uma
estrutura invariante e compacta que descreve o comportamento assintético dos sistemas auténomos,
enquanto o atrator pullback amplia esse quadro para problemas ndo autbnomos, oferecendo um
instrumento mais refinado para a compreensao da dindmica dependente do tempo. A articulacao

entre esses conceitos mostra a profundidade e a atualidade dos resultados aqui desenvolvidos.

Dessa forma, considero que o presente trabalho cumpre plenamente seu propdsito inicial
e final: integrar teoria e aplicacdo em torno de uma linha coerente de investigacao, contribuindo
tanto para a consolidacido de resultados classicos quanto para o avanco em direcdes recentes e

promissoras da analise de equacdes de evolucao.






213

Referéncias

ADNANE, A.; BENAISSA, A.; BENOMAR, K. Uniform stabilization for a timoshenko beam system with
delays in fractional order internal dampings. SeMA, v. 80, p. 283-302, 2023.

ALSHABANAT, A. et al. Generalization of caputo-fabrizio fractional derivative and applications to
electrical circuits. Front. Phys., v. 8, p. 1-10, 2020.

AMMARI, K.; HASSINE, F.; ROBBIANO, L. Stabilization for Some Fractional-Evolution Systems.
Switzerland,: SpringeirBrefs in Mathematics, 2022.

AMMARI, K. et al. Stability of the rao-nakra sandwich beam with a dissipation of fractional derivative
type: Theoretical and numerical study. Mathematical Methods in the Applied Sciences, 2025.

AMMARI, K.; SHEL, F. Stability of Elastic Multi-Link Structures. Switzerland: Springer, 2002.

AOQUADI, M. Global and exponential attractors for extensible thermoelastic plate with time-varying
delay. J. Differential Equations, v. 260, p. 4079-4115, 2020.

AOURAGH, M. D.; BAZ, M. E.; SEGAOUI, M. Analysis of a thermoelastic timoshenko beam model.
Acta. Mech., v. 231, p. 4111-4127, 2020.

AOURAGH, M. D.; BAZ, M. E.; SEGAOUI, M. Stability and numerical results for a suspension bridge of
timoshenko type with second sound. Comp. Appl. Math, v. 43, p. 178, 2024.

ARAGON, L.; PUCHOL, V.; ASTIZ, M. A. Influence of the modal damping ratio calculation method in
the analysis of dynamic events obtained in structural health monitoring of bridges. J Civil Struct
Health Monit, 2024.

ARENDT, W.; BATTY, C. J. K. Tauberian theorems and stability of one-parameter semigroups. Trans.
Am. Math. Soc., v. 306, n. 2, p. 837-852, 1988.

ARIOLI, G.; GAZZOLA, F. On a nonlinear nonlocal hyperbolic system modeling suspension bridges.
Milan J. Math., v. 83, p. 211-236, 2015.

AROSIO, A. Averaged evolution equations. The Kirchhoff string and its treatment in scales of Banach
spaces. Trieste: expanded text of a lecture given in 22 workshop on functional-analytic methods in
complex analysis, W. Tutschke ed., World Scienti c, Singapore, 1993.

AROSIO, A.; GARAVALDI, S. On the mildly degenerate kirchhoff string. Math. Meth. Appl. Sci., v. 14,
1991.

ATTOUCH, H. H.; BUTTAZZO, G.; MICHAILLE, G. Variational analysis in Sobolev and BV
spaces:applications to PDEs and optimization. [S.l.]: MPS-SIAM series on optimization, 2006.

BARTLE, R. G. The Elements of Integration and Lebesgue Measure. USA,: John Wiley & Sons Inc.,
1996.



214 Referéncias

BATTY, C. J. K.; CHILL, R.; TOMILQV, Y. Fine scales of decay of operator semigroups. Journal of the
European Mathematical Society, v. 18, p. 853-929, 2016.

BEALE, J. T. Spectral properties of an acoustic boudary conditions. Indiana Univ. Math. J., v. 25, p.
895-917, 1976.

BEALE, J. T.; ROSENCRANS, S. I. Acoustic boudary conditions. Amer. Math. Soc., v. 80, p. 1276-1278,
1974.

BENAISSA, A.; BENAZZOUZ, S. Well-posedness and asymptotic behavior of timoshenko beam system
with dynamic boundary feedback of fractional derivative type. Z. Angew. Math. Phys., v. 68, p. 1-38,
2017.

BORICHEV, A.; TOMILOV, Y. Optimal polynomial decay of functions and operator semigroups. Math.
Ann., v. 347, p. 455-478, 2010.

BORTOLAN, M. C. Elementos da Teoria Espectral. [S.l.]: Universidade Federal de Santa Caratarina,
2021.

BORTOT, C. A.; SOUZA, T. M. Uniform attractor of non-autonomous wave equations with acoustic
boundary condition. Journal of Mathematical Physics, v. 66, p. 041501, 2025.

BOTELHO, G.; PELLEGINO, D.; TEXEIRA, E. Fundamentos da Andlise Funcional. [S.l.]: Sociedade
Brasileira de Matematica, 2015.

BREZIS, H. Functional analysis, Sobolev spaces and partial differential equations. New York: Springer,
2010.

CANTISAN, J. et al. Delay-induced resonance in the time-delayed duffing oscillator. Int. J. Bifurc.
Chaos, v. 30, p. 2030007, 2020.

CAPUTO, M. Linear model of dissipation whose q is almost frequency independent-ii. Geophysical
Journal of the Royal Astronomical Society, v. 13, p. 529-539, 1967.

CAPUTO, M. Elasticitd e Dissipazione. Bologna: Zanichelli, 1969.

CARABALL, T. et al. A gradient-like nonautonomous evolution process. I. J. of Bifurcation and Chaos,
V. 20, p. 2751-2760, 2010.

CARVALHO, A. N.; LANGA, J. A.; ROBINSON, J. C. Attractors for infinite-dimensional non-autonomous
dynamical systems. [S.l.]: Springer, 2013. v. 28.

CAVALCANTI, M.; CAVALCANTI, V. Introducdo a teoria das distribuicoes e aos espacos de Sobolev.
Maringa: UEM, 2009.

CHENG, Y.; DONG, Z.; REGAN, D. Exponential stability of axially moving kirchhoff-beam systems with
nonlinear boundary damping and disturbance. American Institute of Mathematical Sciences, v. 27, p.
431-4346, 2022.

CHOI, J.; MACCAMY, R. Fractional order volterra equations with applications to elasticity. J. Math.
Anal. Appl., v. 139, p. 548-564, 1989.

CHUESHOV, |.; LASIECKA, I. Long-time behavior of second order evolution equations with nonlinear
damping. Mem. Amer. Math. Soc., v. 195, n. 912, 2008.

CHUESHOQV, 1.; LASIECKA, I. Von Karman Evolution Equations: Well-posedness and Long-Time
Dynamics. New York,: Springer, 2010.



Referéncias 215

COCCOLO, M. et al. Delay-induced resonance suppresses damping-induced unpredictability. Phil.
Trans.R. Soc. A, v. 379, p. 20200232, 2021.

COCCOLO, M. et al. Fractional damping effects on the transient dynamics of the duffing oscillator.
Commun. Nonlinear Sci. Numer. Simul., v. 117, p. 106959, 2023.

COCCOLO, M.; SEOANE, J. M.; SANJUAN, M. A. F. Fractional damping induces resonant behavior in
the duffing oscillator. Commun. Nonlinear Sci. Numer. Simul., v. 133, p. 107965, 2024.

CONWAY, J. B. Functions of One Complex Variable. [S.l.]: Springer-Verlag, 1978.
DOERING, C. I.; LOPES, A. O. Equacdes Diferenciais Ordindrias. [S.l.]: IMPA, 2008.

EULER, L. De progressionibus transcentibus, sev quarum termini algebraice dari nequeunt. Comment.
Acad. Sci. Imperiales Petropolitanae, v. 1, n. 1, p. 38-57, 1738.

EVANS, L. C. Partial Differential Equations. USA,: American Mathematical Society, 2010.
FEDERER, H. Geometric Measure Theory. [S.l.]: Springer-Verlag, 1969.

FEREIRA, J. et al. Stability result for a kirchhoff beam equation with variable exponent and time delay.
Universal Journal of Mathematics and Applications, v. 5, p. 1-9, 2022.

FRIEGERI, S. Attractors for semilinear damped wave equations with an acoustic boudary condition. J.
Evolutions Equation, v. 10, p. 29-58, 2010.

FROTA, C. L.; GOLDSTEIN, J. A. Some nonlinear wave equations with acoustic boundary conditions. J.
Differential Equations, v. 164, p. 92-109, 2000.

GEARHART, L. Spectral theory for contraction semigroups on hilbert space. Trans. Amer. Math. Soc.,
V. 236, p. 385-394, 1978.

GUTEMBERG, L. et al. Stability analysis of a partially damped suspension bridge by friction. Electron.
J. Math., v. 8, n. 2, p. 1-18, 2024.

JESUS, R. D. et al. Well-posedness and asymptotic behavior of a suspension bridge system of
timoshenko-ehrenfest type with fractional derivative damping. Acta Mech, v. 236, p. 6569-6598,
2025.

JESUS, R. D. et al. Timoshenko system with internal dissipation of fractional derivative type. Journal
of Applied Analysis & Computation, v. 139, n. 2, p. 548-564, 2025.

JESUS, R. O. D. et al. Existence of global solution and global attractor for a suspended bridge system
of kirchhoff type with fractional derivative damping. Journal Of Evolution Equations, 2025.

KATO, T. Abstract differential equations and nonlinear mixed problems. [S.l.]: Accademia Nazionale
Dei Lincei, 1985.

KILBAS, A.; SRIVASTAVA, H. M.; TRUIJILLO, J. J. Theory and applications Of fractional diferential
EQUATIONS. Amsterdam,: Elsevier, 2006.

KIRCHOOF, V. Vorlesungen ober mathematische Physik: Mechanik. Leipzig,: ch. 29 x7, Teubner, 1876.
LIONS; ROBERT; DAUTRAY. Functional and Variable methods. Berlim: Springer, 2000.

LIONS, J.; MAGENES, E. Problémes aux limites non homogenes et applications, Vol 1. Paris: Dunod,
1968.



216 Referéncias

LIU, Z.; ZHENGZ, S. Semigroups Associated with Dissipative Systems. New York: Springer, 2011.

MA, T. F.; NARCISO, V. Global attractor for model of extensible beam with nonlinear damping and
source terms. Nonlinear Analisys Theory: Methods e Applications, v. 73, p. 3402-3412, 2010.

MA, T. F.; SOUZA, T. M. Pullback dynamics of non-autonomous wave equations with an acoustic
boundary condition. Differential and Intragral Equations, v. 30, n. 5-6, p. 443-462, 2017.

MAGIN, R. L. Fractional calculus in bioengineering. Redding,: Begell House, 2006.

MBODIJE, B. Wave energy decay under fractional derivative controls. IMA Journal of Mathematical
Control and Information, v. 23, n. 23, p. 237-257, 2006.

MEDEIROS, L. A.; MIRANDA, M. M. Espacos de Sobolev: Iniciacdo aos Problemas Eliticos ndo
Homogéneos. Rio de Janeiro: UFRJ, 2000.

MIRANDA, L. G. R.; RAPOSO, C. A.; FREITAS, M. M. Global and exponential attractors for a suspension
bridge model with nonlinear damping. J. Differential Equations, v. 431, p. 113-217, 2025.

NAKAO, M. Global attractors for wave equations with nonlinear dissipative terms. J. Diferential
Equations, v. 227, p. 204-229, 2006.

NASCIMENTO, F.; NONATO, C.; RAMOS, A. Decay rates for timoshenko beam system with suspenders
and arbitrary nonlinear localized damping. Acta Mech, 2025.

OLIVEIRA, W.; CORDEIROQ, S.; CUNHA, C. D. Asymptotic behavior for a porous-elastic system with
fractional derivative-type internal dissipation. Fract Calc Appl Anal, v. 27, p. 1314-2224, 2024.

ORTIZ, A. et al. Fractional damping enhances chaos in the nonlinear helmholtz oscillator. Nonlinear
Dyn., v. 102, p. 2323-2337, 2020.

PAZY, A. Semigroups of linear operators and applications to partial differential equations. New York:
Vol. 44 of Applied Math. Sciences, Springer-Verlag, 1983.

PEREIRA, D. C.; RAPOSO, C. A.; CATTAI, A. P. Global existence and energy decay for a coupled system
of kirchhoff beam equations with weakly damping and logarithmic source. Turkish Journal of
Mathematics, v. 46, p. 465-480, 2022.

PODLUNY, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional
Differential Equations, to Methods of Their Solution and Some of Their Applications. Cambridge,:
Mathematics in Science and Engineering, Academic Press, 1998.

POKHOZHAEYV, S. I. The kirchhoff quasilinear hyperbolic equation. Di erentsial’'nye Uravneniya, v. 21,
p. 82-87, 1985.

QIN, C.; DU, J.; LIN, g. Random attractors for the kirchhoff-type suspension bridge equations with
strong damping and white noises. International Journal of Modern Nonlinear Theory and Application,
V. 6, p. 134-147, 2017.

RAPQOSO, C. et al. Suspension bridge with internal damping. Acta. Math., 2023.

RAPQOSO, C. A. Suspension bridge model with laminated beam. Mathematica Moravica, v. 27, n. 2, p.
77-90, 2023.

RAPOSO, C. A. et al. Exponential stability for the timoshenko system with two weak dampings. Appl.
Math. Lett., v. 18, p. 535-541, 2005.



Referéncias 217

RENARDY, M.; ROGERS, R. C. An introduction to Partial Differential Equations. New York:
Springer-Verlag, 2004.

ROBINSON, j. C. Infinite-dimensional dynamical systems an introduction to dissipative: parabolic
PDEs and the theory of global attractors. [S.l.]: Cambridge University Press, 2001. v. 28.

ROBINSON, j. C. Dimensions, embeddings, and attractors. [S.l.]: Cambridge University Press, 2011.
v. 28.

RUDIN, W. Functional analysis. United States: McGraw-Hill, Inc., 1991.

SHAIKH, A. S.; SHAIKH, I. N.; NISAR, K. S. Generalization of caputo-fabrizio fractional derivative and
applications to electrical circuits. Adv. Differ. Equ., v. 373, p. 1-19, 2020.

SOUFYANE, A. Stabilisation de la poutre de timoshenko. C. R. Acad. Sci., v. 328, p. 731-734, 1999.

TARASOV, V. E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles,
Fields and Media. Berlin,: Springer, 2011.

TEMAM. Functional and Variable methods. Amsterdam: Theory and Numerical Analysis, 1974.

TIMOSHENKQO, S. On the correction for shear of the differential equation for transverse vibrations of
prismatic bars. Philos. Mag., v. 41, p. 744-746, 1921.

YOSIDA, K. Functional analysis. New York: Springer, 1965.

ZARRAGA, O. et al. An analysis of the dynamical behaviour of systems with fractional damping for
mechanical engineering applications. Symmetry, v. 11, p. 1-15, 2019.






219

APENDICE A

Resultados Classicos

Teorema A.1 (Lema de Du Bois Raymond)

Seja Q < R” um conjunto aberto. Se f € L}OC(Q) e,

fo(x)(p(x)dx =0, VYgeCrW).

Entdo, f(x) =0, em quase todo ponto x € Q.

Demonstracdo. (Ver (CAVALCANTI; CAVALCANTI, 2009), Proposicéo 4). O

Teorema A.2 (Teorema da Convergéncia Dominada)
Sejam (X, X, 1) um espaco de medida e Z (X, X, u) o espaco das func¢oes integraveis. Seja (f,,) nen
um sequéncia de fungbes em £ (X, X, u) tal que

lim f;,(x) = f(x), para quase todo ponto x € X,

para alguma fun¢ao mensuravel f: X — R.

Se existir uma funcao integravel g € £ (X, X, u) tal que | f,,(x)| < g(x) para todo x € X e todo
neN, entdao

feZX,X,p e limf fn d,u:ffdu
X X

Demonstracdo. ver ((BARTLE, 1996), Teorema 5.6). O]

Proposicao A.3 (Desigualdade de Young)

Sejam1<p<ooeq€l]%2taisque%+%:l. Entdo

p q
absa—+b—,
p q

qgualquer que sejam os nameros reais a, b = 0.

Demonstracdo. Veja ((BREZIS, 2010), Teorema 4.6). O]
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Corolario A.4

1 1
Sejam a,b=0e p,q € R tais que — + 5 = 1. Para todo ¢ > 0 dado, tem-se:
p

ab<eaP +C(e)b¥,

onde C(g) > 0 é uma constante dependente do £ dado.

Demonstracdo. Basta notar que

ab=(ep)\/P— = ((ep)”'”a)(

(ep)l/p (819)””)’

e aplicar a desigualdade de Young (Proposicao A.3) que segue o resultado, com C(g) = W.
Ep

Proposicao A.5 (Desigualdade de Holder)

Seja (X, X, u) um espaco de medida e sejam f e LP := LP(X,X,u) e gee L9:= L9(X,X,u), com

1 1
_+5 =1.Entdo fge L' :=L1(X,X,p e
p

Ifglp <Iflizrligla.

Demonstracdo. Ver ((BARTLE, 1996), Teorema 6.9). ]

Proposicao A.6 (Lema de Gronwall-Versao diferencial)
Sejam Tt R, f,g:[1,T] — R fungdes integraveis e u: [t, T] — R uma funcao nao negativa e diferen-

ciavel em (7, T) < R tais que:

du

— = fu)+gw; Vielr, T,

Entao
t d t t d
u(t) < u(r)el f0 ’+f g()el: TN g et T).
T

Além disso, se f e g forem nao negativas, entao:
¢ t
u(r) < elr f”)d’(u(r)+f g(s)ds); vielr, Tl
T

Demonstracdo. ver ((EVANS, 2010), pagina 708). O]

Proposicao A.7 (Lema de Gronwall-Versao integral)
Sejam 1 € R, a: [7, T] uma funcao crescente, b: [1,T] — R uma funcao integravele u: [7,T] — R

uma funcao continua e ndo negativa tais que
t
u(t) < a(t) +f b(s)u(s)ds; Vte[1,T].
T

Entao

u(t) < a(p)ek Pods,
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Demonstracdo. ver ((DOERING; LOPES, 2008), Lema 10.18) ou ((EVANS, 2010), pagina 709). O

Proposicao A.8 (Desigualdade de Cauchy-Schwarz)

Seja (V; (,)) um espaco vetorial com produto interno. Se u, v € V, entao

Ku, v)I < lullllvl,

Além disso, a igualdade ocorre se, e somente se, os vetores u e v sdo linearmente dependentes.

Demonstracdo. Veja ((BOTELHO; PELLEGINO; TEXEIRA, 2015), Proposicio 5.1.2). O]

Teorema A.9 (Lax-Milgran)

Sejam (H;(-,-)) um espaco de Hilbert e 2 : H x H — C uma forma sesquilinear:

(i) continua. (Isto é, existe C > 0, talque |B(u,v)| < C-|ullllvl; Yu,ve H),

(ii) coerciva. (Isto é, existe C > 0 tal que Re[ZB(u, u)] = C-|ul?*; Yue H).

Entdo, para todo funcional £ : H — C antilinear limitado, existe um Unico u € H tal que

B(u,v)=<L(v), paratodove H.

Demonstracdo. Veja ((BREZIS, 2010), Corolario 5.8). O]

Teorema A.10 (Alternativa de Fredholm)

Seja X um espaco de Banach. Se ¥ : X — X é um operador linear compacto sobre X, entdo

(i) ker(I- %) tem dimensao finita.
(i) (I-%)(X) éfechado

(iii) ker(I- L) =0} o (I-&)(X) = X.

Demonstracdo. Veja ((BREZIS, 2010), Teorema 6.6) O

Teorema A.11 (Teorema Espectral para Operadores Autoadjuntos com Resolvente Compacto)
Seja A: D(A) ¢ H — H um isomorfismo linear autoadjunto tal que A~! é compacto. Ent3o existe
uma base ortonormal infinito de autovetores {u,},,en associadas a sequéncia de autovalores {1} en

tais que lim [A;| = co.
n—oo

Demonstracdo. Veja ((BORTOLAN, 2021); Teorema 5.3.7). O]

Teorema A.12 (Principio dos zeros isolados)
Sejam D < C um conjunto aberto conexo, f: D — C uma funcao holomorfa nao-constante e zj € D.

Se f(zp) =0, entdo existe uma vizinhanca de zy, V < D, onde o Unico zero de f é z.
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Demonstracdo. Veja ((CONWAY, 1978); Corolario 3.10) O]

Teorema A.13 (Lema de Nakao)

Sejam 1< T <+ooe f:[0,T) — (0,+00). Se existem constantes ko, k; > 0 tais que:

sup f($)<ko(f(O-ft+1))+k; VO<r<T-1,

t<s<t+1
entao
1+k
f() < sup f(s)( O)e_9t+k1, VO<r=<T,
0<s<1 ko
1+k
onde 0 = ln( 0) .
0
Demonstracdo. Veja ((NAKAO, 2006); Lema 2.1) O

Teorema A.14 (Teorema de Carathéodory)
Sejam Q c R” um aberto regular e f: Q x R" — R uma funcdo que satisfaz as condi¢ées de Carathéo-
dory:

(i) u— f(x,u) é continua para quase todo ponto x € Q.

(i) x— f(x,u) é mensuravel em quase todo ponto u € R™.

(iii) Existe p > 1 e uma funcdo g € L9(Q), como %+% =1, tais que:

|f(x, w)| < clulP™! + g(x); V(x,u) e Qx R™ (¢ >0).

Entao, dada uma funcao u: Q — R™, o operador de Nemytskii, & : LP (Q) — L9(Q) definido
por:
F(u)(x) := f(x, u(x))

é continuo e limitado (leva conjuntos limitados em conjuntos limitados).
Demonstracdo. Veja ((RENARDY; ROGERS, 2004); Pagina 370) O]
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